DEGREE OF HIGHER-ORDER OPTICAL COHERENCE

g(m,"‘)(xla Tty xm; xls Tt xm)
X g™kl X Xe, X)
2 lg(m,m)(xl9 Ct s Xms xl" Y x;n)lz, (A4)
which are similar to the inequalities (3.12) and (3.14)
of Ref. 5. For N = 3, the inequality (A3) expresses
that, in addition, the determinant
g(m,m)(x(l); x(l)) g(m,m)(x(l); x(2)) g(m,m)(x(l); x(a))
g(m,m)(x(Z); x(l)) g(m,m)(x(z); x(2)) g(m.m)(x(2); x(a))
g(m,m)(x(a); x(l)) g(m,m)(x(:i); x(2)) g(m,m)(x(s); x(a))
>0, (Aj)
where x now stands for the set of variables x{?,
x#,-+-,x9. In the case of complete (2m)th-order
coherence, we have |g™™| = 1, and hence we can
write
g(m,m)(x(i); x(f)) — {g(m.m)(x(i); x(i))}*’
= €Xp [_iW(x(i)’ x(j))]’ (A6)
where y is real. It can then be seen, on evaluating
the determinant, that (A5) can only be satisfied as
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an equality, and we then obtain the relation

P(x®, xB) = p(x®, x0) — p(x®, xV), (A7)
Setting x' =0 (e, x{¥ =x{ =.-+ =x =0,
which is always permissible by suitable choice of the
origin), we finally obtain

P(x®, x@) = f(x®) — f(x®), (A8)
where f(x?) = y(x'9,0) is a function of x'? only.
Hence, from (A6) we find that
g(m,m)(x(i); x(J‘)) = exp {_i[f(x(i)) _f(x(i))]}, (A9)
which, when written in full, gives the required relation
(4.9): viz.,
A O

= exp {_i[f(xla e

’xm;x{5"',x;n)
’xm) —f(xll’ . :x;n)]}‘
(A10)

It may be noted that the results obtained in this
appendix are also true of classical fields and can be
obtained in a strictly similar manner.
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We discuss from a rigorous viewpoint two more-or-less familiar cases where energy-momentum
conservation implies invariance under space-time translations. First, if a closed linear operator on a
Hilbert space has a domain that is invariant under spectral projections belonging to the four-momentum
operators, and if it “‘conserves energy-momentum,” it necessarily commutes with the appropriate
representation of the translations. (Bounded operators, such as the S matrix, are a special case.) At
least for separable spaces, the domain restriction characterizes the closed operators for which the theorem
is true. Second, if a bounded bilinear form between momentum states of m and # particles in a Fock
space (or more generally, a bounded muitilinear form) conserves energy momentum, the corresponding
tempered distribution has a conservation delta function at points where the mass shell is a C manifold;
but no derivatives of delta functions can occur. In this connection, we are led to a result that seems to
be new: the cluster parameters (“‘connected amplitudes™) of a family of bounded bilinear forms, labeled
by (m, n), are also bounded bilinear forms. The two systems, of course, mutually conserve energy
momentum.

I. INTRODUCTION laws, which is classically and elegantly expressed by
Noether’s theorem.! Conversely, to every constant of
the motion corresponds the infinitesimal gener-

ator of an invariance group of the Hamiltonian or

HAT translation invariance implies momentum
conservation is a familiar example of the relation
between continuous symmetries and conservation

* Presefit address: The University of Michigan, Ann Arbor,
Michigan.

1 E. Noether, Nachr. Akad. Wiss. Goettingen, II. Math. Physik.
Kl., 235 (1918).
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Lagrangian?; and for quantum theory in general, we
have the following (presumably) well-known formal
argument. Let |p’) be an “eigenstate” of the total four-
momentum operators P,, with eigenvalues p,. Let
A be a linear operator that conserves energy momen-
tum, i.e.,

P'l4lp) =0 for p"#p'.

In other words, 4 |p’) is an eigenstate of P with the
same eigenvalue p’, so it follows that

[4,P,] =0.

Hence 4 is invariant under translation by any space-
time four-vector b:
[4, &P?] = 0.

We see in Sec. 11 that it is a simple exercise to make
this argument rigorous under the conditions stated
in the abstract, including the case where 4 is a
bounded operator, such as the S matrix.?

Actually, the question to what extent the converse
of the energy-momentum conservation theorem is
true has some relevance for elementary particle
physics, where experimental statements are commonly
statements about momentum space, involving only
macroscopic space-time localization. In this situation
the conservation law is verified more directly than the
invariance principle.

Some theorists have argued that this matter of
practice should be given the status of a matter of
principle.* Either they deny the operational signifi-
cance of microscopic space—time® or for some more
conservative reason they propose to base the theory
of strong interactions on momentum space and to
treat space-time as a derived concept.® Of course, if
one advocates this view, he is not thereby prevented
from postulating translation invariance, since micro-
scopic displacements could conceivably have a sense,

2 A. Messiah, Mécanique Quantique (Dunod Cie., Paris, 1960),
Vol. 11, Chap. XV.

3 Although we should not be surprised to learn that the argument
in question is known, we have not succeeded in finding it in the
literature. For the case of the S matrix, H. P. Stapp [Phys. Rev.
125, 2139 (1962)] mentions without proof that translation invariance
and energy-momentum conservation are equivalent. For bounded
operators, the exercise is indeed not only simple but trivial, given
the standard results of the spectral theory.

