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Abstract. These are the notes I used for the graduate minicourse on local Langlands correspon-

dence during summer 2022. Local Langlands correspondence is a conjectured parametrization
of irreducible admissible representation of a p-adic group by the so called Langlands parameters,

which are generalization of the Galois representations. In this course we define these objects,

explain some conjectured properties of the correspondence and work explicitly with the case of
GL2. We also introduce the theory of endoscopy, in particular the endoscopic character identity

conjecture in the local Langlands correspondence.
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Introduction

When we talk about a correspondence, there will be two sides of the story. In the case of
Langlands correspondence, one is called the automorphic side, and the other is called the Galois
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side. The local Langlands correspondence aims to establish a map

Automorphic side −→ Galois side.

The automorphic side consists of objects called irreducible admissible representations while the
Galois side of objects called Langlands parameters. This map is expected to be surjective and
finite-to-one, so one can also think of the local Langlands correspondence as a parameterization
of irreducible admissible representations by Langlands parameters, which are in some sense gen-
eralization of Galois representations.

This map is of course not a random assigment, and it is expected to satisfy some nice properties,
like preserving certain operations of representations or invariants.

These phenomena have been observed in many known examples, like the abelian case from the
local class field theory, and the case of GLn by the work of Harris-Taylor, Henniart and Scholze-
Fargues. We will later see how LLC works in the case of GL2, what these recipes are, and verify
some of the expectations explicitly.

Finally we introduce the theory of endoscopy for quasi-split reductive groups. This is a theory
that relates the L-packets of a reductive group with the L-packets of its endoscopic groups. It is
an instance of the so-called Langlands functoriality.

1. Explanation on the automorphic side

1.1. Reivew of reductive groups (absolute theory).

1.1.1. Affine algebraic groups. Let F be an algebraically closed field (can think of F = C).

Definition. An affine algebraic group G is an affine variety equipped with polynomial maps

m : G×G→ G, i : G→ G

that make G into a group.

Example 1.1. • Ga = F with m(x, y) = x+ y, i(x)− x.
• Gm = {(x, x′) ∈ F 2 | x · x′ = 1} with m(x, y) = xy and i(x) = x−1.

Remark. Over R we have exp : R → R× which is a group homomorphism, almost are isomor-
phism. This is not algebraic. There are non-trivial group homomorphism Ga → Gm or Gm → Ga.

Theorem 1.1. Hom(Gm,Gm) = Z given by taking powers.

Theorem 1.2. Every affine algebraic group G is isomorphic to a closed subgroup of some GLn
(vanishing locus of polynomials).

From now on, consider G ⊆ GLn.

1.1.2. Jordan decomposition. In GLn we have the Jordan decomposition: every g ∈ GLn there
are s, u ∈ GLn commuting such that g = s · u with s semisimple (diagonalizable) and u unipotent
(if g = s+ n is Jordan normal form, then u = I + s−1 · n).

Theorem 1.3. If g ∈ G, then s, u ∈ G.

Definition. G is called unipotent if all g ∈ G are unipotent.

Example 1.2. Ga is unipotent. Indeed, Ga ∼= ( 1 x
1 ).

Theorem 1.4. If G is abelian, then

Gss = {g ∈ G | g is semisimple}, Guni = {g ∈ G | g is unipotent}
are closed subgroups and G = Gss ×Guni. In general, Gss and Guni are not subgroups.

Definition. An affine algebraic group is called

• a torus, if G ∼= (Gm)n
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• reductive, if G has no closed connected unipotent normal subgroups.

Example 1.3. • Any torus is reductive (it has not unipotent elements)
• The group ( ∗ ∗0 ∗ ) ⊆ GL2 is not reductive because ( 1 ∗

∗ ) is normal.

Theorem 1.5. Any affine algebraic group G sits in an exact sequence

1→ Ru(G)→ G→ Gred → 1.

Here Ru(G) is the unipotent radical and Gred is the reductive quotient. A unipotent G is a repeated
extension of copies of Ga.

1.1.3. Tori. Let T be a torus.

Definition. X∗(T ) = Hom(T,Gm) is called the character module, and X∗(T ) = Hom(Gm, T ) is
the cocharacter module.

These are finitely generated free abelian groups. The pairing

〈−,−〉 : X∗(T )⊗X∗(T )→ Hom(Gm,Gm) = Z, (χ, λ) 7→ χ ◦ λ

is perfect.

1.1.4. Lie algebra. Let T → GL(V ) for some F -vector space. Then V =
⊕

α∈X∗(T ) Vα where

Vα = {v ∈ V | t · v = α(t) · v, t ∈ T}.
For any affine algebraic group G we have Lie(G) = tangent space of G at e ∈ G. The action of

G on itself by conjugate differentiates to G→ GL(Lie(G)).

1.1.5. Classification of reductive groups. Let G be a connected reductive group. Let G be a
maximal torus. Then T acts in Lie(G) and we have the eigenspace decomposition:

Lie(G) =
⊕

α∈χ∗(T )

Lie(G)α.

We have Lie(G)0 = Lie(T ).
Let R(T,G) = {0 6= α ∈ X∗(T ) | Lie(G)α 6= {0}}. Then

• R(T,G) is a reduced root system.
• The action of NG(T ) on R(T,G) identifies NG(T )/T with the Weyl group of R(T,G).
• dim(Lie(G)α) = 1.
• For α ∈ R(T,G) there is a unique unipotent subgroup Uα normalized by T and Lieα =

Lie(G)α. It is isomorphic to Ga but not canonically.
• For any choice of positive roots R+ ⊆ R(T,G), U =

∏
α∈R+ Uα is a maximal connected

closed unipotent subgroup, and B = U ·T is a maximal connected closed solvable subgroup,
called Borel subgroup. R+ 7→ B is a 1-1 correspondence between choices of positive roots
and Borel subgroup containing T .

Definition. The tuple (X∗(T ), R(T,G), X∗(T ), R∨(T,G)) is called the root datum for G and T .

Theorem 1.6. All maximal tori in G are conjugate.

Corollary 1.1. The root datum of G,T is up to isomorphism independent of T .

Theorem 1.7. The isomorphism classes of reductive groups are in 1-1 correspondence with the
isomorphism classes of root data.

Remark. The root datum contains more information than the root system. For example, all tori
are reductive groups with trivial root system.
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1.1.6. Semisimplicity.

Definition. Let G be reductive. Its derived subgroup is Gder := [G,G]. G is called semisimple if
G = Gder.

Theorem 1.8. The following are equivalent.

(1) G is semisimple.
(2) Z(G) is finite.
(3) The Z-span of R(T,G) in X∗(T ) is of finite index.

Proposition 1.1. Let G be a reductive group.

(1) G is an alomost direct product of Gder and Z(G)◦ which is a torus.
(2) If G is semisimple, then G is an almost direct product of semisimple subgroups with irre-

ducible root systems.

Remark. (1) ZR(T,G) = X∗(T ) iff Z(G) = {1}.
(2) ZR∨(T,G) = X∗(T ) iff G has no central isogeny.

1.2. Review of reductive groups (relative theory). Let F be a field, not necessarily alge-
braically closed. Consider an affine algebraic group G defined over F . Again we can think of
G ⊆ GLn descriped by polynomial equations with coefficients in F .

Remark. When F was algebraically closed, we identify G with the abstract group G(F ) ⊆
GLn(F ). Now we dont want to do this. There are two ways to think of G.

(1) For any field extension F ′/F , we have G(F ′) ⊆ GLn(F ′). More generally, for any F -
algebra R, we have G(R) ⊆ GLn(R). In addition, for any F -algebra homomorphism
R1 → R2, we have G(R1)→ G(R2). Therefore, we have a functor {F -alg} → {groups}.

