New mathematical proof of the uncertainty relation
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We present a new proof of the uncertainty relation for wave functions that are
absolutely integrable and have absolutely integrable Fourier transforms.

There are two kinds of mathematical argument for the
uncertainty relation in many of the quantum-mechanics
texts. One is an elegant argument based on the canonical
commutation relation (CCR) and the Schwartz inequality,
for wave functions in the domain of both of the operators
x and p. The other is an intuitively appealing, but hand-
waving argument, based on interference.

Although the two arguments are clearly related in con-
tent, since they both say something about Fourier trans-
forms, their mathematical contents are not identical. As it
is given in Merzbacher’s text,! for example, the interference
argument assumes that, say, the k-space wave packet is
appreciably nonzero only in a region of size Ak, and that
there it is continuous and has slowly varying phase. Then
rapid oscillations in the integrand of the Fourier transform
give destructive interference and no appreciable contribu-
tion for the x-space wave function outside a region of size
roughly Ax ~ 1/Ak, centered near the average position of
the x-space wave packet.

In this note, we abstract what we believe to be the
mathematical content of this argument, and show that it
can be put on a footing of the same generality, rigor, and
simplicity as the argument based on the CCR.

Let f(x) be an absolutely integrable function of one real
variable; i.e., § [f] dx < =, where the notation indicates
integration from —e to +«; and let

Jk) = (27r)—'/2fe-kaf(x> dx (1)

be its Fourier transform. We assume that £ is also absolutely
integrable Although it plays no technical role in our dis-
cussion, let us mention that, by the Riemann- Lebcsgue
lemma, 2 this means that both fand f are continuous, uni-
formly bounded functions that vanish at infinity. We believe
the discussion below justifies the assertion that these two
properties of a wave packet, that it simultaneously be ab-
solutely integrable and have the smoothness of the Fourier
transform of an absolutely integrable function, are the
mathematical analogs of the requirements that the wave
function be appreciable only in a finite region, say in k
space, so that a rough meaning can be given to Ak, and have
sufficiently slowly varying phase, so that interference in the
Fourier transform produces a roughly defined Ax obeying
the uncertainty relation.

As measures of the spreads in the wave packets fandf,
we introduce the following notion. Let B be a region of in-
tegration in x space with a finite size Ax, say, an interval
or a union of disjoint intervals.? Then if we integrate over
B, we get a fraction of the integral over the whole real
line

frwla=0-0 frwlia @

where 0 < (1 — €) < 1. We then say that we have captured
a fraction 1 — € of the wave packet f within a spread Ax.

606 Am. J. Phys. 47(7), July 1979

0002-9505/79/070606-02$00.50

The extreme value 1 — € = 0 corresponds to a situation
where f vanishes (almost) everywhere in the region of in-
tegration B, while the other extreme 1 — ¢ = 1 corresponds
to one where f vanishes almost everywhere outside the re-
gion B. As we indicate later, the practical idea is to avoid
the extremes and choose the fraction to be some convenient
number, such as 1 — e = !/, or 3/, and then choose a region
of integration B that captures 1 ~ ¢ of the wave packet
within the smallest possible spread,

Ax = j; dx. 3)

To amplify a bit, as long as we choose a fixed € so that 0
<1 — €< 1, thereis always at least one finite region of in-
tegration B for which Eq. (2) is true; e.g., f ¢ |f] dxisa
monotone, nondecreasing function of R that takes all values
between O and [ |f] dx. It is a fact that there is a minimum
value of the spread Ax in Eq. (3) over all regions of inte-
gration B (not necessarily simple intervals) that satisfy Eq.
(2);and it is a fact that there is at least one region of inte-
gration B for which the minimum Ax corresponding to a
given ¢ is actually achieved.?

We do the same thing in k space, picking a reglon of in-
tegration B of finite size Ak that captures | — ¢ of /:

f, Vwlak=a-v fpwla @

Ak=j;dk. (5)

The fixed fractions 1 — e and | — € may be chosen arbi-
trarily and independently of each other. Of course, if the
wave packet were to be nonvanishing over a large region in
x and/or k, we would find that choosing 1 — ¢ and/or 1 —
€ close to unity forces a large value for Ax and/or Ak. For
example, if we choose f'to’be a finite linear combination of
polynomials times Gaussian factors with varying centers
and widths, then f'is a finite linear combination of polyno-
mials times Gaussians times simple phase factors to account
for the mean locations in x space; and neither f nor f van-
ishes on any nonempty open set of the real line; for other-
wise, as entire functions, they would have to vanish identi-
cally. In such a case, both Ax and Ak diverge as € and ¢
become small; and the product AxAk becomes far larger
than one would expect for the minimum order of magnitude,
unity, for the uncertainty product.

Although we mlght be able to capture all of one ar the
other offandf(e or ¢ equal to zero) in a bounded region,
it is impossible in principle to capture all of both in bounded
regions, because if one of the two functions vanishes outside
a bounded region, the other is an entire function, and can
vanish only at isolated points of the real axis, unless both
functions vanish identically.