*E.g., G. F. Chew, Sci. Progr. (G.B.), 51, 529 (1963); H. P.
Stapp in Ref. 3; E. Lubkin, Nuovo Cimento 32, 171 (1964).

5 This strikes us as a radical view because we are not able to
imagine all possible theories by means of which the concept could
acquire an operational meaning. We do not intend by that a value
judgement on the plausibility of theories motivated by such a view.

8 There have been several interesting attempts in this direction,
based on the S matrix. Among them we mention M. L. Goldberger
and K. M. Watson, Phys. Rev. 127, 2284 (1962); M. Froissart, M.
L. Goldberger, and K. M. Watson, ibid. 131, 2820 (1963); H. P.
Stapp, ibid. 139, B257 (1965); A. Peres, Ann. Phys. (N.Y.) 37, 179
(1966). The last of these contains a more complete list of references.
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even if microscopic space-time does not; but it
seems more in the spirit of things for those who take
the S matrix as the fundamental observable quantity
to postulate instead the conservation law.”

Whether for reasons of practice or principle, we
think there is at least a pedagogical value in spelling
out some of the contexts in which energy-momentum
conservation implies translation invariance, with the
most direct applications being to S-matrix theory.
Because the results are to some extent known, and
because the proofs as well have very likely occurred
to those who have wondered about the question with
enough mathematical curiosity, we make no particular
claim of originality for our rather straightforward
discussion. On the other hand, a rigorous treatment
does lead us indirectly to a potentially useful piece of
information about the S matrix which is new, as far
as we know. Namely, the connected S-matrix elements
in momentum space (cluster amplitudes) are not only
tempered distributions but kernels of bounded
operators.

In Sec. II, we use the spectral theory to formulate
the property of energy-momentum conservation for
operators on a Hilbert space, and for a certain class
of operators we transform the formal argument already
given into a proof of the theorem on translation
invariance. We discuss to what extent the conditions
imposed characterize the operators for which the
theorem is true.

In Secs. III and 1V, we reformulate and prove the
theorem by a different method, for bounded multi-
linear forms on Cartesian products (Jeml, e, K,
K, 5 K,), where X, is the m-particle subspace
of a Fock space. By “multilinear” we mean antilinear
on each space X, and linear on each ¥, . Such
forms may correspond to operators between the
spaces ¥, and ¥, where m = > m; and n = 3 n,,
but in general they do not. Whether such a general
situation has a practical application, we do not know,
but the generality costs nothing extra. The second
proof deals directly with transition amplitudes in
momentum space (tempered distributions), and the
idea is to show that energy-momentum conservation
is expressed only by delta functions in the transition
amplitudes, and not by derivatives of delta functions.
This leads at once to translation invariance. We are
careful not to write delta functions at points where
the mass shell is not a differentiable manifold, because
they are not well defined at such points.

In Sec. V we mention that the result extends to the
cluster parameters for momentum space amplitudes.

7 This is, for example, the attitude of Stapp. See Ref. 3.
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Although this is a trivial fact, we again follow a
“didactic” route in an attempt to clarify in what sense
it is true. We apply some elementary theorems on
Hilbert-Schmidt operators to find that the cluster
amplitudes corresponding to a family of bounded
bilinear forms are themselves kernels of bounded
operators between the m- and n- particle Hilbert
spaces, which conserve energy momentum if the
original amplitudes do.

Finally, in an appendix, we prove that, on a
separable Hilbert space, a closed operator commutes
with all spectral projections if and only if it commutes
with the translations. (The “only if” part is valid for
nonseparable spaces as well.) This result is probably
known to mathematicians, since it is only a slight
generalization of the theorem for bounded operators,
but neither the theorem nor its proof seems to be
readily accessible to nonspecialists (such as the
author).

II. FORMULATION, THEOREM, AND PROOF

What do we mean when we say that an operator
conserves energy-momentum? We give ourselves a
Hilbert space J¢ and commuting self-adjoint energy-
momentum operators P,, u = 0, 1, 2, 3, defined ona
common dense submanifold of J. That a linear
operator on J conserves energy-momentum means at
least that its matrix elements do not connect subspaces
of J¢ belonging to disjoint subsets of the spectrum
of P,.

In other words, let

P= [ puae@)

be the simultaneous spectral decomposition of P,,
where dE(p) is the spectral measure, with support on
the spectrum of P,.® For any Borel set A < R%,
consider the projection operator®

E(A) = f dE(p).

The subspace of X belonging to the part of the spec-
trum of P, contained in A is E(A)X = ¥(A). Let 4
be a linear operator on X with domain D(4), which
we may assume to be dense or not, as we please. Then
we say that A conserves energy-momentum if,

8 Very readable summaries on the “SNAG™ theorem are given
by R. F. Streater and A. S. Wightman, PCT, Spin and Statistics,
and All That (W. A. Benjamin, Inc., New York, 1964), pp. 91-93;
R. Jost, The General Theory of Quantized Fields (American Mathe-
matical Society, Providence, Rhode Island, 1965), pp. 16-17.

® Recall that the Borel sets of R” are the smallest family of sets that
contains all denumerable unions, intersections, and complements of
open sets.
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whatever be the Borel set A or f e D(4), the condition
EQAf=0
implies that
EQ)Af = 0.