(2) Consider the coordinate ring F [G], the ring of polynomial functions on the variety G(F ).
The fact that G is defined over F means that there is an F -algebra F [G] ⊆ F [G] such
that F [G]⊗F F = F [G].

Remark. For any field extension F ′/F , we have the base change G ×F F ′ an affine algebraic
group over F ′. In terms of (1) above, we just ”forget” that we can plug in F -algebra, and only
plug in F ′-algebra. In terms of (2), we replace F [G] by F [G]⊗F F ′.

1.2.1. Torus.

Definition. G is a torus if G ×F F is a torus. G is a split torus if G ∼= Grm,F . G is reductive if

G×F F is reductive.

Theorem 1.9. Let T be a torus. Then

(1) T ×F F s ∼= (Gm,F s)r
(2) X∗(T ), X∗(T ) are lattices with Γ-action, where Γ = Gal(F s/F ), and their pairing is F -

invariant.
(3) T is split iff the Γ-action of X∗(T ) is trivial.
(4) The functor T 7→ X∗(T ) is an equivalence of categories between F -torus and finitely

generated free abelian groups with Γ-action.

Example 1.4. Let F = R. We have two non-isomorphic 1-dimensional tori:

• T = Gm, X∗(T ) = Z with trivial Γ-action, T (R) = R×
• T = R1

C/RGa, X∗(T ) = Z with complex conjugate action, T (R) = C

Remark. Over non-algebraically closed F , not all maximal tori in a reductive group are conjugate
under G(F ). For example, G = SL2 over R, we have Gm ⊆ G given by ( ∗ ∗ ) and R1

C/R ⊆ G given

by
(

cosϕ sinϕ
− sinϕ cosϕ

)
= SO(2).
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Theorem 1.10 (Grothendieck). Any affine algebraic F -group has a maximal torus defined over
F .

Remark. For any maximal F -torus T ⊆ G, TF ⊆ GF is maximal.

Definition. Let G be a connected reductive group. G is called

• split, if G has a maximal torus that is split.
• quasi-split, if G has a Borel subgroup defined over F .

Remark. Let T ⊆ G be a maximal torus, we can consider R(T,G) ⊆ X∗(T ) carrying an action
of Γ. In this notation, G is

• quasi-split, if we can find T such that Γ presereves a set of positive roots in R(T,G).
• split, if we can find T such that Γ acts trivially on X∗(T ).

1.2.2. Classification of quasi-split reductive groups.

Definition. Let G be quasi-split connected reductive group. A Borel pair is a tuple (T,B)
consisting of a Borel subgroup B ⊆ G defined over F , and a maximal torus T ⊆ B defined over
F .

Theorem 1.11. All Borel pairs in G are conjugate under G(F ).

Definition. Consider a Borel pair (T,G), we get the based root datum (X∗(T ), R(T,B), X∗(T ), R∨(T,B))
with an action of Γ, where R(T,B) (resp. R∨(T,B)) is the set of positive roots (resp. coroots).

Theorem 1.12. The isomorphism classes of quasi-split connected reductive groups are in 1-1
correspondence with isomorphism classes of based root data.

1.3. Representations of p-adic groups. For now let F be a p-adic field, i.e., a finite extension
of Qp. Let G be a reductive group defined over F , so that we can think of G(F ) ⊆ GLn(F ). G(F )
has a structure of locally profinite topological group, meaning that it has a neighbourhood basis
of compact open subgroups.

Definition. Let (V, π) be a complex representation of G(F ).

(1) (V, π) is smooth if for every v ∈ V , its stabilizer StabG(F )(v) is open.

(2) (V, π) is admissible if for each compact open U ⊆ G(F ), dimV U is finite.

Denote by Rep(G(F )) the category of smooth representations of G(F ).

Definition. Let V be a smooth representation of G(F ). We define its contragradient V ∨ to be
the space of smooth vectors in HomC(V,C) equipped with the left regular action

(g · λ)(v) = λ(g−1 · v).

Definition. For λ ∈ V ∨, v ∈ V , we call the function

mλ,v : G(F )→ C, g 7→ λ(gv)

the matrix coefficient of G corresponding to v and λ.

Definition. A smooth representation (π, V ) of G(F ) is called supercuspidal provided that its
matrix coefficients are compactly supported modulo the center Z.

Definition. A smooth representation (π, V ) of G(F ) is a (essentially) discrete series representa-
tion provided that (up to a twist by a smooth character)

(1) the center acts on V by a unitary character χ, and
(2) for all v ∈ V , λ ∈ V ∨, the matrix coefficient mλ,v ∈ L2(G(F )/Z)χ.

Definition. A smooth representation (π, V ) of G(F ) is a (essentially) tempered provided that
(up to a twist by a smooth character)
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(1) the center acts on V by a unitary character χ, and
(2) for all v ∈ V , λ ∈ V ∨, the matrix coefficient mλ,v ∈ L2+ε(G(F )/Z)χ for any ε > 0.

Remark. (1) Apparently we have supercuspidal ⇒ essentially discrete series ⇒ essentially
tempered.

(2) Later we will see that how these representations behave under the local Langlands corre-
spondence.

Definition. Let P = MN be a F -rational parabolic subgroup of G with unipotent radical N and
Levi subgroup M . Let (τ,W ) be a smooth representation of M(F ). We define the normalized

induced representation IndGP τ to be space of functions f : G(F )→W such that

(1) f(mng) = τ(m)δp(mn)
1
2 f(g), m ∈M(F ), n ∈ N(F ), g ∈ G(F ), and

(2) there exists a compact open subgroup K ⊆ G(F ) such that f(gk) = f(g) for all g ∈ G(F ),
k ∈ K.

Here δP : P (F )→ C× is the modulus character given by δP (mn) = δP (m) = |det(Ad(m))|Lie(N)|.
G acts on IndGP τ be right translation: (g · f)(h) = f(hg).

This defines a functor IndGP : Rep(M(F ))→ Rep(G(F )).

Remark. We need the normalization by δ
1
2

P so that

(1) the functor IndGP takes unitary representations to unitary representations, and

(2) it commutes with taking contragradient, i.e., IndGP (π)∨ ∼= IndGP (π∨).

Remark. Even though the representation IndGP τ depends on the choice of parabolic P containing
M , its Jordan-Holder factor, on the other hand, doesn’t depend on the choice of P . So if we only
care about constituents of IndGP τ , it makes sense to use the notation IndGM τ instead.

It turns out that parabolic induction is closely related to classification of irreducible representa-
tions of G(F ). For example, supercuspidal representations are exactly those representations that
cannot be obtained by parabolic induction. To make this statement precise, we need to introduce
the Jacquet functor (which turns out to be the left adjoint of IndGP ).

Definition. Let (π, V ) be a smooth representation of G(F ). We define the normalized Jacquet

module rGM (π) = δ
− 1

2
p VN where VN = V/ span{v− n · v | v ∈ V, n ∈ N(F )}. This defines a functor

rGM : Rep(G(F ))→ Rep(M(F )).

Proposition 1.2. Let (π, V ) be a smooth representation of G(F ). The following two conditions
are equivalent:

(1) (π, V ) is supercuspidal;
(2) rGMπ = 0 for all proper parabolic subgroup P = MN .

2. Explanation on the Galois side

Throughout this section, let F be a p-adic field with ring of integer OF , maximal ideal pF ,
residue field k ∼= Fq and uniformizer $. Let F s be a separable algebraic closure with ring of
integer O, maximal ideal p, residue field k̄ and uniformizer $. Let ω : F → Z be the canonical
non-archimedean valuation on F .

2.1. Weil-Deligne representations.

2.1.1. Weil group. F admits a unique unramified extension Fm of degree m, for each m ≥ 1. Let
F∞ denote the composite of all these fields, called the maximal unramified extension.

