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1 Conventions
We follow Jackson’s special relativity and Gaussian unit conventions:

𝜇, 𝜈 = 0, 1, 2, 3 𝑖, 𝑗 = 1, 2, 3

𝑥𝜇 = (𝑐𝑡,𝒙) 𝜕𝜇 =
(1
𝑐
𝜕
𝜕𝑡
,𝛁

)

(1.1a)

𝑔00 = 1 𝑔0𝑖 = 𝑔𝑖0 = 0 𝑔𝑖𝑗 = −𝛿𝑖𝑗 (1.1b)

𝜖0123 = −1 𝜖123 = 1 (1.1c)

Our notation for three-dimensional vectors and tensors is the following:

(i) Up and down three-dimensional tensor indices are related by the three-
dimensional negative identity part of the Lorentz metric, consistent with
the restriction of a four-vector index to its spatial components.

(ii) The summation convention for repeated four-dimensional indices is the
usual one; they are written only as relatively up and down. But repeated
three-dimensional indices are summed even when both are up or both down.

(iii) Physical three-vectors have a natural definition as fundamentally up or
down, as indicated by the spatial components of the four-tuples for 𝑥𝜇 and
𝜕𝜇 in Eq. (1.1a).

(iv) When three-vector notation is used in dot or cross products, the natural
definitions are understood. For example: 𝒙⋅𝒙 = 𝑥𝑖 𝑥𝑖 and 𝒙⋅𝛁 = 𝑥𝑖 𝛁𝑖.

(v) The three-dimensional Kronecker delta symbol is naturally defined with
two lower indices, as indicated in Eq. (1.1b). As a rule we mever write it
with an upper index. We never write a four-dimensional Kronecker delta at
all, which would be defined naturally as 𝛿𝜇𝜈 = 𝑔𝜇𝜈 , and which would not be
Lorentz covariant. The three-dimensional alternating symbol is naturally
defined with all indices down, as indicated in Eq. (1.1c).

(vi) Dot and double dot products involving tensors are defined as might be ex-
pected. For example:

(𝐹 ⋅𝐹 )𝜇𝜈 ≡ 𝐹 𝜇
𝜆 𝐹

𝜆𝜈, 𝐹 ∶𝐹 ≡ 𝐹𝜇𝜈 𝐹
𝜇𝜈, (𝐹 ⋅𝑗)𝜇 ≡ 𝐹 𝜇𝜈𝑗𝜈 .
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2 Maxwell’s equations
In Gaussian units, the dimensions of the electric and magnetic fields 𝑬 and 𝑩
and of the charge and current densities 𝜌 and 𝒋 are the following:

dim𝑬 = dim𝑩 = QL−2 dim 𝜌 = QL−3 dim 𝒋 = QL−2T−1 (2.1)

The natural three-vector indices are taken to be upper:

𝐸𝑖 = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧) 𝐵𝑖 = (𝐵𝑥, 𝐵𝑦, 𝐵𝑧) 𝑗𝑖 = (𝑗𝑥, 𝑗𝑦, 𝑗𝑧) (2.2)

Here are the vacuum Maxwell equations:

𝛁⋅𝑬 = 4𝜋 𝜌 𝛁×𝑩 − 1
𝑐
𝜕𝑬
𝜕𝑡

= 4𝜋
𝑐
𝒋 (2.3a)

𝛁⋅𝑩 = 0 𝛁×𝑬 + 1
𝑐
𝜕𝑩
𝜕𝑡

= 0 (2.3b)

Note that the inhomogeneous equations (2.3a) imply the continuity equation for
𝜌 and 𝒋:

𝜕𝜌
𝜕𝑡

+ 𝛁⋅𝒋 = 0 (2.3c)

The antisymmetric electromagnetic field tensor 𝐹 𝜇𝜈, its dual 𝐹 𝜇𝜈
D , and the

charge four-current density 𝑗𝜇 express the electrodynamic quantities in Lorentz
covariant form:

𝑗𝜇 = (𝑐𝜌, 𝒋) (2.4a)

𝐹 𝜇𝜈
D ≡ 1

2
𝜖𝜇𝜈𝜆𝜌 𝐹𝜆𝜌 𝐹 𝜇𝜈 = −𝐹 𝜇𝜈

DD (2.4b)

𝐹 0 𝑖 = −𝐸𝑖 = −𝐹 𝑖 0 𝐹 𝑖 𝑗 = −𝜖𝑖 𝑗 𝑘 𝐵𝑘 (2.4c)

