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1. Introduction to Lorentz Spinors

Spinors are analogous to vectors and tensors, but they transform according to the “cov-

ering group” SL(2, C) of the homogeneous Lorentz group rather than the Lorentz group

itself. SL(2, C) will be discussed in some detail later—for now we just mention that it acts

most directly on two-component, complex vectors, the basic spinors that are analogous to

four-vectors for the Lorentz group. The aim of these notes is not particularly to develop

the so-called “spinor calculus,” which is a way of describing the finite dimensional repre-

sentations of the Lorentz group, but rather to develop some basic facts about the groups

themselves.

After some thought about whether it is really appropriate for students approaching

Lorentz spinors for the first time to see the complex Lorentz group, we have decided to

include it here. The need to actually deal with complex Lorentz transformations occurs

only in rather technical situations, especially involving questions of analyticity or continu-

ation from the Minkowski to the Euclidean domain; but the cost of including them in the

discussion is so minimal that there seems no reason to deny the potential benefit of the

richer context. It is a recurring theme in symmetry considerations where a given group

sits relative to its subgroups, and to the groups that naturally contain it as a subgroup.

But the essential results for relativistic physics are indeed those for the real Lorentz group

and its “covering group” SL(2, C).

1.1 The Homogeneous Lorentz Group

1.1.a Real Lorentz Group

The real, homogeneous Lorentz group L(IR) is the set of 4×4 real matrices that satisfy
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the equation

ΛTrGΛ = G , G =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (1.1)

It is easy to check that this does define a group. Our notation is µ = 0, 1, 2, 3 for Minkowski

indices (latter part of the Greek alphabet); and the Minkowski metric gµν = gµν is given

by the matrix elements of G. In tensor notation, we have

Λµµ′ Λ
ν
ν′ g

µ′ν′ = gµν , (1.2)

where Λµν is the “natural” notation for the matrix elements of Λ, corresponding to a

contravariant vector transformation law such as

x′ = Λx , x′µ = Λµν x
ν′ , x ∈ IR4 ; (1.3)

and gµν and gµν are equally natural notations for the matrix elements of G.?

Since we have mentioned contravariant vectors, recall that the metric symbol gµν can

be used to lower the Minkowski index of a contravariant vector and turn it into a covariant

vector (like the gradient ∂/∂xµ):

xµ = gµνx
ν , x′µ = Λ ν′

µ xν′ , (1.4)

where we have used the fairly common, but we think bad notation,

Λ ν
µ = gµµ′ g

νν′ Λµ
′

ν′ , (1.5)

for the matrix elements of the contragredient matrix†

Λ−1Tr = GΛG . (1.6)

While it may seem economical, the notation Λ ν
µ for the matrix elements of the contra-

gredient matrix encourages the misconception that Λ is a tensor. It is better to write the
? Unless otherwise stated, when we write x ∈ IR4 for a four-vector, we take it to be contravariant.
† The contragredient of a matrix is its inverse transpose (or transpose inverse). It has the special form
GΛG here because of Eq. (1.1).
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covariant transformation law as

x′µ = xν Λνµ , (1.7)

or to make it explicit that Λ−1Tr is a different matrix whose matrix elements are naturally

written with down and up indices by giving it a name,

Λ̃ ≡ Λ−1Tr , Λ̃ ν
µ = (GΛG)(µν) . (1.8)

The parenthesis notation for the indices on the r.h.s. in the second equation is handy for

some calculations which are easier to follow in matrix than in index notation.

It follows from Eq. (1.1) that

det Λ = ±1 , (1.9)

and that

Λ0
0 Λ0

0 −
3∑
i=1

Λ0
iΛ

0
i = 1 , |Λ0

0| ≥ 1 . (1.10)

Thus L(IR) splits into four disjoint classes, named according to

Name det Λ Λ0
0

L↑+ (proper, orthochronous) +1 ≥ 1
L↑− (improper, orthochronous) −1 ≥ 1
L↓+ (proper, nonorthochronous) +1 ≤ −1
L↓− (proper, orthochronous) −1 ≤ −1