The extenison Fm/F is Galois with Gal(Fm/F ) cyclic. An element σ ∈ Gal(Fm/F ) is deter-
mined by its action on kFm = Fqm . In particular, there is an element Φm that acts on Fqm by
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xq 7→ x such that Gal(Fm/F ) = 〈Φm〉 ∼= Z/mZ. Taking the limit over m, we get a canonical
isomorphism of topological groups

(2.1) Gal(F∞/F ) ∼= lim←−
m≥1

Z/mZ = Ẑ ∼=
∏

prime l

Zl.

There is a unique element ΦF ⊆ Gal(F∞/F ) which acts on Fm as Φm for all m, called the
geometric Frobenius.

We set IF = Gal(F s/F∞) ⊆ Gal(F s/F ): this is called the inertia group of F . We have an
exact sequence of topological groups

(2.2) 1→ IF → Gal(F s/F )
res−−→ Gal(F∞/F )︸ ︷︷ ︸

Ẑ

→ 1.

The Weil group WF is the inverse image in Gal(F s/F ) of the cyclic subgroup 〈ΦF 〉, i.e., res−1(Z)
using the notation in (2.2). Therefore, WF = Z n IF fits into the exact sequence of abstract
groups

(2.3) 1→ IF →WF
vF−−→ Z→ 1.

The natural valuation vF induces a norm map

| · | :WF → qZ

such that IF = ker(| · |) and |ΨF | = q−1.
We can equip WF with a topology such that

(1) IF is an open subgroup of WF , and
(2) the topology of IF inWF coincides with its subgroup topology as Gal(F s/F∞) ⊆ Gal(F s/F ).

Remark. This topology is different from the subspace (profinite) topology of WF ⊆ Gal(F s/F ).
In fact, it’s finer (with more open subsets) than the subspace topology, so that there are more
continuous map coming out from WF .

Definition. The Weil-Deligne group of F is WDF :=WF × SL2(C).

Definition. Let G be a complex Lie group whose identity component G◦ is reductive. A Weil-
Deligne representation of WF is a G◦-conjugacy class of homomorphism ϕ : WF × SL2(C) → G
which is continuous on IF ⊆ WF , algebraic on SL2(C) with ϕ(ΦF ) semisimple.

2.2. Langlands parameters. Let G be a connected, quasi-split reductive algebraic group over
F with maximal torus T in a Borel B defined over F . Let F0 be the splitting field of T , and
S ⊆ T the maximal F -split torus. Associated to these notations, we have the root datum
(X∗(T ), R(T,B), X∗(T ), R∨(T,B)) together with the action of Γ = Gal(F s/F ).

2.2.1. The L-group. By Theorem 1.7 (classification of reductive group), there is a connected,

reductive group Ĝ over C with the dual root datum (X∗(T ), R∨(T,G), X∗(T ), R(T,G)) with a

maximal torus in a Borel subgroup T̂ ⊆ B̂, called the Langlands dual group.

G GLn SLn PGLn Sp2n SO2n Un G2

Ĝ GLn PGLn SLn SO2n+1 SO2n GLn G2

Table 1. The dual group of some semisimple groups

Remark. For semisimple groups, taking Ĝ has the effect of exchanging the long and short roots,
the simply connected and adjoint forms, etc.

Fix a set {xâ | â ∈ ∆̂(T,B)} of nonzero vectors in each simple root space in b̂ = Lie(B̂), thereby

giving a pinning E = (T̂ , B̂, {xâ}) in Ĝ.
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Remark. Roughly speaking one can think of a pinning as a set of coordinates on Ĝ.

The action of Γ on these objects an automorphism of Ĝ that preserves the pinning, i.e., an
embedding of Γ in Aut(Ĝ, E), the group of pinned automorphisms.

Definition. The L-group of G is the semidirect product LG =WFnĜ withWF acting a subgroup
of Γ.

Definition. A L-parameter for G is a homomorphism

ϕ :WF × SL2 → LG

such that

(1) ϕ|WF
◦ pr :WF → LG→WF is the identity map;

(2) ϕ is continuous on I and ϕ(ΦF ) is semisimple
(3) ϕ|SL2

is a homomorphism of algebraic groups over C.

Two parameters are considered equivalent if they are conjugate by Ĝ. Denote by LP(G/F ) the
set of equivalent classes of L-parameters of G over F .

3. Local Langlands conjecture

It is conjectured (and proved in many cases) that there is a canonical parametrization

L = LG/F : Π(G/F )→ LP(G/F )

where the former is the set of irreducible admissible representation that satisfies many nice prop-
erties. In this secion we will focus on the expected properties of the correspondence. In this
section unless specified, all ”Propositions” are only conjectured properites of the local Langlands
correspondence.

3.1. L-packets.

Definition. For each ϕ ∈ LP(G/F ), the fiber over ϕ is called a L-packet, denoted by Πϕ.

Proposition 3.1. Each L-packets is finite and non-empty, i.e., L is finite-to-one surjective.

Definition. A L-parameter ϕ :WF × SL2 → LG is tempered if its restriction to WF × SU(2) has

bounded image after projection on Ĝ.

3.2. Basic properties. The first property implies that the local Langlands conjecture can be
considered as a nonabelian version of local class field theory.

Proposition 3.2. For G = GL1, L is induced by Artin map GL1(F ) = F× ∼= Wab
F in the local

class field theory.

The parametrization L is also expected to respect some operations.

Proposition 3.3. L is compatible with characters of torus in the following sense. Let f : G→ T
be a homomorphism of algebraic groups over F , with T a torus. Let f∗ : LT → LG the dual map.
Let π ∈ Π(G/F ), χ ∈ Π(T/F ). Then we have equivalence

L(π ⊗ χ ◦ f) ∼= L(π) · (f∗ ◦ L(χ)).

Proposition 3.4. For any homomorphism σ : LG → GL(N) of complex algebraic groups, the
representation

σ ◦ L(π∨) :WF × SL2
L(π∨)−−−−→ LG

σ−→ GL(N)

is equivalent to the contragradient of

σ ◦ L(π) :WF × SL2
L(π)−−−→ LG

σ−→ GL(N),

i.e., we have
σ ◦ L(π∨) ∼= (σ ◦ L(π))∨.
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Proposition 3.5. Suppose G = H1 ×H2. Let

⊗ : Π(H1/F )×Π(H2/F )→ Π(G/F )

denote the map on L-parameters induced by the inclusing

L(H1 ×H2)→ LH1 × LH2

defined by the diagonal map WF →WF ×WF . Then

LG/F = ⊗(LH1/F × LH2/F ).

Proposition 3.6. Let r : G → G′ be a central isogeny and let r∗ : LG′ → LG denote the dual
map. Then if π ∈ Π(G′/F ),

L(π ◦ r) = r∗ ◦ L(π).

If π ◦ r is reducible, the left hand side refers to any of the irreducible constituents; in particular,
they lie in a single L-packet.

Proposition 3.7. Let F be a finite separable extension of E and H = ResF/E G and let π be

an irreduciblee representation of H(E) = G(F ). The parameters for WDF with values in LG =

WF n Ĝ can be naturally identified with parameters for WDE with values in LH =WE n Ĝ[F :E].
With respect to this identification we have

LH/E(π) = LG/F (π).

To state the next property of LLC, we need to make the following definition.

Definition. For π ∈ Π(G/F ), define the semisimple Langlands parameter of π to be the map

Lss :WF

id×
(
|·|

1
2

|·|−
1
2

)
−−−−−−−−−−−→WF × SL2

L(π)−−−→ LG.

Proposition 3.8. Let P ⊆ G be a parabolic subgroup rational over F , with Levi quotient M . Let
iM : LM → LG be the inclusion as a Levi subgroup of the dual parabolic LP . Let IndPM denote
normalized (using chosen square root of q) parabolic induction, which is independent of the the

choice of P containing M . Suppose π is an irreducible subquotient of IndGM (τ). Then

Lss(π) ∼= iM ◦ Lss(τ).