Thus, we find it prudent not to be so greedy as to try to
capture all of the two wave packets (or at least not all of

© 1979 American Association of Physics Teachers 606



both of them) within a finite spread, but rather to choose
some compromise which captures a reasonable fraction
within a sensibly small spread. This formulation exhibits
the well known, intrinsic imprecision in the definition of Ax
and Ak, which is inherent in the interference argument, and
which is often a source of confusion for beginning quan-
tum-mechanics students.3

Having emphasized the element of choice in the defini-
tion of the spreads Ax and Ak for given fand f, we now give
a simple proof and mathematical statement of the uncer-
tainty principle, which builds in that freedom of choice. The
essential technical assumption is that both f and f be ab-
solutely integrable. Then we can write down the two ele-
mentary inequalities

j;|f|deAxsup|f|

< Ax (27r)*1/2f|f|dk, (6)
jt |f] dk < Ak sup |[f]
B k

< Ak 2m)-12 fmdx, )

Multiplyihg these together, and using Eqs. (2) and (4), we
get

2m(1 — e)(1 — &) < AxAk. 8)

The argument generalizes trivially to functions f(x,, x»,

.» X,) which are absolutely integrable in x; for fixed x,

., X, and which have one-dimensional Fourier transforms

f(k,, X3, . . ., Xp) that are absolutely integrable in k; for

fixed x,, . . ., x,, or to the integrals of fand f over x,, . . .,
Xx,, if one assumes the natural integrability condition.

Another variation of the argument for n dimensions is

to assume integrability in both x space and k& space with

respect to d"x and d”k. The sizes of the regions of inte-
gration B and B become their n-dimensional volumes

A!{‘.=fd"x, AVk=_fdnk. (9)
B B

If we define | — e and 1 — € by the n-dimensional analogs
of Egs. (2) and (4), the uncertainty relation reads

@2m)n (1 — e)(1 — &) < AV AV, (10)

For example, in three dimensions, if B and Bare spheres
with radii Ax and Ak we get

[(9/2)x(1 —e)(1 j-é)]'/3SAxAk. (11)

To conclude, let us emphasize that we do not in the least
claim that our discussion is better than the CCR discussion.
It is simply different. One difference is that the CCR
argument applies to a smaller class of wave functions, as we
show in the Appendix. Nor do we advocate that our dis-
cussion replace the intuitively instructive interference
argument. We do feel that it is a precise staterent of that
argument, and that it can claim a certain simplicity.
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APPENDIX

Although we feel that the following discussion is too
technical to be appropriate as part of a lecture in a typical
first year graduate.level quantum mechanics course, it is
certainly not too sophisticated for such students; and parts
of it might be useful as homework exercises on Hilbert
spaces and Fourier transforms.

We want to show that the CCR argument assumes a
smaller class of wave functions than our abstract interfer-
ence argument. The CCR argument assumes that f is
square integrable, so that it is a physical wave packet, and
that xf'and —if” are square integrable, so that the expec-
tation values of x2 and p2 exist. Thus, (1 + |x|)fis square
integrable. Since

f=A+x)r A+ xS, (12)

and (1 + |x|)~! is square integrable (in oné dimension), it
follows by the Schwartz mequallty that fis integrable. We
can apply the same argument in k space, because if f'is
square integrable, so is f; and the square integrability of —if’
means that of kf. Thus, the hypotheses of the CCR argu-
ment imply our hypothesés that f and f are integrable.

The converse, however, is false. Even if we make the
stronger assumption that fand f are not only integrable, but
square integrable, which is necessary for f to be a physical
wave packet, it is not always true that xf and kf are square
integrable. A counterexample is the function

f=(1+x2)-(+)/2 0 <e< 1. (13)

It is square integrable, so f is, too; and itis integrable. Be-
cause f can be written in terms of a Bessel function,

J=20=0T[(1 +€)/2]7'[k| 2 Ky (Jk]). (14)

which is continuous and exponentially decreasing, it is also
integrable. Now —if” is square integrable, but xf is not.

Thus, the one-dimensional wave functions such that f,
xf, and —if” are normalizable form a smaller class than
those for which f and f are both integrable and square in-
tegrable.

'E. Merzbacher, Quantum Mechanics, 2nd ed. (Wiley, New York, 1970),
pp. 17-22 and 24.

2The proof of the Riemann-Lebesgue lemma is nontrivial, and there is no
reason why most of us, as physicists and physics teachers, should feel
an obligation to be familiar with it. As people who operate with math-
ematical ideas, however, we should feel no reluctance to understand
what it states and to exploit its consequences, as does, to cite a con-
spicuous example, the aeronautical engineer M. J. Lighthill in his
chapter on “The asymptotic estimation of Fourier transforms™ in
Fourier Analysis and Generalized Functions (Cambridge University,
London, 1960).

3To put it in precise language, B is a Borel set with finite Lebesgue mea-
sure.

4There may in principle be several regions of integration that give the same
minimum spread for a fixed €.

5There is an analogous imprecision in the CCR argument, having to do
with the arbitrary choice of the root-mean-square deviation rather than
some other positive moment as the measure of spread.
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