The special Lorentz transformations I (identity), P (space inversion), T (time inver-

sion), Y (total inversion), defined by

P = G , T = −G , Y = −I , (1.11)

show that none of the four categories is empty; and in fact the sets of transformations are

related as follows:

L↑− = L↑+ P = P L↑+ , L↓+ = L↑+ Y = Y L↑+ , L↓+ = L↑+ T = T L↑+ . (1.12)

Only L↑+ is a subgroup of L(IR). It can be shown to be continuously connected to the

identity, and is called the identity component of L(IR). This property implies that the
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other three pieces are continuously connected to the matrices P , Y , and T , respectively,

and from the defining properties of the four pieces listed in the table, it is clear that all

are disconnected from each other.

1.1.b Complex Lorentz Group

The set of complex, 4×4 matrices that satisfy Eq. (1.1) is also a group, called the

complex, homogeneous Lorentz group, L(C).

Its elements also satisfy detΛ = ±1, but the orthochronicity conditions no longer

make sense for all Λ. The group L(C) has two connected pieces, differing by space or time

inversion from each other:

L+(C) = {Λ ∈ L(C) : det Λ = +1} ,

L−(C) = {Λ ∈ L(C) : det Λ = −1} ,

= L+(C)P = P L+(C) = L+(C)T = T L+(C).

(1.13)

Of the two pieces, only L+(C) is a subgroup; it is the identity component of L(C). The

matrices I and −I are connected in L+(C), and P and T are connected in L−(C).

The equation

Λ†GΛ = G , (1.14)

where “†” means Hermitean conjugation,? defines another complex Lorentz group, but

it is the wrong one for considerations of analyticity. As defined at the beginning of this

section, L(C) is the analytic complexification of L↑+,† a technical notion which means that

L+(C) is a complex analytic manifold (of complex dimension six), which contains L↑+ as

a real analytic submanifold (of real dimension six). L+(C) is the only group extension of

L↑+ with that property.

1.1.c Minkowski Scalar Product

It is known from undergraduate physics that L(IR) is the group of real linear transfor-

? The Hermitean conjugate of a matrix is its complex conjugate transpose.
† A classic reference on group manifolds is L. Pontrjagin, Topological Groups, Princeton University Press,

1939.
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mations of IR4 that leave the Minkowski scalar product invariant:

x · x ≡ (x0)2 − x · x = (Λx) · (Λx) . (1.15)

It is also true that L(C) is the group of linear transformations of C4 that leave the complex

Minkowski scalar product invariant. The complex scalar product is defined by

z · z = (z0)2 − z · z , (1.16)

without complex conjugation of one of the complex four-vectors.

1.1.d Rotation Subgroups

The proper three-dimensional group of real rotations, which is the proper orthogonal

group O+(3, IR), is isomorphic? to a subgroup of L↑+, namely, the set of real, 4×4 matrices

of the form

Λ =


1 0 0 0
0
0 R
0

 , detR = 1 , RTrR = I . (1.17)

When it doesn’t seem confusing, we may also use the notation R for the 4×4 matrix to

which it corresponds.

The subgroup O+(3, IR) ⊂ L↑+ is connected.

If we let R be complex, but still orthogonal and with determinant unity, we get the

group of proper complex rotations of C3, called O+(3, C), as a connected subgroup of

L+(C).

? A group isomorphism is a one-to-one map of one group onto another which preserves the group mul-
tiplication law. A homomorphism is a possibly several-to-one map of one group into another that
preserves the group law. A homomorphism of a group into another group is also called a representation
of the group, especially when it is into a group of matrices. A representation is called faithful when it
is one-to-one. A group automorphism is a group isomorphism onto the group itself.
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1.2 Matrix Representation of Minkowski Space

The set of complex four-vectors C4, with the Minkowski metric, can be put in one-to-

one linear correspondence with the set of complex 2×2 matrices, since both have the same

complex dimension. To make the correspondence explicit, we introduce a complete set of

2×2 matrices, the Pauli matrices:

σµ = (I,−→σ ) , (1.18)

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.19)

The Pauli Matrices are naturally defined as a covariant vector. An alternative complete

set is

σ̃µ = (I,−−→σ ) . (1.20)