𝐹 0 𝑖
D = −𝐵𝑖 = −𝐹 𝑖 0

D 𝐹 𝑖 𝑗
D = 𝜖𝑖 𝑗 𝑘 𝐸𝑘 (2.4d)

These definitions lead to the covariant form of Maxwell’s equations:

𝜕 ⋅𝐹 = 4𝜋
𝑐
𝑗 ⇐⇒ 𝜕 ⋅𝑗 = 0 (2.5a)

𝜕 ⋅𝐹D = 0 ⇐⇒ 𝜕𝜇𝐹𝜈𝜆 + 𝜕𝜈𝐹𝜆𝜇 + 𝜕𝜆𝐹𝜇𝜈 = 0 (2.5b)
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Equations (2.5a) and (2.5b) are equivalent to Eqs. (2.3a) and (2.3b), respectively.
The logical equivalence in (2.5b) follows from the partial derivative identity

(𝜕 ⋅𝐹D)𝜇 = −1
2
𝜖𝜇𝜈𝜆𝜌 𝜕𝜈𝐹𝜆𝜌 (2.6)

together with the antisymmetrization identity obeyed by the contraction of two
alternating symbols on one index. The vanishing of 𝜕⋅𝐹D, especially in the form
on the r.h.s. of the equivalence, is an electromagnetic Bianchi identity. It is not
satisfied when there is a magnetic charge.

Lorentz covariant quadratic combinations:

𝐹 ∶𝐹 = −𝐹D∶𝐹D = 2
(

𝑩2−𝑬2) (2.7a)

𝐹 ∶𝐹D = −4𝑬 ⋅𝑩 (2.7b)

(𝐹 ⋅𝐹 )𝜇𝜈 = (𝐹 ⋅𝐹 )𝜈𝜇 (2.7c)

(𝐹 ⋅𝐹 )00 = 𝑬2 (𝐹 ⋅𝐹 )0 𝑖 = 𝜖𝑖 𝑗 𝑘 𝐸𝑗𝐵𝑘 = (𝑬×𝑩)𝑖

(𝐹 ⋅𝐹 )𝑖 𝑗 = −
(

𝐸𝑖𝐸𝑗+𝐵𝑖𝐵𝑗) + 𝛿𝑖 𝑗 𝑩
2 (2.7d)

𝐹 ⋅𝐹D = 𝐹D ⋅𝐹 = −1
4
𝑔 𝐹 ∶𝐹 (2.7e)

𝐹D ⋅𝐹D = 𝐹 ⋅𝐹 + 1
2
𝑔 𝐹 ∶𝐹 (2.7f)

It turns out that the traceless part of the symmetric tensor 𝐹 ⋅𝐹 is proportional to
the electromagnetic energy-momentum tensor.

If a magnetic charge four-current density 𝑗𝜇m = (𝑐𝜌m, 𝒋m) were to be intro-
duced as a source for 𝐹D,

𝜕 ⋅𝐹D = 4𝜋
𝑐
𝑗m ⇐⇒ 𝜕 ⋅𝑗m = 0 (2.8)

then the homogeneous Maxwell equations in (2.3b) would become:

𝛁⋅𝑩 = 4𝜋 𝜌m −𝛁×𝑬 − 1
𝑐
𝜕𝑩
𝜕𝑡

= 4𝜋
𝑐
𝒋m (2.9)

This is the dual of Eq. (2.3a) under the replacements 𝑬 → 𝑩, 𝑩 → −𝑬, 𝜌 → 𝜌m,
and 𝒋 → 𝒋m.
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3 Vector potential
The vector potential 𝐴𝜇 is assumed to have vanishing four-divergence, i.e., to
belong to the Lorentz gauge class.

𝐴𝜇 = (𝜙,𝑨) (3.1a)

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜇𝐴𝜇 ≡ [𝜕𝐴]𝜇𝜈 (3.1b)

□𝐴 = 𝜕 ⋅𝜕𝐴 = 4𝜋
𝑐
𝑗 𝜕 ⋅𝐴 = 0 (3.1c)

Equations (3.1b) and (3.1c) define a solution of the Maxwell equations. All so-
lutions can be written this way, with the vector potential unique in the Lorentz
gauge class up to the four-gradient of a scalar function that obeys the homoge-
neous wave equation. Equation (3.1b) implies that 𝜕 ⋅𝐹D vanishes, because it
makes the Bianchi identity for 𝐹 automatic.

