Managing multiple maps' matrices with mirrors

Will Dana

September 22, 2022

Linear maps

- A linear map $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ satisfies $f(a v+b w)=a f(v)+b f(w)$ for any $a, b \in \mathbb{R}$ and $v, w \in \mathbb{R}^{m}$.
- It's enough to know where the map sends coordinate vectors. We can write this information in the columns of a matrix.

Map $1, \mathbb{R}^{2} \rightarrow \mathbb{R}$: forget vertical coordinate

Change of basis

Map $2, \mathbb{R}^{2} \rightarrow \mathbb{R}$: forget horizontal coordinate

- Although these maps look different, that's just a matter of which coordinate is first and which is second.
- If we label our axes differently, they have the same matrix.

Change of basis

Map $2, \mathbb{R}^{2} \rightarrow \mathbb{R}$: forget horizontal coordinate

- Although these maps look different, that's just a matter of which coordinate is first and which is second.
- If we label our axes differently, they have the same matrix.

Change of basis

$$
\text { Map } 3, \mathbb{R}^{2} \rightarrow \mathbb{R}: \text { add coordinates }
$$

$\left.\begin{array}{cc}e_{1} & e_{2} \\ \begin{array}{c}\text { maps } \\ \text { to } \\ \text { to } \\ \left(\begin{array}{c}\text { maps } \\ \text { to } \\ 1\end{array}\right. \\ (1\end{array} & 1\end{array}\right)$

Change of basis

Map $3, \mathbb{R}^{2} \rightarrow \mathbb{R}$: add (original) coordinates

- This map seems fundamentally different, but. . .
- if we pick the right coordinates, it's still "keep one piece of information and forget the other."

A theorem on change of basis

Theorem

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear map. Then it is always possible to choose coordinates for \mathbb{R}^{m} and \mathbb{R}^{n} such that the matrix of f looks like

$$
\left(\begin{array}{ccccccc}
1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right)
$$

- Given any map, we can choose tailored coordinates, from whose perspective the map is "keep some information and forget the rest."
- What's important is rank - the number of 1 's in the matrix.

Directions for generalization

- Direction 1: place restrictions on coordinates (like fixing angles and lengths)

- Not the subject of this talk, but leads to tools like the singular value decomposition.
- Direction 2: consider multiple maps at once

$$
\mathbb{R}^{m} \xrightarrow{f} \mathbb{R}^{n} \xrightarrow{g} \mathbb{R}^{p}
$$

- Can we choose coordinates of $\mathbb{R}^{m}, \mathbb{R}^{n}$, and \mathbb{R}^{p} such that f and g both have nice matrices? What does "nice" mean in this context?
- What are the fundamentally different ways this diagram can behave?

The language of quivers

- A quiver is a diagram consisting of vertices and arrows between them.

- A representation of a quiver is an assignment of a vector space to every vertex and a linear map to every arrow.

The language of quivers

- Two representations of a quiver are isomorphic if we can pick coordinates for each one so that they consist of the same matrices.

$$
\mathbb{R}^{2} \xrightarrow{(10)} \mathbb{R} \cong \mathbb{R}^{2} \xrightarrow{(01)} \mathbb{R} \cong \mathbb{R}^{2} \xrightarrow{(11)} \mathbb{R}
$$

- The direct sum of two representations:

$$
\begin{aligned}
& \mathbb{R}^{m_{1}} \xrightarrow{f_{1}} \mathbb{R}^{n_{1}} \xrightarrow{g_{1}} \mathbb{R}^{p_{1}} \\
& \\
& \mathbb{R}^{m_{2}} \xrightarrow{f_{2}} \mathbb{R}^{n_{2}} \xrightarrow{g_{2}} \mathbb{R}^{p_{2}}
\end{aligned} \quad\binom{\mathbb{R}^{m_{1}}}{\mathbb{R}^{m_{2}}} \xrightarrow{\left(\begin{array}{cc}
f_{1} & 0 \\
0 & f_{2}
\end{array}\right)}\binom{\mathbb{R}^{n_{1}}}{\mathbb{R}^{n_{2}}} \xrightarrow{\left(\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right)}\binom{\mathbb{R}^{p_{1}}}{\mathbb{R}^{p_{2}}}
$$