To every complex four-vector z ∈ C4 corresponds the 2×2 matrix

Z = z · σ ≡ zµσµ = z0I + z · −→σ . (1.21)

Conversely, to each complex 2×2 matrix Z corresponds the four-vector

zµ = 1/2 Tr (σ̃µZ) . (1.22)

These linear correspondences are one-to-one, onto inverses of each other, because of the

orthogonality of the Pauli matrices:

gµν = 1/2 Tr (σ̃µσν) , (1.23)

which is readily derived from the anticommutation rules

{σi, σj} = 2 δij I , i, j = 1, 2, 3 , (1.24)

and the fact that

Trσi = 0 . (1.25)

While we’re at it, let’s quote

[σi, σj ] = 2 i εijk σk , (1.26)
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σiσj = δij I + i εijk σk . (1.27)

The real four-vectors x ∈ IR4 are put in one-to-one correspondence with the Hermitean?

2×2 matrices:

X = x · σ = x · σ† = X† (1.28)

because of the Hermitean property

σ†µ = σµ . (1.29)

The Minkowski scalar product goes over into the determinant in 2×2 space:

z · z = det(z · σ) , (1.30)

which is a trivial calculation from the formula

z · σ =

(
z0 + z3 z1 − iz2

z1 + iz2 z0 − z3

)
. (1.31)

Finally, the reader should check some useful identities, good for any a, b, c ∈ C4:

a · σ b · σ̃ + b · σ a · σ̃ = 2 a · b , (1.32)

a · σ a · σ̃ = a · σ̃ a · σ = 2 a · a , (1.33)

a · σ b · σ̃ c · σ = a · σ b · c− b · σ c · a+ c · σ a · b+ i εµνλρ σµ aν bλ cρ , (1.34)

where ε0123 = −1. Note that Eq. (1.34) has another version where σ and σ̃ are interchanged

and i is replaced by −i, which can be derived by evaluating Eq. (1.34) at Pa, Pb, and Pc,

and applying the definitions (1.20) of σ̃ and (1.11) of P , and the pseudoscalar nature of

the Levi-Civita alternating symbol:

Λµµ′ Λ
ν
ν′ Λ

λ
λ′ Λ

ρ
ρ′ ε

µ′ν′λ′ρ′ = det Λ εµνλρ . (1.35)

This formula holds, by the way, for any complex 4×4 matrix Λ.

? A Hermitean matrix is equal to its Hermitean conjugate.
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1.3 Covering Groups of L↑+ and L+(C)

The notion of a universal covering group is a topological construction in Lie group

theory whose details do not concern us here; but since the language is very common, we

use it. Generally speaking, there are two mathematical issues:

• The first is that the connected subgroups of the real and complex homogeneous

groups are multiply connected, and the covering groups are constructed as sim-

ply connected. The covering groups are distinct from the groups they “cover,” not

isomorphic, but homomorphic to them. In our case the homomorphism from the

covering group to the group is two-to-one.

• The second is that the Lie algebra of infinitesimal generators of a Lie group is iso-

morphic to the Lie algebra of infinitesimal generators of its universal covering group.

An equivalent technical statement is that a Lie group is locally isomorphic to its

universal covering group. The Lie algebra is an essential focus for physics, because

the infinitesimal generators are observables, and the algebraic relations they obey

are an essential part of their physical meaning in quantum mechanics.

For physicists, a rough but useful characterization is that the Lorentz group has to do

with the symmetry of vectors (tensors), while its covering group has to do with that of

spinors.

1.3.a Complex Lorentz Transformations

Consider the linear transformations of the space of 2×2 matrices that have the form

Z ′ = AZ BTr , (1.36)

where A and B are 2×2 matrices. We restrict ourselves to the class of pairs (A,B) that

preserve the Minkowski metric; i.e.,

detZ ′ = detZ (1.37)

for every Z. It follows that

detA detB = 1 . (1.38)

Clearly the pair (cA,B/c) gives the same linear transformation of 2×2 matrices as (A,B),

if c is any nonzero complex number. Equation (1.38) tells us that we can choose c to
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arrange

det(cA) = det(B/c) = 1 ; (1.39)

for example, c = (detA)−1/2.