Thus, if fe X(A') N D(4) and g € ¥(A), with A’
and A disjoint, we have the minimum requirement
just mentioned:

(g, Af) = 0.

This equation is equivalent to the definition; for if
f € D(4) and E(A)f = 0, it follows that f € L(R* — A).
where R* — A is the complement of A. Then for any
gex

E(A)Af = 0.
We aim to study under what conditions the fact
that 4 conserves energy momentum implies that it

commutes with all spectral projections E(A), and
hence with all translations

T(b) = f ¢*YdE(p), beRY

hence

To make sense out of such a statement, we have to
know something about the domains of the operators
that occur. Following Riesz and Sz.-Nagy,l we
define the domain of a product 4,4, to be the set of
all vectors f'€ D(4,) such that A,fe D(4,). We write
A, © A, if A, is an extension of A,; i.e., D(4,) >
D(4,) and A4,f= A,f for fe D(4,). We say that a
bounded operator B defined on all of J& commutes
with 4 if BA = AB. We say that A is closed if, when-
ever both f,, € D(A4) and Af, are Cauchy sequences in
the norm of X, it follows that lim f, = f€ D(A) and
lim Af,, = Af.

What we actually prove is the following theorem,
which perhaps does not characterize the operators
for which energy-momentum conservation and trans-
lation invariance are equivalent, but which probably
comes close enough for practical purposes.

Theorem A: Let A4 be a closed linear operator on a
separable Hilbert space J€. Then the following state-
ments are equivalent:

(i) A conserves energy momentum, and D(4) is
invariant under spectral projections; i.e., E(A)D(4) <
D(A) for all A;

(ii) E(A)4 < AE(A) for all A;

(iii) T(b)4 = AT(d) for all b.

If ¥ is nonseparable, then we still have (i) <= (ii) =
(iid).
10 F, Riesz and B. Sz.-Nagy, Functional Analysis (Frederick

Ungar Publishing Company, New York, 1955), Chap. VIII, Secs.
114-116.
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The only nontrivial part of the proof is the relation
between the statements (ii) and (iii). Because this
result belongs properly to the functional calculus of
self-adjoint operators, we take it for granted here and
reserve the proof for the Appendix. Certainly its
formal equivalent is a part of the folklore of quantum
mechanics.

We complete the proof of Theorem A by showing
the equivalence of (i) and (i), without assuming that
J is separable (or even that 4 is closed). To prove that
(i) implies (ii), note that, for f€ D(4) and any A,

E(AYAE(RS — A)f = 0,
from energy-momentum conservation. Because

E(A) + E(Rt — A) = 1,
we have

E(A)Af = E(A)AEAY,

AEA)f = E(AYAE(A)Y.

Hence E(A)A = AE(A).

It only remains to show that (ii) implies (i). But that
is trivial. First, E(A)D(A4) = D(A), from the definition
of the expression (ii). That A4 conserves energy
momentum follows at once from (ii) and the definition
of energy-momentum conservation. Thus, the theorem
is proved.

We have not made any restrictions on the spectrum
of P,. For closed operators and separable spaces,
Theorem A says that it is not possible to relax the
condition of the invariance of D(4) under spectral
projections, Whether the domain requirement is
automatically implied in the case of closed operators
by energy-momentum conservation as formulated
here, we do not know; nor are we inclined to worry
about it, The condition that 4 be closed, or at least
have a closure fulfilling the other conditions, seems
essential for the proof in the Appendix of the relation
between (ii) and (iii); but we do not know whether it
can be relaxed. We also do not know whether the
statement (iii) = (ii) is true for nonseparable spaces.

At any rate, the conditions of the theorem seem
sufficiently general for most practical applications in
physics.

M. ALTERNATIVE FORMULATION
IN FOCK SPACE

Of course, nothing more has to be said in order to
apply the theorem to a Fock space. But in that case,
we have constructed another proof, for a certain class
of operators and forms, which we think instructive.
In the first proof, the nontrivial part was contained in
the spectral theory. In the second, the basic mathe-
matical tools are the nuclear theorem for tempered

DAVID N. WILLIAMS

distributions,! plus a theorem of Schwartz on the
structure of a distribution with support on a sub-
manifold of some R*.

For simplicity we put ourselves in the relativistic
Fock space F corresponding to spinless particles with
a single mass M > 0. The generalization of the
discussion to Fock spaces with denumerable numbers
of different types of particles with various spins and
nonzero masses is trivial. Thus,

where forn > 1,
3 3
3, = Sym [L2(£1__P_1 &Py , Rsﬂ)],

Wy w,,
o, = ofp) = (M? + p3t >0,

is the symmetrized Hilbert space of momentum-space
wavefunctions of n free particles.

Because each X, , for n > 1, is identified with an
L, space of functions, with a measure that “dominates”
Lebesgue measure (and is dominated by it: the zero
sets are the same), we can give a meaning to the
“support” of a vector feJ,. Namely, let # be any
element in the equivalence class of almost everywhere
equal functions that corresponds to f; we write
hef. Let supp & be the support of 4 in the usual
sense, i.e., the complement of the largest open set
of R*" on which h vanishes. Then define

supp f = ,P, supp h.

If f can be represented by a continuous function
h € f, we have (exercise for the reader)

supp f = supp h.