Proposition 3.8 tells us when τ ∈ Π(G/F ) can be obtained by parabolic induction (the non-
supercuspidal ones), how we can recover the parameter for τ from the parameter of the repre-
sentation of the Levi. Complementary to Proposition 3.8, we can also say something about the
Langlands parameter of supercuspidal representations.

Proposition 3.9. If π ∈ Π(G/F ) belongs to the discrete series, the image of L(π) is not contained
in any proper parabolic subgroup of LG.

3.3. Automorphic properties. The local Langlands correspondence is also expected to preserve
certain invariants called local factors. These local factors has been defined for representations of
the Weil groups, see [Tat79, §3.3]

3.3.1. Local factors for Weil-Deligne representations. Fix a finite dimensional algebraic represen-
tation σ : LG → GL(V ). For a given L-parameter ϕ : WDF → LG, let N = dϕ ( 0 1

0 0 ) ∈ Lie(LG).
Notice that σ induces a map dσ : Lie(LG) → gl(V ) = End(V ) at the level of Lie algebras. So N
can be thought of as an operator acting on V . Let VN := ker(N) be the kernel of N on V . Since
the action of N commutes with the action of WF , and IF is normal in WF , the invariant space
V IFN are preserved by ϕ(ΦF ).
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Definition. The local L-factor of (ϕ, σ) is

L(s, ϕ, σ) = det(1− q−sϕ(ΦF )ϕ

(
q−

1
2

q
1
2

)
)|V IN )−1.

Definition. Let ψ : F → C× be a smooth additive character. The local ε-factor of (ϕ, σ, ψ) is

ε(s, ϕ, σ, ψ) = ε((σ ◦ ϕ)⊗ | · |s, ψ, dx) · det(−q−sϕ(ΦF )ϕ

(
q−

1
2

q
1
2

)
|V I/V IN ),

where

• dx is the Haar measure on F normailzed so that the biggest fractional ideal contained in
ker(ψ) has volume 1;

• the first term on the right hand side, ε(σ⊗|·|s, ψ, dx) is the local ε-factor for representations
of Weil group.

3.3.2. Automorphic L-functions. Now we want to define the corresponding local factors on the
automorphic side. There is explicit formula to do so in general, we can summarize the expected
properties as below.

Definition. Let σ : LG → GL(V ) be an algebraic representation, A be a class of irreducible
representations of G(F ). A theory of automorphic L-functions for G over F , A, and σ consists of
the following.

(1) For any π ∈ A, and any additive character ψ : F → C×,
• a meromorphic function s 7→ L(s, π, σ) that is holomorphic in a right half-plane, of

the form P (q−s) where P is a polynomial of degree at most dimσ and constant term
1, and

• an entire function s 7→ ε(s, π, σ, ψ), which is a constant multiple of an exponential of
the form qαs for some complex number s.

(2) If π is shperical (has a nonzero vector fixed by maximal special compact open) with param-
eter L(π), then L(s, π, σ) = L(s,L(π), σ). Moreover, if ker(ψ) = OF , then ε(s, π, σ, ψ) = 1.

(3) Let K be a global field with a place v such that F ∼= Kv, and G a connected reductive group
over K with G(Kv) ∼= G(F ). There is a class AK of cuspidal automorphic representations
of G(AK) such that any π ∈ A can be realized by as the local component of some Π ∈ AK .
It is assumed that for every place w of K and every local component Πw of Π ∈ AK
there are local factors L(s,Πw, σ) and ε(s,Πw, σ, ψw) satisfying (1) and (2), with the local
factors already defined when w = v, For any unitary cuspidal automorphic representation
Π ∈ AK with Πv

∼= π, the formal product

L(s,Π, σ) :=
∏
w

L(s,Πw, σ)

converges aboslutely in a right-half plane, and extends to a meromorphic function of C
that satisfies the functional equation

L(s,Π, σ) = ε(s,Π, σ) · L(1− s,Π∨, σ)

where
ε(s,Π, σ) :=

∏
w

ε(s,Π, σ, ψw)

if
∏
w ψw defines a character of AK/K.

Example 3.1. Rankin-Selberg, Godement-Jacquet, etc.

Proposition 3.10. Suppose there is a theory of automorphic L-functions for G over F and σ.
Then for any π ∈ Π(G/F ) and ψ : F → C×.

L(s, π, σ) = L(s,L(π), σ); ε(s, π, σ, ψ) = ε(s,L(π), σ, ψ).

10
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Another important property is the endoscopic character identities. It predicts the relationshops
between the L-packets of G and its endoscopic groups. One can find more details in [Kal16, §1,
§2.3]. We will discuss more in Section 5

4. Local Langlands correspondence for GL2

Local Langlands correspondence has been solved for GLn by Harris-Taylor and Henniart. In this
section, we will concentrate on the first non-abelian case, GL2, and see how LLC works explicitly
in this case following [BH06]. In this section we assume p to be odd.

4.1. Irreducible admissible representations of GL2.

4.1.1. Non-supercuspidal representations. Up to conjugacy, G = GL2 has only one proper para-
bolic, B = ( ∗ ∗∗ ) with Levi T = ( ∗ ∗ ) and unipotent radical U = ( 1 ∗

1 ). Moreover, we know that
any irreducible representations of T has the form ( χ1

χ2 ), with χ1 and χ2 admissible characters
of F×. So by Proposition 1.2, any non-supercuspidal irreducible representation is a constituent of
IndGT ( χ1

χ2 ). There are three cases.

• Principal series (infinite dimensional). If χ1/χ2 6= | · | or | · |−1, then IndGT ( χ1
χ2 ) is an

admissible irreducible infinite-dimensional representation.
• Principal series (one-dimensional). If χ1/χ2 = | · | or | · |−1, IndGT ( χ1

χ2 ) has length 2 and
fits into exact sequences

1→ χ ◦ det→ IndGB

(
χ|·|−

1
2

χ|·|
1
2

)
→ St(χ)→ 1

or

1→ St(χ)→ IndGB

(
χ|·|

1
2

χ|·|−
1
2

)
→ χ ◦ det→ 1

The irreducible admissible character χ ◦ det is called the one-dimensional principal series.
• Steinberg representations. For each admissible χ : F× → C×, we can obtain an admissible

irreducible infinite-dimensional St(χ), called the Steinberg representation.

4.1.2. Supercuspidal representations. By Proposition 1.2, these representations cannot be obtained
by parabolic induction. However, the idea is very close. Roughly speaking, we obtain the non-
supercuspidal representations in the following way:

(1) Start with a character of a maximal torus (a split one).
(2) Extend the character to a larger group (the Borel subgroup)
(3) Induce the character to obatin of representation of G(F ).

The basic idea to construct a supercuspidal cuspidal representation is to induce from a character
of a ”compact torus”.

(1) Start with a character of a maximal torus (a compact one).
(2) Extend the character as much as possible (by looking at the stabilizer of the character).
(3) (Compactly) induce the character to obtain a representation of G(F ).

Here are the details.

Definition. Let H be a closed subgroup of G(F ). Let (τ,W ) be a smooth representation of H.

We define the compactly induced representation cIndGH τ to be space of functions f : G(F ) → W
such that

(1) f(hg) = τ(h)f(g), h ∈ H, g ∈ G(F ),
(2) there exists a compact open subgroup K ⊆ G(F ) such that f(gk) = f(g) for all g ∈ G(F ),

k ∈ K, and
(3) f is compactly supported modulo H.

G acts on cInd τ be right translation, i.e., (g · f)(g′) = f(g′g).