In other words, we need only consider A and B that are unimodular (determinant

unity), if we want the pair (A,B) to preserve the Minkowski metric. From now on, we

do that. There is still the freedom of a sign; (A,B) and (−A,−B) give the same metric-

preserving transformation; and detA = det(−A) = detB = det(−B) = 1.

The set of these transformations forms a group, with multiplicatioin law

(A1, B1) (A2, B2) = (A1A2, B1B2) . (1.40)

It is just the direct product group SL(2, C)×SL(2, C), where SL(2, C) denotes the group of

2×2 matrices with unit determinant (special linear group of transformations in 2 complex

dimensions).

Since the correspondence we defined between four-vectors and 2×2 matrices is linear,

the linear transformation (A,B) of 2×2 matrices induces a linear transformation Λ(A,B)

of four-vectors. That correspondence is easy to compute; let

z′ · σ = Az · σ BTr

= [Λ(A,B) z] · σ .
(1.41)

This holds for every z, so

σµ Λ(A,B)µν = Aσν B
Tr . (1.42)

From the orthogonality relation for Pauli matrices (1.23), it follows that

Λ(A,B)µν = 1/2 Tr (σ̃µAσν BTr) . (1.43)

Because Λ(A,B) preserves the Minkowski metric, it must belong to L(C). Moreover,

it is easy to show from Eq. (1.41) that

Λ(A1, B1) Λ(A2, B2) = Λ(A1A2, B1B2) . (1.44)

What we have done, then, is to construct a homomorphism of the group SL(2, C)×SL(2, C)

into L(C). One of our jobs is to find out which Lorentz transformations we have arrived
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at in this way. We are going to see that we don’t get them all. But before we do that, let’s

find out how many transformations (A,B) correspond to a given Λ. The homomorphism

is at least two-to-one, because

Λ(A,B) = Λ(−A,−B) . (1.45)

We claim that the homomorphism is not more than two-to-one, by the following argu-

ment. Suppose two pairs, (A,B) and (A′, B′) induce the same Lorentz transformation:

AσµB
Tr = A′ σµB

′Tr . (1.46)

Let us show that (A′, B′) = (A,B) or (−A,−B). First we write

σµ = A−1A′ σµ B
′TrBTr−1

= C σµD
Tr , C ≡ A−1A′ , D ≡ B−1B′ .

(1.47)

If we can show that C and D are multiples of I, we are finished, for if

C = λ1 I , D = λ2 I , (1.48)

then we have detC = detD = 1 = λ2
1 = λ2

2, so that λ1 = ±1 and λ2 = ±1. Also, we

cannot have λ1λ2 = −1, for that contradicts (1.47). We then have C = D = ±I, which

proves that (A′, B′) = (A,B) or (−A,−B), as claimed.

It remains only to show that C and D are multiples of I. To do that, we prove a

lemma.

Lemma. For any 2×2 matrix M ,

σ̃µM σµ = 2 (TrM) I . (1.49)

Proof. Because the trace is linear, it is sufficient to prove the lemma for each of the four
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Pauli matrices. Consider M = σ0 = I. Applying the identity (1.32), we get

σ̃µ σ0 σ
µ = σ̃µ σ

µ = σµ σ̃
µ

= 1/2 g
µν (σµ σ̃ν + σν σ̃µ)

= 1/2 g
µν 2 gµν I = 4I = 2 (Trσ0) I .

(1.50)

Next, consider M = σi, i = 1, 2, 3:

σ̃µ σi σ
µ = σ0 σi σ

0 + σj σi σj

= σi + δji σj + i εjik σk σj

= 2 σi − 2 σi = 0 = 2 (Trσi) I ,

(1.51)

where we used (1.25) and (1.26).

Now apply the lemma to (1.47), after multiplying from the left or right by σ̃µ and

contracting. For example,

σ̃µ σµ = σ̃µC σµD
Tr ,

4 I = 2 (TrC)DTr .
(1.52)

This shows that D is a multiple of I, and a similar argument works for C.