First we consider bounded operators on &. To
each bounded linear operator B, and to each ordered
pair of spaces (X, , J,), we associate the bounded
bilinear form

B,..(f,8) = {f, Bg),

where f€ X, and g € X,. We say that B,,, conserves
energy momentum if

an(f: g) =0

for all fand g having supports that nowhere satisfy the
energy-momentum conservation equations. More

explicitly, letP = (p,, - -, p,,)and Q = (q;, " * * , g,
Then B,,, vanishes if

(P, Q)esuppf X suppg

i1 1., Schwartz, Théorie des Distributions (Hermann et Cie., Paris,
1959), Vol. II, Chap. VII.
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implies that, for at least one u,

t(P, Q) =3 pt — > gt %0,

where all four-vectors are on the positive sheet of the
mass hyperboloid; e.g., p? = w(p,). We say that B
conserves energy-momentum if each B,,, does.*?

It is not difficult to see that this definition is equiv-
alent to the one given before (in the cases where it
applies). It is perhaps worth remarking that, for the
S matrix, the above statement of energy-momentum
conservation for the transition amplitudes is equiv-
alent to the analogous requirement on the observable
transition probabilities,’® as the reader can immedi-
ately see for himself.

In the next section, we prove again that if B con-
serves energy momentum, it commutes with the
standard unitary representation of space-time trans-
lations defined on . We do it by considering the
tempered distributions B,,, (P, Q), defined by re-
stricting B,,,(f, g) to pairs of functions in the appro-
priately symmetrized Schwartz spaces! (§,,, 8,) of
test functions which are C,, and decrease at infinity
with all derivatives faster than any inverse polynomial.
That we get a tempered distribution on the entire
subspace of test functions in S(R3™*+™) that are
symmetric in the first m and last n three-vectors
follows from!:

(i) the fact that B,, is a bounded bilinear form
(after accounting for the antilinearity of the first
factor)

1B, ) < C A1 g,
where || f|| indicates the scalar product norm in &;

(ii) the fact that the topology of 8, is finer than that
induced from the strong topology of ¥,,;

(iii) the “théoréme nucléaire’” of Schwartz.!®

If B conserves energy momentum, the tempered

distributions B,,, have their supports on the sets.

where
(P, Q) = 0.

12t will generally be obvious how to take into account the case
m or n = 0, corresponding to the vacuum with zero energy mo-
mentum, so we most often do not mention it explicitly.

13 | am indebted to D. Iagolnitzer for drawing my attention to this
point, as well as to the fact that translation invariance of the prob-
abilities does not imply translation invariance of the amplitudes
(although Poincaré invariance does).

1 This simple proof occurred to several other people before it
occurred to the author. In the literature, the question is raised
indirectly by E. H. Wichmann and J. H. Crichton [Phys. Rev. 132,
2788 (1963)), who give a Jucid discussion of the cluster decomposition
property which assumes that the S-matrix amplitudes are tempered
distributions. K. Hepp [Helv. Phys. Acta 37, 659 (1964)] states it as
a fact, without giving the proof. We have found references to the
proof in J. R. Taylor, Phys. Rev. 142, 1236 (1966), and D.
Iagolnitzer, ‘‘S-Matrix Theory and Phenomenological Space—
Time Description,” Saclay preprint (to be published).

15 1. Garding and J. L. Lions, Nuovo Cimento, Suppl. 14, 9
(1959).
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Our second method of proving the translation invari-
ance of B is to show that, on a sufficiently large space
of test functions, B,,, factorizes into a product of a
delta function for energy-momentum conservation
times a ‘“‘tempered distribution” on the manifold
defined by the conservation law. As mentioned in the
Introduction, the essential point is to show that
derivatives of delta functions cannot occur, because
they conflict with the boundedness of B,,, , considered
as a bilinear form.

Before passing to the theorem and proof, note that,
as far as the discussion so far has been concerned,
we have never used the fact that the bound C is the
same for each bilinear form B,,,,; we could just as well
have a family of positive constants C,,, which could
be unbounded for large (m, n), corresponding to a
class of unbounded operators on &. (The “number of
particles” operator is a simple example.) Actually,
we never need to know that B,,, is a bounded
bilinear form; we can do just as well with the weaker
statement that it is a bounded multilinear form which
satisfies

[Bualfr"* " frns 817 - 8 £ Cra IT Ifill llgsll5

with f;, g;€3,. Such forms can correspond to a
larger class of unbounded operators!®; or, on the
other hand, they might not correspond to operators
at all, not even between J, and X, .

In fact, the whole discussion goes through for
bounded multilinear forms of the type

Bml'--m,,nl"'m(fl"..’fr’ 81,"',33)’

where f;€X,, and g,e¥X, . Energy-momentum
conservation is defined in the obvious way, and we
still have the reduction to tempered distributions.
Although we have in mind no particular situation
where such generality might be useful, there is no
reason not to state our result for such cases. 4 priori,
as we see in Sec. V, we would have sajd that the
cluster amplitudes are an example of bounded
multilinear forms on Cartesian products of X, , if the
Hilbert-Schmidt theorems did not tell us that they
are really bounded bilinear forms.