Putting together Eqs. (2.4c) and (3.1b) gives expressions for 𝑬 and 𝑩 in terms
of 𝐴 :

𝐹 0 𝑖 = −𝐸𝑖 = 1
𝑐
𝜕𝐴𝑖

𝜕𝑡
+ 𝜕𝑖𝜙 𝑬 = −𝛁𝜙 − 1

𝑐
𝜕𝑨
𝜕𝑡

(3.2a)

𝐹 𝑖 𝑗 = −𝜖𝑖 𝑗 𝑘 𝐵𝑘 = −𝜕𝑖𝐴𝑗 + 𝜕𝑗𝐴
𝑖 𝑩 = 𝛁×𝑨 (3.2b)

4 Lorentz force
The Lorentz force law is logically independent from Maxwell’s equations. The
time component of the Lorentz force density four-vector 𝑓 is the applied power
density over 𝑐, and the spatial components are the three-vector Lorentz-force
density, for the action of the electromagnetic field on charge and current distri-
butions:

𝑓 𝜇 = (𝑓 0, 𝒇 ) 𝑓 0 = 1
𝑐
𝒋 ⋅𝑬 𝒇 = 𝜌𝑬 + 1

𝑐
𝒋×𝑩 (4.1a)

𝑓 = 1
𝑐
𝐹 ⋅𝑗 (4.1b)

The Lorentz force three-vector is the spatial component of the volume integral
of 𝑓 . The contribution of the time and spatial components to the rate of change
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of the kinetic four-momentum 𝑃𝑞 of the charge distribution is the following:

d𝑃𝑞

d𝑡
= ∫ 𝑓 (𝑥) d3𝑥 𝑞 = ∫ 𝜌(𝑥) d3𝑥 (4.2)

5 Energy tensor
The dynamical quantities of the electromagnetic field are the following:

energy density: 𝑈 = 1
4𝜋

(

𝑬2+𝑩2) (5.1a)

momentum density: 𝒈 = 1
4𝜋𝑐

𝑬×𝑩 (5.1b)

energy flux: 𝑺 = 𝑐
4𝜋

𝑬×𝑩 (5.1c)

Maxwell stress tensor: 𝑇Max
𝑖 𝑗 = 1

4𝜋
[(

𝐸𝑖𝐸𝐽+𝐵𝑖𝐵𝑗)

− 1
2
𝛿𝑖 𝑗

(

𝑬2+𝑩2)] (5.1d)

The energy flux 𝑺 is the Poynting vector.
These quantities appear in the components of the standard energy-momentum

tensor for the electromagnetic field, Θ𝜇𝜈 , which is symmetric:

Θ0𝜇 = Θ𝜇0 = (𝑈, 𝑐𝒈) Θ𝑖 𝑗 = Θ𝑗 𝑖 = − 𝑇Max
𝑖 𝑗 (5.2a)

𝑃 𝜇
field = ∫ d3𝑥Θ0𝜇 (5.2b)

The Maxwell equations (2.3a) and (2.3b) together with the defintion of the Lor-
entz force density in Eq. (4.1a) yield the conservation law:

𝜕 ⋅Θ = −𝑓 (5.3)

The covariant form of the energy-momentum tensor is the following:

Θ = 1
4𝜋

(

𝐹 ⋅𝐹 + 1
4
𝑔 𝐹 ∶𝐹

)

Θ𝜇
𝜇 = 0 (5.4a)

= 1
4𝜋

(

𝐹D ⋅𝐹D + 1
4
𝑔 𝐹D∶𝐹D

)

(5.4b)

6



In this form the conservation law can be derived from Eq. (2.5a) and the Bianchi
identity in Eq. (2.5b), or from the vector potential by using Eqs. (3.1b) and (3.1c):

𝜕 ⋅Θ = −1
𝑐
𝐹 ⋅𝑗 = −𝑓 (5.5)

The standard energy-momentum tensor produces the covariant Lorentz force
conservation law. Because it is symmetric, the corresponding covariant angular
momemtum density produces the Lorentz torque conservation law:

𝜕𝜆
(

𝑥𝜇 Θ𝜆𝜈 − 𝑥𝜈 Θ𝜆𝜇) = − (𝑥𝜇 𝑓 𝜈 − 𝑥𝜈 𝑓 𝜇) (5.6)