11
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Set K = GL(OF ) ⊆ GL2(F ) be the maximal compact open subgroup, and Z the center of
GL2(F ).

Let E/F be a quadartic field extension (since p > 2, E/F is tamely ramified). Fixing an F -basis
for E we get an identification

E ∼= F ⊕ F, AutF (E) ∼= GL2(F ).

E× acts on E by multiplication, which gives an embedding

E× ↪→ GL2(F )

which is unique up to conjugacy. We can normalize it so OE ↪→ GL2(OF ).

Example 4.1. If E = F (
√
$), then we can take a+ b

√
$ ∈ E× 7→

(
a b
b$ a

)
.

Let E/F be quadratic as above and let χ : E× → C× a smooth character.

Definition. The level of χ is the smallest positive integer n ≥ 0 such that χ(1 + pn+1
E ) = 1.

Let Gal(E/F ) = {1, σ}, and define

χσ : E× → C×

x 7→ χ(σ(x)).

Definition. A pair (E/F, χ) is called admissible if

(1) χ does not factor as χ = ψ ◦ NE/F , where NE/F : E× → F× is the norm map, and

φ : F× → C× is a smooth character, and
(2) if χ|1+pE does factor through NE/F , then E/F is unramified.

Definition. Let E/F be a quadratic extension as above.

(1) We say (E/F, χ) is equivalent to (E/F, χ′) if χ = χ′ or χσ.
(2) The pair (E/F, χ) is minimal if χ is of level n and χ|1+pnE

does not factor through NE/F .

Our goal is to attach (E/F, χ) a irreducible, supercuspidal representation.

(1) Suppose first that (E/F, χ) is minimal.
(a) Level of χ is 0.

By definition, E/F is unramified and χ|O×E is inflated from a regular (i.e., not equal

to its Galois conjugate) character of k×E . So we get a cuspidal representation Wχ of
GL2(kF ) (from the Weil representations). Extend this to KZ by letting ($ $ ) act

by the scalar χ($). Set SC(E/F, χ) := cIndGKZ(Wχ).
(b) Level of χ is 2m+ 1 ≥ 1.

• If E/F is unramified, set

Jm+1 = Km+1 =

(
1 + pm+1 pm+1

pm+1 1 + pm+1

)
• If E/F is ramified, set

Jm+1 =

(
1 + pb

m
2 c+1 pb

m+1
2 c

pb
m+1

2 c+1 1 + pb
m
2 c+1

)
Then the character χ : E× → C× extends to a character

Λ : E× · Jm+1 → C×.

Set SC(E/F, χ) = cIndGE×Jm+1
(Λ).

(a) Level of χ is 2m ≥ 2.
By minimality, eveness implies that E/F must be unramified. So there exists a
representation Λ of the group E×Km which is ”determined by χ” with the properties

12
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• Λ|F× = χ|⊕qF×
• tr(Λ(ζ)) = −χ(ζ), for ζ ∈ k×E\k

×
F

• · · ·
Set SC(E/F, χ) = cIndGE×Km(Λ).

(2) For an arbitrary admissible pair (E/F, χ), we can write χ = χ′ ·(ψ◦NE/F ) where (E/F, χ′)

is minimal and ψ : F× → C×. Set SC(E/F, χ) := SC(E/F, χ′)⊗ (ψ ◦ det).

Theorem 4.1. For p > 2, the map (E/F, χ) 7→ SC(E/F, χ) gives a bijection between equivalence
classes of admissible pairs and isomorphism classes of irreducible supercuspidal representations of
GL2(F ).

4.2. Weil-Deligne representations of GL2. By definition, the Weil-Deligne representations of
GL2 is an admissible homomorphism

ϕ :WF × SL2(C)→ L GL2 =WF n GL2(C).

Since GL2 is split over F , the WF -action is trivial. Therefore, it suffices to find the equivalent
classes of admissible homomorphisms

ϕ :WF × SL2(C)→ GL2(C).

4.3. Local factors.

4.3.1. The Godement-Jacquet local constants. The local factors on the automorphic side comes
from a theory of automorphic L-functions called Godement-Jacquet theory. Instead of defining
these automorphic L-functions in details, we give an explicit description of the local L-factors and
ε-factors. Note that in this case, we can simply choose the algebraic representation σ : GL2(C)→
GL2(V ) to be the identity map.

Definition. For irreducible admissible representations π of GL2(F ), we define the local L-factor
L(s, π) as follows.

(1) For irreducible principal series, realized as the irreducible quotient of IndGB ( χ1
χ2 ), we set

L(s, π) = L(s, χ1)L(s, χ2) =
1

(1− α1q−s)(1− α2q−s)
,

where αi = χi($) if χi is unramfied, and αi = 0 otherwise.

(2) For Steinberg representation St(χ), realized as the irreducible quotient of IndGB

(
χ|·|−

1
2

χ|·|
1
2

)
,

we set

L(s, π) =
1

1− αq−s
,

where α = q−
1
2χ($) if χ| · | 12 is unramfied, and α = 0 otherwise.

(3) For π supercuspidal, we set
L(s, π) = 1.

Definition. For irreducible representations π of GL2(F ), we define the local ε-factor by

ε(s, π, ψ) =
ζ( 3

2 − s, Φ̂, f
∨)

ζ( 1
2 + s,Φ, f)

· L(π, s)

L(π∨, 1− s)
.

where

• ζ(s,Φ, f) =
∫

GL2(F )
Φ(g)f(g)|det g|sdg is the zeta integral for some Haar measure dg on

GL2(F ), f a matrix coefficient (Definition 1.3) of π, Φ ∈ C∞c (M2(F )).

• Φ̂(x) =
∫
M2(F )

Φ(y)(ψ◦Tr)(xy)dy is the Fourier transform where dy is the unique self-dual

Haar measure on M2(A) such that
ˆ̂
Φ(x) = Φ(−x) holds for all Φ ∈ C∞c (M2(F )).

• f∨(g) = f(g−1) is a matrix coefficient of π∨.

13
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4.3.2. The Langlands-Deligne local constants. We have already defined these local factors for Weil-
Deligne representations (see Definition 3.3.1 and Definition 3.3.1). Again, here we simply choose
the algebraic representation σ : GL2(C)→ GL2.

Instead of giving an explicit formula for them, here we present serveral properties of the L-factor.

Proposition 4.1. Let ϕ be a L-parameter of GL2.

(1) If ϕ is irreducible, then

L(s, ϕ) = 1.

(2) If ϕ = ϕ1 ⊕ ϕ2 is semisimple (so ϕi are characters of WF , or equivalently Wab
F = F×),

then

L(s, ϕ1 ⊕ ϕ2) = L(s, ϕ1)L(s, ϕ2),

where L(s, ϕi)’s are the local L-factors given in Tate’s thesis.

Remark. Recall from Definition 4.3.1 that we also have

(1) If π is supercuspidal, then L(s, π) = 1, and

(2) L(s, IndGB ( χ1
χ2 )) = L(s, χ1)L(s, χ2).

Comparing with Proposition 4.1(1)(2), if we believe that local Langlands correspondence matches
the local factors, it’s natural to make the following guess.

(1) The supercuspidal representations correspond to irreducible Weil-Deligne representations,
and

(2) IndGB ( χ1
χ2 ) or its irreducible quotient correspondes to χ1 ⊕ χ2.

4.4. Local Langlands correspondnence. Now we can write down the local Langlands coore-
spondence L : Π(GL2 /F )→ LP(GL2 /F ) explicitly.

• For the 1-dimensional principal series, π = χ ◦ det, realized as the irreducible quotient of

IndGB

(
χ|·|

1
2

χ|·|−
1
2

)
, we have

L(π) = (χ| · | 12 ⊕ χ| · |− 1
2 )× triv :WF × SL2 → GL2(C).