The reader should check that the lemma above can be used to prove the following

refinement of the statements in Eqs. (1.47) and (1.48):

Theorem. Let M and N be any 2×2 matrices that obey

σµM = N σµ

for all four Pauli matrices. Then M = N and both are the same multiple of the identity.

This theorem contains the statement that the three Pauli matrices σi are irreducible;

namely, any 2×2 matrix that commutes with all three is a multiple of the identity.

So far we have found a two-to-one homomorphism

SL(2, C)×SL(2,C)
Λ(A,B)
−−−−−−→ L(C) .

The next claim is that Λ(A,B) is in fact a proper Lorentz transformation. We give a

heuristic argument; namely, you have to believe that SL(2, C) is connected. We shall see
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that explicitly later; but for now we point out that SL(2, C) is the set of matrices A = a · σ
with detA = a · a = 1; and that the complex hyperboloid a · a = 1 is a connected set in

C4. It follows that SL(2, C)×SL(2,C) is also connected. Note that Λ(I, I) = I. Since

Λ(A,B) as defined in (1.43) is a continuous function of A and B,? and any pair (A,B)

is continuously connected to (I, I), we see that Λ(A,B) is continuously connected to the

identity in L(C). Therefore det Λ = 1, for det Λ is a continuous function of Λ, and there is

no continuous way to reach group elements with det Λ = −1 from the identity.

That shows that Λ(A,B) ∈ L+(C). A stronger statement is true: the homomorphism

Λ(A,B) maps SL(2,C)×SL(2, C) two-to-one onto L+(C). The proof that every Λ ∈ L+(C)

has the representation Λ = Λ(A,B) is algebraically nontrivial, and we omit it. One

could do it by inverting the equation to find A and B, given Λ, as Joos does in his

famous article;? or one could do it by parametrizing L+(C) in terms of a product of six

elementary transformations in the six µν planes, and putting that in correspondence with

a parametrization of SL(2,C)×SL(2, C).

1.3.b Complex Rotations

Now we want to find out which pairs (A,B) correspond to the most important sub-

groups of L+(C). First, let’s consider the proper complex rotations, O+(3, C). The answer

is easy; O+(3, C) is the set of proper Lorentz transformations that leave the µ = 0 com-

ponent of any four-vector unchanged, so

Aσ0B
Tr = σ0 =⇒ BTr = A−1 . (1.53)

Thus

O+(3,C) =
{

Λ(A,A−1Tr) : A ∈ SL(2, C)
}
. (1.54)

It follows that SL(2, C) is two-to-one homomorphic to O+(3, C).

1.3.c Real Lorentz Transformations

To find those pairs (A,B) which give real Lorentz transformations, we use the fact

? That is, of their matrix elements.
? H. Joos, Fortschritte der Physik 11 (1962) 65.
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that real transformations preserve real four-vectors; and hence for any Hermitean X ,

(AX BTr)† = BTr†X A† = AX BTr ,

X = A−1BTr†X A†BTr−1 .
(1.55)

In particular, this must hold for X = σµ; and we have already shown in Section 1.3.c that

any 2×2 matrix that commutes with all four σµ’s must be a multiple of the identity. More

precisely in this case:

A−1BTr† = B−1A†Tr = ±I ,

A = ±BTr† = ±B̄ .
(1.56)

Thus, the pairs that give real Lorentz transformations fall into two classes, those of

the form (A, Ā) and those of the form (A,−Ā). Each class is connected, because SL(2, C)

is. The first is connected to the identity (I, I), which is outside the second class; so the

two classes are disconnected from each other.

It is correct to guess that these two sets correspond to L↑+ and L↓+, and we can guess

at once that (A, Ā) goes with L↑+ while (A,−Ā) goes with L↓+, because the (A, Ā) are a

subgroup of SL(2, C)×SL(2, C) (isomorphic to SL(2, C) itself), while the (A,−Ā) are not,

corresponding to the fact that L↑+ is a subgroup of L+(C), while L↓+ is not a group.