IV. THEOREM FOR MULTILINEAR FORMS

The theorem below is stated for forms. If the
forms come from closed operators on ¥, it extends
immediately to the operators, by linearity and

16 The domain specified is translation invariant, but not invariant
under spectral projections. It follows from Theorem A, with Theo-
rem B in Sec. IV, that if the operators conserve energy momentum,
they are not closed on this domain.
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continuity, modulo questions of domain. Certainly
there is no problem for bounded operators.

Theorem B: Let T(b) be the unitary representation
of space-time translations on &, defined on each
¥ by

[T(b)f)P) = exp ( i ép, : b) ).

If B, ...;,
-
then

Bml---n,[T(b)fls T, T(b)gs] = Bml-“n,(fl’ e

To save writing, the proof is given in detail only for
bounded bilinear forms B,,,,. Very little modification
is needed to extend it to multilinear forms, and it will
hardly tax the reader to provide it himself.

Consider B,,, as a bounded linear transformation
B,,.: X,— X, . Because

T(5)BuT(B) ™ — Byn

ny -~ -n, 18 @ bounded multilinear form on
-, &, ) which conserves energy momentum,

s gs)'

is also a bounded (i.e., continuous) linear transforma-
tion of ¥, into X, , it suffices to prove

(f, T(0)B,,, T(b)7'g) = (f, Bmng),

where f and g are arbitrary elements of two sets of
vectors, each of which spans (by means of finite
linear combinations) a dense submanifold of 3},,,
X, respectively. In particular, we always choose
(f,8)€(8,,8,), with m and n running over the
positive integers.

In order to avoid a possible difficulty about de-
fining delta functions and their rth derivatives of the

form
3

I1 8"[#P, Q)l,

n=0
(where r is a “four-vector” with nonnegative integers
as components) at zeros of ¢ where the Jacobian
matrix has rank less than four, we make one further
restriction on the support of one of the elements, say
g, of (f, g). Namely, if n > 2, we demand that there
shall be no Q € supp g for which all corresponding
mass hyperboloid four-vectors ¢; are collinear; at
least two of the four-vectors are to be linearly
independent. Hepp'” has observed that even the
smaller subspace of functions in 8, with supports
having no two of the corresponding four-vectors
collinear (“disjoint velocities’) is dense in JX,. The
reader may easily verify that, with this restriction, the

17 K. Hepp, Commun. Math. Phys. 1, 7 (1965).
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Jacobian matrix evaluated for # = 0 indeed has rank
four.

Now we consider the tempered distribution
B,..(P, Q), restricted to the open set  of points
(P, Q) where Q satisfies the condition just mentioned.
The support of B,,, in Q is a C,, manifold, which we
denote suppq B,,,, of dimension 3 if m=n=1,
and of dimension 3(m + n) — 4 if m,n > 2. In the
latter case, suppgq B,,, is the set of simultaneous zeros
of the C, functions #(P,Q), which forms a C,
manifold by the implicit function theorem.!8 It is not
difficult to see that suppg B,,, can even be covered by
a finite number of coordinate neighborhoods.

Some theorems of Schwartz?® tell us that, on Q,
B,.. can be written as a finite sum:

B(P, Q) = 3 TT 6“W[1*(P, QIRY(P, Q),

r p=0

where R"  is a “tempered distribution” on suppgq B,,, .
Of course, if m = n = 1, the product in the expression
above runs only over 4 = 1, 2, 3, and the whole dis-
cussion simplifies because the manifold is just R3,

Finally, we smear with test functions (f,g)e
(8,., 8,) satisfying suppf x suppg < Q. This set
of pairs of test functions is invariant under any
translation [T(b)f, T(b)g]l. Since T(b) is unitary, and
since B,,, is a bounded bilinear form, we have

|Bual TB)S, T(B)E) < C NI S lIgH,

with the right-hand side independent of b.

To see the behavior of the left-hand side, we sub-
stitute the decomposition of B, (P, Q). Integrating
by parts, we get

B,..[T(b)f, T(b)g]
= | TT d°p; d°q; 3, 8[1(P, Q)IR};.(P, Q)
ow gt d b P)g(Q) )
(Ot*yw 1T o@)w(a))

1,7

x JT(=1)»

#=0

Suppose that some derivative of a delta function
occurs; that is, there is a term with r # 0 such that
R{7) # 0. Consider the terms of highest homogeneous
order in r. Carrying out the differentiation gives a

18 L. Auslander and R. E. MacKenzie, Introduction to Differ-
entiable Manifolds (McGraw-Hill Book Company, Inc., New York,
1963), Chap. II. Our excuse for sketching the proof of these well-
known facts about the mass shell is that it takes only a few
words, and hopefully makes things clearer. For more details, see K.
Hepp, Helv. Phys. Acta 36, 355 (1963); and 37, 55 (1964); H. P.
Stapp, ““Studies in the Foundations of S-Matrix Theory,” University
of California, Lawrence Radiation Laboratory Report, UCRL
10843.

19 L. Schwartz, Ref. 11, Vol. I, pp. 100-103, applied to Ex. 2, p.
114, and using the temperedness of B,,,.
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polynomial in b. We can always find a pair (f, g) in
our set (because it is dense) such that the coefficient
of at least one (&%) (bY)r---(b%™ in a term of
highest homogeneous degree is nonzero. As a function
of b, this term cannot be canceled identically by other
terms coming from r of the same or lower order. Thus
the left-hand side of our inequality contains a poly-
nomial of nonzero degree, which cannot be bounded
as a function of b, conflicting with the right-hand
side. We conclude that there are no derivatives of
delta functions.