• For the infinite dimensional principal series, π = IndGB ( χ1
χ2 ), we have

L(π) = (χ1 ⊕ χ2)× triv :WF × SL2 → GL2(C)

Here χ1/χ2 6= | · | or | · |−1.

• To the Steinberg representation, π = St(χ), realized as the irreducible quotient of IndGB

(
χ|·|−

1
2

χ|·|
1
2

)
,

we have

L(π) = (χ⊕ χ)× i :WF × SL2 → GL2(C)

where i : SL2(C) → GL2(C) is the natural embedding. Notice that in this case
L(π)(WF ) ⊆ Z is indeed centralized L(π)(SL2) even though the latter is not trivial as in
the other cases.

• For the supercuspidal representation, π = SC(E/F, χ), we have

L(π) : IndWF

WE
(χ)× triv :WF × SL2 → GL2(C).

In fact, IndWF

WE
χ is irreducible.

Remark. (1) To summarize, principal series correspond to semisimple reducible parame-
ters with trivial SL2 action; Steinberg representations correspond to semisimple reducible
parameters with non-trivial SL2 action; supercuspidal representations correspond to irre-
ducible parameters.

14
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(2) We can also tell which of these representations have tempered parameters (i.e., the image

ofWF ×SU2 is bounded). They are infinite dimensional principal series IndGB ( χ1
χ2 ) with

χ1, χ2 unitary, Steinberg representations St(χ) = St⊗χ with χ unitary and supercuspidal
representations. It is known that these representations turn out to be the tempered
representations of GL2(F ) (Definition 1.3).

(3) Following Property 3.9, we can also make a guess about which representations are in
(essentially) discrete series. We expect the image of L(π) to be contained in no proper
parabolics. It turns out that these representations are the Steinberg representations and
supercuspidal representations. The principal series, on the other hand, always have L-
parameters with image lying in the diagonal torus and trivial SL2-action, which justify
Property 3.8. Also notice that the Steinberg representations are irreducible subquotient
of IndGT τ , Lss(π) lies in the diagonal torus while L(π) does not. Also, if we choose

τ =

(
χ|·|

1
2

χ|·|−
1
2

)
, then IndGT (τ) has two irreducible subquotients χ◦det and St(χ), even

though L(χ ◦ det) 6= L(St(χ)), we have Lss(χ ◦ det) = Lss(St(χ)) = χ| · | 12 ⊕ χ| · |− 1
2 . This

is a good illustration of Property 3.8 (both its vaildity and the importance of the usage of
Lss instead of L),

Theorem 4.2 (Local Langlands correspondence for GL2(F )). The map L : Π(GL2 /F ) →
LP(GL2 /F ) given by above is a bijection such that

L(s, (χ ◦ det)π) = L(s,L(π)⊗ χ)

ε(s, (χ ◦ det)π, ψ) = ε(s,L(π)⊗ χ, ψ)

for all π ∈ Π(GL2 /F ), all smooth characters χ : F× → C× and all smooth additive characters
ψ : F → C×.

5. Endoscopy

Let G be a quasi-split connected reductive group over a local field F , and Γ = Gal(F̄ /F ) the
absolute Galois group.

The theory of endoscopy starts with the functorial aspect of the Langlands program. Let’s
consider another quasi-split connected reductive group H, together with an admissible embedding
Lη : LH → LG. With this embedding, there is a way to transfer a L-parameter ofH to one ofG: for
ϕH : WDF → LG, we simply get ϕ = Lη ◦ϕH : WDF → LH → LG. The Langlands functoriality
conjecture expects such transfer to be compatible with a ”good” tranfer of representations on the
automorphic side. In particular, one may wanna ask, how are the two L-packets related? There is
an expected answer called endoscopic character identity. To introduce this conjectured property,
we need the theory of endoscopy.

The study of Langlands functoriality often leads to correspondence that are defined up to
stable conjugacy. The theory of endoscopy is a series of technique invented to investigate rational
conjugacy from the inside of stable conjugacy classes, justifying its name (it originally means a
procedure in which an instrument is introduced into the body to give a view of its internal parts.)

5.1. Group cohomology.

Definition. We define the functor Hi(G,−) : G-Mod → Ab to be the i-th right derived functor
of the (left exact) G-invariance functor G-Mod→ Ab given by M 7→MG.

Low dimensional cohomology can be generalized to non-abelian groups.

Definition. Let X be a group together with an action of G compatible with its group structure.
We can define H0(G,X) = XG (which is a group) and Hi(G,X) = Z1(G,X)/ ∼ where

15
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• Z1(G,X) consists of 1-cocycles, i.e., maps a : G→ X such that a(g1g2) = a(g1)a(g2)g1 ;
• a ∼ a′ if a′(g) = xa(g)(xg)−1.

Note that this conincides with Definition 5.1 when X is abelian.

5.2. Stable conjugacy.

Definition. Two elements σ, σ′ ∈ G(F ) are stably conjugate if there exists g ∈ G(F̄ ) such that

(1) gδg−1 = δ′, and
(2) for every σ ∈ Γ the element g−1σ(g) belongs to G◦σs , the connected component of the

centralizer the semisimple part of δ.

Remark. Note that we automatically have gδsg
−s = δ′s by functoriality of Jordan decomposition,

and therefore g−1σ(g) ∈ Gδs . So stable conjugacy coincide with G(F̄ )-conjugacy for elements
whose semisimple parts have connected centralizers. Moreover, by a theorem of Steinberg, if G is
simply connected, Gδs is connected. So for simply-connected groupo stable conjugacy is the same
as F̄ -conjugacy.

Example 5.1. In G = SL2 over R (which is simply-connected),(
0 1
−1 0

)
and

(
0 −1
1 0

)
are stably conjugate (namely by

(
0 i
−i 0

)
), but not conjugate by SL2(R).

Definition. An element σ ∈ G(F ) is regular semisimple (resp. strongly regular semisimple) if G◦δ
(resp. Gδ) is a torus.

Proposition 5.1. Let t ∈ G(F ) be a semisimple element, so t ∈ T for some maximal torus T of
G.

(1) t is regular iff t is not in the kernel of any absolute associated to T , i.e., the eigenvalues
of t are distinct.

(2) t is strongly regular iff StabΦ(T )(t) is trivial.

Remark. It follows immediately that

(1) In the strongly regular semisimple case, Gδ is in fact a maximal torus, which will be
denoted by Tδ.

(2) Both regulariry and Strong regularity is a Zariski dense open condition.

Example 5.2. Here is an example of regular but not strongly regular semisimple element. Let
G = PGL2 over C. Consider

g =

(
1 0
0 −1

)
.

Clearly it has distinct eigenvalues ±1, but the Weyl element
(

0 1
−1 0

)
takes

g =

(
1 0
0 −1

)
7→
(
−1 0
0 1

)
= g

So by Proposition 5.1, g is regular but not strongly regular. Indeed,

Gg =

{(
∗

1

)}
∪
{(

∗
1

)}
∼= Z2 nGm

is not a torus but has a tours as its connected component. If one think of G = PGL2 as the
automorphism group of CP 1 given by Möbius transform, Gδ consists of those preserving {0,∞},
i.e., z 7→ αz or z 7→ α

z .

Proposition 5.2. Let δ, δ′ ∈ G(F ) be strongly regular semisimple elements with centralizers
Tδ, Tδ′ . For any g such that Ad(g)(δ) = δ′, we have isomorphism Ad(g) : Tδ → Tδ′ .

16



A QUICK TOUR TOWARDS THE LOCAL LANGLANDS CORRESPONDENCE

(1) The isomorphism Ad(g) : Tδ → Tδ′ only depends on δ, δ′ but not g. It is defined over F .
We shall call in ϕδ,δ′ .