To verify that, note that if X represents a positive, timelike vector, then X is non-

negative definite. That is so because X , being Hermitean, has eigenvalues λ1 and λ2;

and
λ1 + λ2 = TrX = 2 x0 ≥ 0 ,

λ1 λ2 = detX = x · x ≥ 0 ,
(1.57)

implies that λ1 and λ2 are nonnegative, after a short calculation. Therefore AXA† is

nonnegative definite, too; and

TrAXA† = 2 Λ(A, Ā)0
µ x

µ ≥ 0 , (1.58)

while

Tr (−AXA†) = 2 Λ(A,−Ā)0
µ x

µ ≤ 0 . (1.59)

This is equivalent to saying that Λ(A, Ā) is orthochronous, and that Λ(A,−Ā) is nonortho-

13



chronous. Indeed
Λ(I,−I) = Y , (easy to show)

Λ(A,−Ā) = Λ(A, Ā) Λ(I,−I) = Λ(A, Ā)Y ,
(1.60)

corresponding to L↓+ = L↑+Y .

We conclude that Λ(A, Ā) defines a two-to-one homomorphism of SL(2, C) onto L↑+.

That the homomorphism is onto follows from the analysis above if we grant that Λ(A,B)

is onto L+(C). We introduce the notation

Λ(A) ≡ Λ(A, Ā) ; (1.61)

(and often write Λ = Λ(A)), corresponding to

(Λx) · σ = Ax · σ A† . (1.62)

Thus Λ(A) defines a two-to-one homomorphism

SL(2, C)
Λ(A)
−−−−−→ L↑+ .

It is known that SL(2, C) is the universal covering group of L↑+.

1.3.d Real Rotations

The subgroup of L↑+ that leaves x0 invariant for all real four-vectors x ∈ IR4 is O+(3, IR),

and it corresponds to those (A, Ā) satisfying

Aσ0A
† = σ0 , AA† = I . (1.63)

That is, A is unitary and unimodular, A = U ∈ SU2. The subgroup SU2 of SL(2, C) is

thus two-to-one homomorphic to O+(3, IR), and it is known to be its covering group.

1.3.e Contragredient Real Lorentz Transformations

From now on the focus will be on real Lorentz transformations; and where confusion

seems unlikely, we write simply Λ = Λ(A). In terms of SL(2, C), the (real) Lorentz
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transformation reads

(Λx) · σ = Ax · σ A† ; (1.64)

and for (real) rotations, we have

(Rx) · −→σ = U x · −→σ U † , U ∈ SU2 . (1.65)

Most of the discussion so far has been based on the correspondence x↔ x · σ. It should

be realized that we could have developed the theory via the alternative correspondence

x↔ x · σ̃. We should then have gotten another homomorphism of SL(2, C) onto L↑+—let’s

call it Λ̃(A):?

[Λ̃(A) x] · σ̃ = Ax · σ̃ A† . (1.66)

To find how Λ and Λ̃ are related to each other, recall (1.33) that

(x · σ̃)−1 =
x · σ
x · x . (1.67)

Taking the inverse of both sides of (1.64), we get

[Λ̃(A) x] · σ = A†−1 x · σ A−1 = [Λ(A†−1) x] · σ . (1.68)

Hence

Λ̃(A) = Λ(A†−1) . (1.69)

We can show besides that Λ̃ = GΛG, because from (1.66) we can write

[G Λ̃(A) x] · σ = A (Gx) · σ A† ; (1.70)

and replacing x by Gx, we get

G Λ̃(A)G = Λ(A) . (1.71)

The transformation law for x · σ̃ becomes

(Λx) · σ̃ = A†−1 x · σ̃ A−1 , (1.72)

where Λ = Λ(A). When put this together with (1.62), it is evident that combinations such
? Although Λ̃ turns out to be the same as defined in Section 1.1.a, the two definitions should be treated

as independent for the moment.
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as x · σ y · σ̃ and x · σ y · σ̃ z · σ, etc., are covariant if the correct SL(2,C) transformations

are supplied; e.g.,

Λx · σΛy · σ̃ = A x · σ y · σ̃ A−1 ,

Λx · σΛy · σ̃Λz · σ = A x · σ y · σ̃ z · σ A† ,

Λx · σ̃Λy · σ = A†−1 x · σ̃ y · σ A† ,

Λx · σ̃Λy · σΛz · σ̃ = A†−1 x · σ̃ y · σ z · σ̃ A−1 .