But then the remaining delta function implies that

B, [T (), T(b)g] = Buulf, &),
which is what we set out to prove.

V. CLUSTER AMPLITUDES

To avoid a possible point of confusion, we follow
Wichmann and Crichton?® in emphasizing that a
large class of amplitudes, labeled in this case by
(m, n), has a cluster parametrization, which is given
by a purely combinatorial algorithm, having very
little to do with the mathematical nature of the
amplitudes involved. The cluster decomposition prop-
erty of the S matrix, for example, is logically
independent from the cluster parametrization. The
relation between the two is rather one of convenience;
the cluster property has an especially simple and
useful expression in terms of cluster parameters.
That, of course, is why cluster parameters are inter-
esting, but we do not assume here that the cluster
property holds, nor, for the moment, that we have
energy-momentum conservation. We seek only to
determine the general structure of the cluster ampli-
tudes for a family of bounded bilinear forms, in the
interest of having as much relevant information as
possible when we apply the theorem on translation
invariance.

To help in defining the cluster amplitudes, we
introduce some notation. To each bounded bilinear
form B,,, we associate a kernel defined by

Bo.(f. ) = f dP dQB,.(P, Q)F(P)g(Q),

where dP and dQ are the invariant measure elements
for X,, and X,. When fand g are in §,, and S, the
kernet B,, (P, Q) is the same as the tempered distri-
bution already considered; but it is also defined as a
respectable mathematical object for (f, g) € (,,, &,).
By the Riesz representation theorem, we may asso-
ciate L, (equivalence classes of) functions B,,(P, g) €
X, and B, (f,Q)eX, to any ge X, and fe Xk, ;

20 See Ref. 14.
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and we have

Bo(f,g) = f dPF(P)B,.(P, g),
= f dQB,..(f, Vg(Q).

In other words, we may “integrate” in either order.
Cluster amplitudes B¢, for a family of such kernels

may be defined recursively on (m, n) as follows?:
(i) if m or n is zero,

— R¢
an - an;

(ii) if m and n are nonzero,
B,.(P, Q) = X T] B:...(Ps, Q1),
FE

where I labels the partitions of the variables (P, Q)
into disjoint sets labeled I;, each of which contains
nonzero numbers m; and n, of p’s and q’s. Within each
partition, the natural order is preserved. Solving, we
may write, for s and n nonzero,

B,,(P, Q) = ;77(1) 11 B, (1, Q1)

where 7(1) is a numerical factor that does not concern
us.

As it stands, B¢ is well defined as a tempered
distribution, which contains an over-all delta function
for energy-momentum conservation if the B, do,
and as a bounded multilinear form for finite sums of
products of one-particle wavefunctions. In addition,
we can prove:

Theorem C: The cluster amplitudes B¢, for a family
of bounded bilinear forms are also bounded bilinear
forms. In particular, for m and n nonzero, B (P, Q)
is the kernel of a bounded linear transformation from
J, into X, .

For the proof, we may assume that m and n are
nonzero; otherwise the result is trivial. Let us consider
what meaning we may assign to B: (P,g) for
g € X, . The plan of the proof is to show that:

(i) this expression is well defined as an element of
X, and B (f, g), defined in this way for all (f, g) €
(X,,, &,), is a bilinear extension of the form already
defined if f or g is a sum of products of one-particle
wavefunctions;

(ii) the domain of the adjoint of this linear trans-
formation is all of ¥X,,, so that we know from an

i By analogy with the definition of truncated Wightman functions
due to R. Haag, Phys. Rev. 112, 669 (1958). Any other consistent
choice of momentum-dependent, but measurable phases in this
definition would be harmiess for our purpose.
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extension of the Hellinger-Toeplitz theorem?? that
B¢, is bounded.

From the definition of the cluster amplitudes, it is
enough to look at typical terms of the form

KXP, g) = f 4Q I Bo(Pr,» U@

To define such a term, we first partition Q into two
disjoint parts, Q;, and the remaining n — n, three-
vector variables, (Qy,, -, Q). Because it is an
L, function, we may consider

g[QIl ’ (Q[a o) = g(Q)

as the kernel of a Hilbert-Schmidt (H-S) operator
from X, _, into X, . Standard theorems on H-S
operators® tell us that the product of the bounded
linear operator B,, , and the H-S “operator” g is an
H-S operator, and that

Kml.n—m(PII: QI’ PR -)
= f dQBpn(Pr,. Q1)ElQs,, (Qu, - - )]

is the kernel of the resultant H-S mapping from
¥n_n, into X, . That means precisely that K, ,_, is
in the L, space of functions of 3(m, + n — n)
variables (always with respect to the invariant meas-
ure).

Thus, we may repeat the process, partitioning the
variables (P, Qz , " - -, Q) into two parts, Q 1, and
the rest, (PIl, Q 5" Q 1,)- Then we find that

Kml.mg,n—nl—m(Pll ’ PI: ’ QIa P ')
EfdQIgBm|n.(PI’ ’ QI.)Kml,n—m(PII ’ QI1 » T .)

is an H-S kernel from the space corresponding to
(P7,, Qy,, - - +,Qy,) into the space corresponding to
P;,, and hence L, in the space corresponding to all
the variables.