The equations of motion for a total system with a symmetric energy-momentum
tensor, including moving matter, internal forces, the electromagnetic field, and
external forces, imply conservation of four-momentum and covariant angular mo-
mentum:

𝜕𝜇𝑇
𝜇𝜈
total = 0 𝑇 𝜇𝜈

total = 𝑇 𝜇𝜈
matter + 𝑇 𝜇𝜈

internal + 𝑇 𝜇𝜈
field + 𝑇 𝜇𝜈

external (5.7)

6 Green functions
Lorentz gauge vector potentials satisfy the inhomogeneous wave equation (3.1c).
The corresponding retarded and advanced Green functions are given by:

𝐺R,A(𝑥) = − lim
𝜂→0
𝜂∈V±

1
(2𝜋)4 ∫

d4𝑝 𝑒−𝑖𝑝⋅𝑥

(𝑝 + 𝑖𝜂)2

= 1
2𝜋

𝜃
(

±𝑥0) 𝛿(𝑥⋅𝑥) (6.1a)

□𝐺R,A(𝑥) = 𝛿(𝑥) (6.1b)

Equation (6.1a) says that the retarded Green function 𝐺R has its support on the
future lightcone V+, and the advanced Green function 𝐺A has its support on the
past lightcone V−.
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7 Point charge current
Let 𝑦𝜇(𝜏) be the (time-like) world line of a point charge 𝑞, where 𝜏 is the proper
time. Then

𝑦(𝜏) = 𝑥(𝑡) = [𝑐𝑡,𝒙(𝑡)] (7.1a)

𝑢(𝜏) ≡ d𝑦
d𝜏

= 𝛾 d𝑥
d𝑡

= (𝛾𝑐, 𝛾𝒗) (7.1b)

The current density is

𝑗(𝑥) = 𝑞𝑐∫
d𝑦
d𝜏

𝛿[𝑥−𝑦(𝜏)] d𝜏 (7.2)

= 𝑞𝑐∫
d𝑦
d𝜏

𝛿[(𝜏−𝜏(𝑥0)]
|d𝑦0∕d𝜏|

𝛿[𝒙 − 𝒚(𝜏)] d𝜏 (7.3)

Here 𝜏(𝑥0) is the solution of 𝑡 = 𝑦0(𝜏)∕𝑐 which obeys d𝑡∕d𝜏 = 𝛾 ; i.e., 𝜏(𝑥0) is a
proper time at which the time is t. Thus

𝑗(𝑥) = [𝑞𝑐, 𝑞𝒗(𝑡)] 𝛿[𝒙 − 𝒙(𝑡)] (7.4)

8 Liénard-Wiechert potentials
Retarded and advanced solutions of the Lorentz-gauge Maxwell equations (3.1c)
result from applying the Green’s functions in Eq. (6.1a) to get the vector poten-
tials:

𝐴R,A(𝑥) =
4𝜋
𝑐 ∫ 𝐺R,A(𝑥−𝑦) 𝑗(𝑦) d𝑦 (8.1)

Note that if the integral is sufficiently well-defined in the distributional sense to
allow integration by parts after taking its four-divergence, then 𝐴R,A is in the
Lorentz gauge class because the current 𝑗 is conserved.

For a point charge this gives:

𝐴R,A(𝑥) = 2𝑞∫ 𝜃[±(𝑥0 − 𝑦0)] 𝛿[(𝑥−𝑦)2] 𝛿[𝑥−𝑦(𝜏)] 𝑢(𝜏) d𝜏 d𝑦 (8.2a)

= 2𝑞∫ 𝜃{±[𝑥0−𝑦0(𝜏)]} 𝛿{[𝑥−𝑦(𝜏)]2} 𝑢(𝜏) d𝜏 (8.2b)
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Let 𝜏R,A(𝑥) be the retarded and advanced solutions of the light-cone condition:

𝑟(𝑥, 𝜏)⋅𝑟(𝑥, 𝜏) = 0 𝑟(𝑥, 𝜏) ≡ 𝑥 − 𝑦(𝜏) (8.3)

Then

d𝑟2
d𝜏

= −2𝑟⋅𝑢 (8.4a)

𝐴R,A(𝑥) = 2𝑞∫
𝛿[𝜏 − 𝜏R,A(𝑥)]

|d𝑟2∕d𝜏|
𝑢(𝜏) d𝜏 (8.4b)

=
𝑞𝑢
|𝑟⋅𝑢|

|

|

|

|𝜏=𝜏R,A(𝑥)
(8.4c)

These are the Liénard-Wiechert vector potentials for a point charge in arbitrary,
sufficiently regular motion. In the next section, we shall see by direct calculation
that they belong to the Lorentz gauge class.