(2) σ 7→ g−1σ(g) belongs to Z1(Γ, Tδ) and its cohomology class is independent of the choice
of g. We shall call it inv(δ, δ′).

5.3. Endoscopic data.

Definition. An endoscopic triple (H, s, η) consists of

(1) a quasi-split connected reductive group H,

(2) an embedding η : Ĥ → Ĝ of complex algebraic groups;

(3) an element s ∈ (Z(Ĥ)/Z(Ĝ))Γ;

such that

(1) η identify Ĥ with Cent(η(s), Ĝ)◦;

(2) the Ĝ-conjugacy class of η is stable under the action of Γ that is defined by ησ = σĜ◦η◦σ
−1

Ĥ
;

(3) s lifts to Z(Ĥ)Γ.

An isomorphism of endoscopic triples (H1, s1, η1) → (H2, s2, η2) is an isomorphism of algebraic
groups f : H1 → H2 defined over F subject to the conditions

(1) η1 ◦ f̂ and η2 are Ĝ-conjugate;

(2) the images of f̂(s2) and s1 in π0((Z(Ĥ1)/Z(Ĝ))Γ) coincide.

Definition. An endoscopy triple (H, s, η) is called elliptic if Z(Ĥ)Γ,◦ = Z(Ĝ)Γ,◦.

Remark. If H is endoscopic in G (i.e., Ĥ is a centralizer in Ĝ), one may wanna ask if H is a

subgroup of G. In many cases, Ĥ is a Levi in Ĝ, so one can realize H as the dual Levi in G. But
in general this is false. Here are some examples.

(1) Consider Ĥ = SL2×SL2 ⊆ Ĝ = Sp4 given by decomposing a 4-dimsional symplectic space

as the direct sum of two 2-dimensional ones. Apparently Ĥ is the centralizer of a product of
(different) central elements in SL2. However, there is no embedding of H = PGL2×PGL2

in G = SO5.
(2) More generally we have H = SO2p+1 × SO2q+1 endoscopic in G = SO2p+2q+1 with Ĥ =

Sp2p×Sp2q ⊆ Ĝ = Sp2p+2q.

(3) Another example isH = SO2p×Sp2q endoscopic inG = Sp2p+2q with Ĥ = SO2p×SO2q+1 ⊆
Ĝ = SO2p+2q+1.

Definition. A Whittaker datum for G is a G(F )-conjugacy class of pairs w = (B,ψ), where B is
a F -rational Borel subgroup of G, and ψ : Bu(F )→ C× is a generic character (whose restriction
to each relative simple root subgroup is non-trivial).

Definition. An extended endoscopic triple e = (H, s, Lη) consists of an endoscopic triple and an

extension of η : Ĥ → Ĝ to an embedding of L-groups Lη : LH → LG.

5.4. Admissible isomorphisms. Let (H, s, η) be an endoscopic triple. Let TH ⊆ H and T ⊆ T
be maximal tori.

Definition. An isomorphism i : TH → T is admissible if the following diagram commutes (up to
conjugacy)

T̂H T̂

Ĥ Ĝ

î

∼

η

.

Remark. This is a generalization of the isomorphism Ad(g) : Tδ → Tδ′ we have in Proposition
5.2.
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Definition. Two strongly regular semisimple elements γ ∈ H(F ) and δ ∈ G(F ) are called related
if there exists an admissible isomorphism ϕ : TH → T such that ϕ(γ) = δ.

Proposition 5.3. If λ, δ are strongly regular then ϕ is unique if it exists and will be called
ϕγ,δ : Tγ → Tδ.

5.5. Transfer factors. To make sure that the transfer function is smooth, we need to introduce
auxiliary local term. These are called transfer factors.

Given extended endoscopic e = (H, s, Lη) and a Whittaker datum w = (B,ψ), there is a function

∆ : Hsr(F )×Gsr(F )→ C

called the Langlands-Shelstad transfer factor. If γ ∈ H(F ) and δ ∈ G(F ) are not related,
∆(γ, δ) = 0. Now we assume γ and δ are related, so by Proposition 5.3, there exists an ad-
missible isomorphism ϕγ,δ : Tγ → Tδ that maps γ to δ. In this case, ∆(γ.δ) is a product

(5.1) ε ·∆−1
1 ·∆2 ·∆3 ·∆4.

5.5.1. Auxiliary data. To construct the local transfer factor, we need some auxiliary data.

Definition. Let α ∈ R(Tσ, G). Define Γα = StabΓ(α), Γ±α = StabΓ({±α}), Fα = F̄Γα , F̄±α =
F̄Γ±α . Call α symmetric if [Fα : F±α] = 2 and otherwise asymmetric.

Definition. A set of a-data for R(Tδ,G) is a set {αa ∈ F̄× | α ∈ R(Tδ,G)} such that

(1) aσδ = δ(aα) for all σ ∈ Γ;
(2) a−α = −aα.

Definition. A set of χ-data for R(Tδ, G) is a set {χα | α ∈ R(Tδ, G)} such that

(1) χα : F×α → C× is a continuous character;
(2) χσα = χα ◦ σ−1;
(3) χ−α = χ−1

α ;
(4) if α is symmetric, then χα|F×±α is the quadratic character F×±α → {±1} associated to the

quadratic extension Fα/F±α by local class field theory.

5.5.2. Tate-Nakayama duality. The original statement ot Tate-Nakayama is that for any torus
defined over F , the pairing

(5.2) H1(Γ, T )⊗H1(T,X∗(T ))→ H2(Γ,Gm)
CFT−−−→ Q/Z

is perfect.
Langlands provided a reinterpretation of (5.2). Tensoring with X∗(T ) the exponential sequence

0→ Z→ C exp−−→ C× → 1

and using X∗(T ) = X∗(T̂ ), we get an exact sequence

0→ X∗(T̂ )→ Lie(T̂ )
exp−−→ T̂ → 1.

Take the long exact sequence of group cohomology (associated to Γ-invariance), we get isomor-
phism

π0(T̂Γ) = cok(Lie
exp−−→ T̂Γ)→ H1(Γ, X∗(T )).

We use again the exponential map to obtain the embedding Q/Z→ C×, and so a perfect pairing

(5.3) H1(Γ, T )⊗ π0(T̂Γ)→ C×.

Now we can describe the factors in (5.1). Fix a pinning (T0, B0, {Xα}) of G and a non-trivial
additive character Γ : F → C×.

18
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5.5.3. ε. The complex number ε is given by

ε = ε(
1

2
, X∗(T0)C −X∗(TH0 ),Γ)

where TH0 ⊆ H is a maximally split maximal tori.

5.5.4. ∆1. The complex number ∆1 is given by

∆1 = 〈λ, ϕ̂γ,δ(s)〉.

Here 〈−,−〉 is given by Tate-Nakayama duality (5.3), ϕ̂γ,δ(s) ∈ [T̂δ/Z(Ĝ)]Γ viewed as an element
in π0(TΓ

δ,sc). λ is the Langlands-Shelstad splitting invariant, constructed as follows. Choose g ∈
Gsc(F̄ ) such that gT0g = Tδ, so that g−1δ(g) ∈ Z1(F,N(T0, Gsc)). Let wσ be its image in
N(T0,Ω(T0)), where Ω(T0) is the Weyl group of T0. Let ẇσ ∈ N(T0, Gsc) be the Tits lift of wσ
associated to the fixed pinning. However, the Tits section Ω(T0)→ N(T0, Gsc) is not multiplicative
in general, σ 7→ ŵσ is generally not a 1-cocycle. To fix this, define

xσ :=
∏
α>0

σ−1α<0

α∨(aα) ∈ Tδ,sc(F̄ )

where positivity is associated to gB0g
−1. Then g−1xσg·ẇσ is another element of Z1(F,N(T0, Gsc)),

whose image in Z1(F,Ω(T0)) conincides with that of g−1σ(g). Therefore the product (g−1xσg ·
ẇσ) · (g−1σ(g))−1 takes values in T0,sc(F̄ ) and moreover its image under Ad(g) : T0,sc → Tδ,sc, i.e.,
the element xσgẇσσ(g)−1, belongs to Z1(F, Tσ,sc). Its class is independent of g will be denoted
by λ.