Continuing in this way, we find that KI(P, g) is L,
in the nonsymmetrized space corresponding to X,,.
It is clear that we have defined in this way a linear
map K': 3, — X, that is an extension of the multi-
linear form defined trivially for wavefunctions of the

type I1 £4Qy)-
Consider the adjoint of KI. By definition, a vector

fe X, is in the domain of the adjoint if there exists
a vector & € J,, such that

(f, K'g) = (hg)
32 F. Riesz and Sz.-Nagy, Ref. 10, pp. 305-306.

23 N. Dunford and J. T. Schwartz, Linear Operators (Interscience
Publishers, Inc., New York, 1958), Part II, Chap. XI, Sec. 6.
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for all g € X,,. In our case, we find that such a vector
exists for every f, so that the adjoint is everywhere
defined. The proof is to show that we can calculate
the scalar product on the left-hand side of the above
equation by integrating ﬁl,%t on the dP;, successively
in some order, then on dQ. By the same argument as
before, the P integration defines for us a vector 4;
our only problem is to see that we get the same
scalar product.

First®* we consider the scalar product (f, K’g) as
an iterated integral on P and Q, computed in the
order (beginning at the right)

fdP,l--~fdPIlfdQ,,---fth.

The Q integrations are defined as already described,
and we have used Fubini’s theorem to write the P
integration in iterated form. Next we note that after
doing the integrations on dQ,_ - - dQy, , we have to
integrate the kernel of the bounded operator B,,,
with a function that is L, in Q;, and then with a
function that is L, in Pj, for fixed values of the
remaining variables. We have already observed that,
from the definition of the kernel, we can interchange
the order of these two integrations. Thus, we may
integrate first on dP; dQ;  ---dQ;; and by our
previous argument, the remaining integrand is L, in
®Pr,> > Py, Qy), being a product of two L,
functions. By Fubini’s theorem, we now see that we
get the same scalar product if we do the dQy, inte-
gration last, integrating in the order

fdoz,fdPh > -fsz,fdQ,,,, .. -fth.

At this stage it is not difficult to verify that the
dP; integration can be interchanged successively with
each preceding dQ;, integration, because the P and
Q integrations are decoupled for i # L. Thus we
arrive at the sequence of integrations

f dQ;, f P, - - f dPy, . f Qg -+ f dQy, f dP;,.

Reasoning by finite descent, we repeat the whole
process; and at last we find that the scalar product can
be calculated by integrating in the order

fdedP,l---fdP,,,

where we have used Fubini’s theorem for the last
time to replace the iterated Q integrations by a single
multiple integration. Therefore, the adjoint of K has

4 The reader who treats the following argument as a recipe for
pencil and paper will find it straightforward.
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all of 3¢, for its domain, and we conclude that K7 is
bounded.

The original linear transformation was defined on
the dense submanifold of J, spanned by wavefunc-
tions of the product form. Thus the extension K7 is
unique because it is continuous and, in particular,
it does not depend on the order in which we choose to
do the original Q integrations. We are justified in
claiming that K7 is well defined for each 7, and that
the theorem is proved.

Note that by the same argument the converse of
Theorem C is also true. If the B, are bounded
bilinear forms, so are the B,,,.

Now apply Theorem B. It is clear that if the B,
conserve energy momentum, so do the B;, . In that
case, the cluster amplitudes are translation invariant.
We could reach the same conclusion directly from the
translation invariance of B,,, . '

VI. CONCLUSION

We have verified that energy-momentum conserva-
tion implies translation invariance in a fairly general
class of theories related to Hilbert space, and in
particular for the S matrix. We have also shown that
the cluster amplitudes for a family of bounded
bilinear forms can be discussed in the same frame-
work, as bounded bilinear forms.

As indicated in the title, our hope in this discussion
has been not so much to achieve the virtue of original-
ity as that of clarity. If we have not succeeded in even
this modest aspiration, we hope that the reader will
agree that it is no reflection on the utility or the
simplicity of the mathematical tools that we have

chosen.
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APPENDIX

Here we prove that E(A)A € AE(A) for all Borel
sets if and only if T(b)4 < AT(b) for all translations.?
The proof that the commuting of the spectral projec-
tions with 4 implies the commuting of the translations
with A4 is rather easy, given some basic results of
measure theory and the fact that A4 is closed. It is not
necessary in this case to assume that J is separable.

25 Note that T(b)4 < AT() for all translations implies by

definition that T(b)D(4) < D(A4), and hence from the group
property that T(b)4 = AT(b).
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The proof of the converse for separable X is a
little more delicate. Modulo a straightforward reduc-
tion, our discussion imitates an argument of Sz.-
Nagy,? used in the proof of Stone’s theorem to show
that the spectral projections commute with all bounded
operators that commute with all elements of the
corresponding continuous, one-parameter, unitary
group.

Our basic method of proving the two statements is
to show that each operator in one of the two sets,
labeled by Borel sets or by four-vectors, can be
approximated strongly by finite linear combinations
of operators in the other set, and to use the fact® that
if B, is a strongly convergent sequence of bounded
operators with bounded limit B, and if 4 is a closed
operator such that B, 4 < AB, for all n, then
BA < AB.