(1.73)

Although the representations Λ and Λ̃ of L↑+ are similar to each other via G, the

corresponding respresentations A and A†−1 of SL(2, C) are not similar. That is, there is

no 2×2 matrix M such that A†−1 = MAM−1 for all A ∈ SL(2, C). For if there were, we

would have

M = A†M A ;

and putting M = m · σ means the four-vector m obeys

m = Λ(A†)m

for all A†, and hence for all Λ ∈ L↑+. It is a basic fact that the only four-vector with that

property is m = 0,? so M = 0, which is a contradiction.

Thus the mapping A 7→ A†−1 is an automorphism of SL(2, C) which cannot be realized

by a similarity transformation. The inequivalence disappears if one restricts to the SU2

subgroup, where the automorphism becomes trivial.

1.3.f Contragredient SL(2,C) Transformations

We have seen that the automorphism A 7→ A†−1 corresponds to Λ 7→ Λ̃, where

Λ̃ = Λ−1Tr is the contragredient of Λ because of the defining properties of the Lorentz

group. There is also an automorphism A 7→ A−1Tr between elements of SL(2, C) and their

contragredients, which plays a special role in the theory of spinors.

? This fact is related to the irreducibility of the self representation of L↑+.
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Lemma. Let

ε ≡ i σ2 =

(
0 1

−1 0

)
. (1.74)

Then

ε σµ ε
−1 = σ̃Trµ . (1.75)

Proof. Write down the four equations explicitly, and use the properties of the Pauli

matrices (1.20) and (1.24).

Theorem. Let M by any complex 2×2 matrix. Then

εM ε−1 = M−1Tr detM . (1.76)

Proof. Let M = m · σ. Then from the lemma above,

εM ε−1 = m · σ̃Tr

= [(m · σ)−1m ·m]Tr

= M−1Tr detM ,

(1.77)

where we have used (1.33) and (1.30).

Even when detM = 0, it is a fact that the statement in the theorem remains both well

defined and true.?

This theorem gives another perspective on the automorphism of SL(2,C) discussed in

Section 1.3.f. Namely, although A†−1 is not similar to the A, it is similar to the complex

conjugate Ā:

εA†−1 ε−1 = Ā . (1.78)

In fact it is unitary equivalent, because ε is unitary (easy to check). The mapping A 7→ Ā is

also an automorphism of SL(2,C), so the Ā’s are another representation of SL(2,C) which

is not similar to the self representation, because it is similar to A†−1. It is known that up

to unitary equivalence the self representation and the complex conjugate representation

are the only two automorphisms of SL(2,C).
? M−1 detM is the adjoint of M , in other words, the transpose of the matrix of minors.
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1.3.g Discrete Transformations

The elements P , T , and Y of L(IR) form a discrete subgroup, each member of which

is its own inverse. They can also be applied as similarity transformations on elements of

L↑+:

P ΛP−1 = T ΛT−1 = Λ̃ ,

Y ΛY −1 = Λ ,
(1.79)

which in fact map L↑+ onto itself in a one-to-one fashion and preserve the group multipli-

cation law. In other words, they induce automorphisms of L↑+, with P and T both giving

the same thing, the contragredient (because P = −T = G), and Y giving the identity

automorphism.

On the other hand, we saw a correspondence in Section 1.3.f between the automor-

phisms A 7→ A†−1 of SL(2, C) and Λ 7→ Λ̃ of L↑+. We should ask what this has to do with

extending the homomorphism between SL(2, C) and L↑+ to include the discrete symmetries;

in other words, what is the spinor representation of P , T , and Y ?

The answer is not as simple as one might hope. The results in Section 1.3.f can also

be used to show that there is no 2×2 matrix representation of P or T . If there were

such a matrix MP for P , for example, it would have to induce a similarity transformation

MPAM
−1
P = A†−1; and we have found that to be impossible. The situation changes

when one considers the four-dimensional Dirac representation of SL(2, C), which extends

naturally to include the discrete transformations as matrices.
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