5.5.5. ∆2. The complex number ∆2 is given by

∆2 =
∏
α

χα

(
a(σ)− 1

aα

)
where the product is taken over the Γ-orbits in R(Tσ, G)\R(Tγ , H). Here we identify R(Tγ , H)
with a subset of R(Tσ, G) using isomorphism ϕγ,δ : Tγ → Tδ.

5.5.6. ∆3. ∆3 = θ(δ), where θ : Tδ(F )→ C× is a character constructed as follows. The chosen χ-

data for R(Tδ, G) leads to a Ĝ-conjugacy class of L-embeddings LTδ → LG. We can use ϕ : Tγ → T

to transport the choice to R(Tδ, H) obtaining an Ĥ-conjugacy class of L-embeddings LTγ → LH.
These are the vertical arrows in the diagram

LTγ
LTδ

lH LG

Lϕγ,δ

Lη

.

In general the diagram fails to commute, and the failure is measured by an element in H1(WF , T̂δ),
which by the local correspondence for tori gives a character θ : Tδ(F )→ C×.

5.5.7. ∆4. ∆4 is defined by

∆4 =
∏
α

|α(δ)− 1| 12 ,

where the product is over R(Tδ, G)\R(Tγ , H).
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5.5.8. κ-behaviour. The following is a fundamental property of the local factor, which we may call
its κ-behaviour :

Proposition 5.4. If δ, δ′ are stably conjugate, then

∆(γ, δ′) = ∆(γ, δ) · 〈inv(δ, δ′), ϕ̂−1
γ,δ(s)〉

where inv(δ, δ′) ∈ H1(Γ, Tδ) is defined in Proposition 5.2(2).

We need to explain the second term 〈inv(δ, δ′), ϕ̂γ,δ(s)〉 on the right hand side. This is given
by the Tate-Nakayama duality (5.3), but it’s a little bit tricky. Here, we think of ϕ̂γ,δ(s) as an
element in

[Z(Ĥ)/Z(Ĝ)]Γ ↪→ [T̂γ/Z(Ĝ)]Γ
ϕ̂−1
γ,δ−−−→ [T̂δ/Z(Ĝ)]Γ

(notice that the first map depends on an embedding T̂γ ↪→ Ĥ
η−→ Ĝ which is only well-defined up

to Ĥ-conjugacy, but fortunately quotient by the center doesn’t remember the conjugacy). But

the last torus is the adjoint form of T̂δ, which is the dual of the simply-connected form of Tδ. So
we need to lift inv(δ, δ′) to the simply-connected cover. But we have different lifts. Will they give

us different pairing? No! The reason is that s lifts to an element in Z(Ĥ)Γ as in Definition 5.3.

5.6. Local transfer.

5.6.1. Orbital integral.

Definition. For f ∈ C∞c (G(F )) and a strongly regular semisimple element δ ∈ G(F ), let Oδ(f)
denote the orbital integral

Oδ(f) =

∫
Tδ(F )\G(F )

f(g−1γg)
dg

dt

where dg and dt are choices of Haar measure on G(F ) and Tδ(F ).

Note that orbital integral only depends on the rational conjugacy class of δ.
We can also define a stable analog:

Definition. The stable orbital integral at δ is

SOδ(f) :=
∑
δ′

Oδ′(f),

where the sum is taken over (a set of representatives for) the set of rational conjugacy classes
inside the stable conjugacy class of γ.

Definition. A G-conjugate invariant distribution I (I(f) = I(fg) where fg(x) = f(g−1xg)) is
called stably invariant if I(f) = 0 for all f ∈ C∞c (G(F )) which satisfy SOδ(f) = 0 for all strongly
regular semisimple δ ∈ G(F ).

5.6.2. Matching. Again work with a extended endoscopic triple (H, s, Lη) and a Whittaker datum
w = (B,ψ). This defines a transfer factor ∆ : Hsr(F )→ Gsr(F )→ C.

Definition. The functions f ∈ C∞c (G(F )) and fH ∈ Cc(H(F )) are ∆-matching if

SOγ(fH) =
∑
δ

∆(γ, δ)Oδ(f),∀γ ∈ Hsr(F ),

where the sum runs over the set of rational conjugacy classes of strongly regular semisimple
elements.

Remark. The sum on the right hand side is a finite sum, since γ is only related to finitely many
δ.

Theorem 5.1 (fundamental Lemma). With the above setting,
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(1) For every f there exists a matching fH .
(2) If G and (H, s, Lη) are unramified (i.e., admit integral models G,H with generic fibers
GF = G,HF = H), and f is the characteristic function of a hyperspecial maximal compact
subgroup, then fH can be taken as the characteristic function of a hyperspecial maximal
compact subgroup, i.e.,

f = 1G(OF ) ⇒ fH = 1H(OF ).

Remark. Theorem 5.1 is fundamental in the following sense. Recall that the goal of Langlands
functoriality conjecture is to find the way to transfer representations between G and H. To do so,
we have a powerful tool called trace formula.

The trace formula is an identity between

• the geometric side, orbital integrals;
• the spectral side, characters of representations.

One thing we can do is to compare trace forumlas for different groups. Theorem 5.1 tells us how
to compare the geometric side, so we also know how to compare the spectral side. But these
characters determines representations, indicating how to transfer representations.

5.6.3. Character identity. Now we can connect the theory of endoscopy with the local Langlands
correspondence, and refine the local Langlands conjecture. Here ”Proposition” stands for conjec-
tured property of the local Langlands correspondence.

Definition. Let ϕ : WDF → LG be a Langlands parameter, define Sϕ = Cent(ϕ, Ĝ) and S̄ϕ =

Sϕ/Z(Ĝ)Γ.

Proposition 5.5. For a fixed choice of Whittaker datum w = (B,ψ), there exists a map ρw :
Πϕ(G/F )→ Irr(π0(S̄ϕ)), which is bijective when F is non-archimedean , and injective when F is
archimedean.

Proposition 5.6. When ϕ is tempered, there is a unique (B,ψ)-generic constituent of Πϕ(G/F )
(π is (B,ψ)-generic if HomBu(F )(π.ψ) 6= 0), and it is mapped to the trivial representation by ρw.

Proposition 5.7. When ϕ is tempered, the distribution

SΘϕ :=
∑

π∈Πϕ(G)

Tr ρw(π)(1) ·Θπ

is stable, where Θπ : C∞c → C is the Harish-Chandra distribution given by

Θπ(f) = Trπ(f) = Tr

∫
G(F )

f(x)π(x)dx.

Proposition 5.8. Let e = (H, s, Lη) be an extended endoscopic triple, ϕH : WDF → LH be a
tempered Langlands parameter, ϕ = Lη ◦ ϕH . If f and fH are ∆e,w-matching, then∑

π∈Πϕ(G)

Tr ρw(π)(s) ·Θπ(f) =
∑

τ∈ΠϕH (H)

Tr ρ(τ)(1) ·Θτ (fH).

Remark. The left hand side depends on a choice of Whittaker datum (B,ψ) of G. So what’s the
Whittaker datum we are going to use for H?

The right hand side can be written as∑
τ∈ΠϕH (H)

dim ρ(τ) ·Θτ (fH).

Notice that different choice of Whittaker datum will just change ρ(τ) by a twist of a character,
so the right hand side is in fact independent of the choice of a Whittaker datum, and we can pick
any one we like.
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