By means of the functional calculus for bounded
functions of commuting self-adjoint operators (such as
P,), the approximation of the operators in one class by
those of the other can be reduced to that of the ap-
proximation of the corresponding functions. Namely,
let A(p) be a bounded function on R*, measurable with
respect to the spectral measure, i.e., with respect to all
the measures (f, dE(p)g); and let 4,(p) be a uniformly
bounded sequence of such functions, which converges
to A(p) almost everywhere with respect to the spectral
measure. Then the corresponding bounded operators

o = [ i) dE(E)
converge strongly to®
b= [hp) aE )

In our case we have to consider two classes of such
functions, composed on the one hand of finite linear
combinations of characteristic functions of Borel sets,

1 if peA,

4lp) = {o it péA,

and on the other hand of finite linear combinations
of exponentials, exp (ib-p), ie., of trigonometric
polynomials. These functions are certainly bounded.
The characteristic functions are measurable with
respect to the spectral measure, because on locally
compact Hausdorff spaces such as R" the Borel sets
are measurable with respect to any measure; and
continuous functions, such as exponentials, are
measurable with respect to any measure on such
26 F. Riesz and Sz.-Nagy, Ref. 10, p. 383.

27 Ref. 10, p. 302.
28 Ref. 10, Sec. 126.
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spaces.?® Our problem is to show that sufficiently
many functions in each class can be approximated
in the sense described above by functions in the other
class.

To emphasize the point at which the separability of
J enters, we divide the work among three lemmas,
which together add up to the required results. We do
not assume that J is separable unless we say so
explicitly. But we always assume that A is closed.

Lemma 1: If E(A)A = AE(A) for all Borel sets,
then T(b)4A = AT(b) for all b.

Proof: We refer to a basic theorem of measure
theory, according to which any measurable function is
the limit of an everywhere-convergent sequence of
simple functions.®® A simple function is a finite
linear combination of characteristic functions of
pairwise-disjoint, measurable sets. The sequence can
be chosen to be uniformly bounded if the limit function
is bounded.?* Since a continuous function on R” is,
in particular, Borel-measurable, the result follows
from our previous remarks.

Lemma 2: If T(b)A = AT(b) for all b, then E(A)A <
AE(A) for all compact A.

Proof: We have to express £, for any compact A as
the limit of a uniformly bounded, everywhere-con-
vergent sequence of trigonometric polynomials. This
can be achieved by the argument of Sz.-Nagy men-
tioned before.2® First we take a decreasing sequence
{U,} of bounded open neighborhoods of A, such that

2 1 U, = A. Applying Urysohn’s lemma,3? we choose
a continuous, nonnegative, real function f, which is
unity on A, has support in U, (the closure of U,), and
is bounded by unity. Next, we choose an increasing
sequence of compact cubes [, < U,, such that

@, 0,=R% and we let g, be the continuous
periodic function defined by £, in O,,. The uniformly
bounded sequence {g,} converges everywhere to £, .

Finally, we apply Weierstrass’s approximation
theorem?®® to approximate g, uniformly to within 1/n
by a trigonometric polynomial ¢, of the same period.
The sequence {z,} is uniformly bounded and con-
verges everywhere to &, .

29 M. A. Naimark, Normed Rings (P. Noordhoff Ltd., Groningen,
The Netherlands, 1964), Appendix III.

8 P. R. Halmos, Measure Theory (D. Van Nostrand Company,
Inc., Princeton, New Jersey, 1950), p. 86.

8L Ref. 30, Ex. 2, p. 86.

32 Ref. 29, p. 28.

38 Ref. 29, p. 33.
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Lemma 3: Let X be separable. If E(A)4 = AE(A)
holds for all compact A, it holds for all Borel sets.

Proof: Every Borel set is “summable” with respect
to the spectral measure; i.e., (f, E(A)f) is finite for all
f € ¥. According to a basic result of measure theory,
if a set is summable with respect to some measure,
there is a denumerable family of compact sets A, = A
(which can even be chosen pairwise-disjoint) such that
theset R = A — U2, A, is a set of zero measure (the
difference of two sets is the set of points in the first,
not in the second). We want to find a similar family
with the property that the remainder R, which is
a Borel set in our case, has spectral measure zero, i.e.,
such that (f, E(R)f) = 0 for all f.

This equation is true for all vectors in X if and only
if it is true for a dense set in J, because E(R) is a
projection, hence bounded, hence continuous. Since
J is separable, we can choose a denumerable dense
set of vectors f;.

Corresponding to each f;, we choose a decom-
position of A as above, such that

Ri=A—-UAY
n=1
has measure zero for the corresponding measure. It
follows that
@ 0 o0
R=NR,=A-UUAY
i=1 i=1 n=1

is a Borel set which satisfies

fis E(R)f;) =0

for all f;, since any subset of a set of zero measure has
zero measure, and R < R,.

A denumerable union of a denumerable union is
still a denumerable union, so by taking all the compact
sets in each decomposition of A and relabeling them,
we get a denumerable family of compact sets A, < A
such that

E(A) = E(A — R) = E(El An).

Now we have only to note that the characteristic
functions of the increasing sequence of compact sets
Cy = UY_, A, are uniformly bounded and converge
pointwise to &,_r.

Thus, E(A) = lim E(Cy), and the lemma follows
from the property of closed operators that has been
the theme of our discussion.

34 Ref. 29, p. 129,
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