Examples of direct sum

$$
(\mathbb{R} \xrightarrow{1} \mathbb{R}) \oplus(\mathbb{R} \xrightarrow{1} \mathbb{R}) \oplus(\mathbb{R} \xrightarrow{0} 0) \cong \mathbb{R}^{3} \xrightarrow{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} \mathbb{R}^{2}
$$

- In general, any matrix of the form

$$
\left(\begin{array}{ccccccc}
1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right)
$$

breaks down as a direct sum of $\mathbb{R} \xrightarrow{1} \mathbb{R}, \mathbb{R} \xrightarrow{0} 0$, and $0 \xrightarrow{0} \mathbb{R}$.

Restating the theorem

- A representation is indecomposable if it isn't isomorphic to a direct sum of smaller ones.
- With this new language, we can restate the theorem we started with.

Theorem

The only indecomposable representations of the quiver
are

$$
\mathbb{R} \xrightarrow{1} \mathbb{R} \quad \mathbb{R} \xrightarrow{0} 0 \quad 0 \xrightarrow{0} \mathbb{R}
$$

so every representation is isomorphic to a direct sum of these.

General quivers

- Our original question becomes: for each quiver, can we classify the indecomposable representations?
- We can capture the key features of $\bullet \rightarrow \bullet$ with the following property:

Definition

A quiver is finite type if it has finitely many indecomposable representations.

- For a representation, the analogue of "rank" is "how many copies of each indecomposable show up?"

Example lists of indecomposables

$$
\begin{array}{lll}
\mathbb{R} \longrightarrow 0 \longrightarrow 0 & 0 \longrightarrow \mathbb{R} \longrightarrow 0 & 0 \longrightarrow 0 \longrightarrow \mathbb{R} \\
\mathbb{R} \xrightarrow{1} \mathbb{R} \longrightarrow 0 & \mathbb{R} \xrightarrow{1} \mathbb{R} \xrightarrow{1} \mathbb{R} & 0 \longrightarrow \mathbb{R} \xrightarrow{1} \mathbb{R}
\end{array}
$$

Example lists of indecomposables

There are 120 indecomposables, with spaces of dimension up to 6 .

Gabriel's theorem

Theorem

A quiver is finite type if and only if, ignoring the direction of arrows, it has one of these shapes:

- These diagrams - the simply laced Dynkin diagrams - are ubiquitous and important.

Systems of mirrors

- A hyperplane in \mathbb{R}^{n} is a subspace of dimension $n-1$ through the origin.

Definition

A closed system of mirrors is a finite collection \mathcal{H} of hyperplanes such that:

- For $H_{1}, H_{2} \in \mathcal{H}$, the reflection of H_{1} through H_{2} is also in \mathcal{H}.

Notating a system of mirrors

- Knowing the mirrors bordering a single region (walls) is enough.
- We record the angle between each pair of walls.

Angle between...

1 and 2	$\pi / 4$
2 and 3	$\pi / 3$
1 and 3	$\pi / 2$

Notating a system of mirrors

Angle between...

1 and 2	$\pi / 4$
2 and 3	$\pi / 3$
1 and 3	$\pi / 2$

- Now draw a diagram with a vertex for each wall.
- For each pair of walls:
- If the angle between is $\pi / 2$, do nothing.
- If the angle between is $\pi / 3$, draw an edge between them.
- If the angle between is $\pi / m, m>3$, draw an edge between them and label it with m.

What are the closed systems of mirrors?

Theorem

The closed systems of mirrors correspond to these diagrams.

- The unlabeled ones look familiar!

Indecomposables and mirrors

- The dimension vector of a quiver representation records the dimension at each vertex.

- Choose a region of a system of mirrors, and for each mirror pick the normal vector pointing towards that region. These are root vectors.

Indecomposables and mirrors

Theorem

There is a change of basis taking the dimension vectors of indecomposable representations of a finite type quiver to the root vectors of the system of mirrors with the same diagram.

- Or, in other words...

Theorem

Indecomposable representations correspond precisely with mirrors.