9 Liénard-Wiechert fields
Notation for antisymmetric and symmetric combinations:

[

𝑉1𝑉2
]𝜇𝜈
− = 𝑉 𝜇

1 𝑉
𝜈
2 − 𝑉 𝜈

1 𝑉
𝜇
2

[

𝑉1𝑉2
]𝜇𝜈
+ = 𝑉 𝜇

1 𝑉
𝜈
2 + 𝑉 𝜈

1 𝑉
𝜇
2 (9.1)
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In the following it is understood that 𝜏 is evaluated at 𝜏R,A(𝑥):

𝑎(𝜏) ≡ d𝑢
d𝜏

(9.2a)

0 = 𝜕 𝑟2 = 2 𝑟⋅𝜕𝑟 = 2 (𝑟−𝑟⋅𝑢 𝜕𝜏) ⇐⇒ 𝜕𝜏 = 𝑟
𝑟⋅𝑢

(9.2b)

𝜕 (𝑟⋅𝑢) = 𝑢 + 𝑟 𝑟⋅𝑎−𝑐
2

𝑟⋅𝑢
(9.2c)

𝜕 |𝑟⋅𝑢| = sgn(𝑟⋅𝑢) 𝜕 (𝑟⋅𝑢) (9.2d)

sgn(𝑟⋅𝑢) = sgn 𝑟0 = ±1

{

ret
adv

(9.2e)

𝜕 𝐴R,A(𝑥) = 𝑞 sgn(𝑟⋅𝑢)
[

−𝑢𝑢 1
(𝑟⋅𝑢)2

+ 𝑟𝑢 𝑐
2−𝑟⋅𝑎
(𝑟⋅𝑢)3

+ 𝑟𝑎 1
(𝑟⋅𝑢)2

]

(9.2f)

𝐹R,A(𝑥) = 𝑞 sgn(𝑟⋅𝑢)
[

[𝑟𝑢]−
𝑐2−𝑟⋅𝑎
(𝑟⋅𝑢)3

+ [𝑟𝑎]−
1

(𝑟⋅𝑢)2

]

(9.2g)

By contracting the two implicit four-vector indices in Eq. (9.2f), one readily
verifies directly that 𝜕⋅𝐴R,A = 0, and hence that the point-charge vector potentials
satisfy the Lorentz gauge condition.

The energy-momentum tensor (5.4a) for point-charge fields is given by:

ΘR,A = 1
4𝜋

(

𝐹R,A ⋅𝐹R,A + 1
4
𝑔 𝐹R,A∶𝐹R,A

)

(9.3)

𝐹R,A ⋅𝐹R,A =
𝑞2

(𝑟⋅𝑢)4

{

−𝑟𝑟
[

𝑎2 +
𝑐2(𝑐2−𝑟⋅𝑎)2

(𝑟⋅𝑢)2

]

+ [𝑟𝑢]+
𝑐2(𝑐2−𝑟⋅𝑎)

𝑟⋅𝑢
+ [𝑟𝑎]+ 𝑐2

}

(9.4)

1
4
𝑔 𝐹R,A∶𝐹R,A = −1

2
𝑔

𝑞2𝑐4

(𝑟⋅𝑢)4
(9.5)

It can be checked that 𝜕 ⋅ΘR,A vanishes away from the charge, as expected.
At the charge, however, both 𝐹 terms have a leading singularity 1∕(𝑟⋅𝑢)4, which
is not locally integrable in four dimensions. That prevents ΘR,A, and hence the
divergence, from existing as a tempered distribution. That can be remedied by
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rewriting the most singular terms as sums of weak derivatives of locally inte-
grable functions, while preserving 𝜕 ⋅ΘR,A = 0 away from the particle, where-
upon the four-divergence gives a mathematically well-defined contribution to the
equation of motion. Fortunately or unfortunately, the only known way of doing
that leads to the Abraham-Lorentz-Dirac equation of motion for a point charge.1

1We worked this out in October, 1974, but were so slow to write it up that we got scooped by
the very nice paper of E. G. Peter Rowe, “Structure of the energy tensor in the classical electody-
namics of point particles”, Phys. Rev. D, 18 (1978), 3639–3654, and never submitted our work
for publication.
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