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Abstract

We show that the coincident instanton—anti-instanton pair configuration in the
(140)-dimensional, double well model, defined according to a theory presented
elsewhere [1], is an effective critical point of the Euclidean action if it exists and
has regularity properties; and is stable if it is also unique. On the way to showing
stability we prove a positivity preserving property of the (1+0)-dimensional double
well classical field equation with external sources.
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1. Introduction

In ref. [1] we propose a definition of nondilute, multi-instanton configurations for
the double well model,' which is induced by the ambiguities in the usual collective
coordinate parameterization of the Euclidean path integral, and which is aimed at sys-
tematizing the asymptotics of small /2. By the double well model, we mean a Euclidean
¢* field theory in (1 +0)-dimensional spacetime, or its equivalent one-dimensional
quantum anharmonic oscillator.

Multi-instantons are finite action solutions ¢°(¢) of the classical field equation,

—§* — 1P+ AP = Y @l >0, (1.1)
i=1

with sources that are linear superpositions of zero mode eigenfunctions, centered at
times s = (sl, - sn) s

£5(f) = sech [M (t-s,) /\/E] , (1.2)

subject to exactly n orthogonality constraints

/ @ E(Ddt=(¢°, E5)=0, i=1,..,n. (1.3)

The Lagrange multipliers a; are to be determined by the constraints in (1.3).

We call ¢ a multi-instanton, the number n the instanton number (the abstract num-
ber of kinks plus anti-kinks associated with any finite action configuration® via orthog-
onality with zero modes), and the components of s the instanton and anti-instanton
positions.

From now on, the word instanton is used generically either for instantons or anti-
instantons.

In saddle point calculations based on multi-instantons, there comes a stage where
an integration over d"s occurs, with a factor exp[—.S(¢*)/h] depending on # and s,
where ' is the action

o [ 2 2\ 2
S(¢)=/ %+§<¢2—"7> dr. (1.4)

We use the language effective critical points for the extrema of S(¢*) in the variable s.
In that language, certain departures from the dilute gas approximation result from sta-
ble, effective critical points at values of s where not all of the instanton positions are
far separated.

In this paper we investigate the simplest of these nondilute configurations, the coin-
cident instanton—anti-instanton pair, ¢* with s = (sl, s2) and s; = s,. Withreasonable

Because this paper is a sequel to [1], we have not repeated the list of references given there on the
double well model, the collective coordinate formalism, and other approaches to multiple counting and
approximate classical solutions.

20r indeed with any configuration in the path space.



technical assumptions, we show that such configurations are indeed effective critical
points. The argument may admit generalization to configurations for any #, not just
n = 2; but we have not carried that through.

We show further that, if the solutions for n = 2 are unique, the coincident pair is
stable, in which case it would give rise to a correction to the dilute gas. We do not have
a generalization of this stability result to larger #; and we also do not have a uniqueness
theory for multi-instantons.

The stability result is based partly on a positivity property of the equation

—p-1rp+ip’ =1, (1.5)

where f is a real, nonpositive or nonnegative external source, a sufficiently smooth
and rapidly decreasing function of 7. In ref. [3] it was shown under broad technical
assumptions that nonlinear equations for ¢(x) with x € R” of the form

(-A+i*)p+F(p)=f, u*>0, (1.6)

are positivity-preserving when aF(a) > 0 for all values of a. That is, if f is always
nonnegative or nonpositive then so is ¢.

Equation (1.5) does not have that form, and yet there is a positivity property if we
restrict to solutions ¢ that obey the same boundary conditions at # = +oco. That is,
¢ = 0as|t| - Oand ¢ — +;4/\/E at both ends 1 = +o0, or ¢ — —,u/\/; at both
ends; ¢ has even instanton number.

Since the style of this paper is to assume any reasonable technical properties, we
do not give a rigorous proof; but we state the lemma and give a short proof containing
the key ideas in sect. 2.

Much of the argument in this paper depends on coincidence properties of the pro-
jector onto the span of zero modes, which can be worked out explicitly. The results
are summarized in sect. 3.

Section 4 contains the proof that the coincident pair, if existing and regular, is an
effective extremum of the action; and in sect. 5 we supply the proof that the further
assumption of uniqueness implies stability.

Finally, in sect. 6 we comment briefly on the significance of the pair configuration,
in view of a numerical study which is a sequel to this paper [2].

2. Even Instanton Number Preserves Positivity

The two possibilities for finite action and even instanton number are ¢p — +u/ \/Z
as |t| —» oo. Let us define y, respectively, by

b=xxu/Va. @.1)

Then y, y — 0as || - oo. The field equation (1.5) may be rewritten:

—)Z+2,u2)(+i)(3=f¢3,u\/;)(2. 2.2)

We prove the following:



Positivity Lemma. Let ¢ be a sufficiently regular, finite action solution of (1.5), with
boundary values having the same sign at t = +o0. Let y be defined by (2.1), according
to the boundary conditions. Then if f is positive or negative semidefinite, sufficiently
smooth, and sufficiently decreasing at |f| = oo, y is also semidefinite with the same

sign as f.

The proof goes in two steps:

First, if f is negative respectively, positive, then the right hand side of (2.2) is
negative, respectively, positive semidefinite, and the left hand side comes under the
theory of eq. (1.6) quoted earlier. It follows from Theorem 5 of ref. [3] that y has the
same sign as f, with regularity and fall off restrictions on f much milder than we need
in this paper (f may be a measure in the Sobolev space H).

Second, if f is positive, respectively, negative, we consider eq. (1.5) directly in-
stead of (2.2); and we do the standard trick of mapping the problem onto a classical
mechanics problem in one dimension. Thus, let u = A = 1, and let x(¢¥) = ¢(¥) rep-
resent the position of a classical particle of unit mass with the double hill potential
energy

Ux)=—-(x>=1)*/4, (2.3)

and with a time-dependent, external force, — f(¢). Then (1.5) describes such a particle
with mechanical energy
E() =52+ U(x). (2.4)

The boundary conditions are such that E(+o0) = 0.

We discuss the case f > 0 and x(+00) = +1, leaving the other case to the reader.
Then the external force is leftward. The particle cannot start out from x = +1 at
t = —oo towards the left, because the always leftward external force would give it
nonzero mechanical energy at the left peak; and it would escape to x = —oo att = +o0,
violating finite action. If it starts to the right, it must stay forever to the right, because
if it ever crosses the rightmost peak moving towards the left, it will again escape.

Therefore, x > 1 and y > 0.

The technical requirements to make the second part of the argument rigorous are
enough smoothness of ¢ to be able to discuss the classical turning points, and enough
fall off and regularity of f to be able to discuss the energy integral from t = —oco for
the external force. Those properties of f are amply obeyed by the C*, exponentially
decreasing source we use in this paper.

In fact, the classical mechanics analogy could have been used to give the result of
the first part of the proof, aside from the technical conditions accessible through [3].

3. The Source Projection at Coincidence

Major tools in the analysis are the L%(—co, o0) orthogonal projection operator P*
onto the span of &1 and £%2 (or of &% and dé?/da, in case s; = s, = a), and its
derivatives with respect to s.

Let s; # 55, and define

ne =2 x&) /Ny, 3.1



where N, is a positive normalization chosen so that (n,, #,) = (n_, n_) = 1. Of
course (#,, n_) = 0. The only property of £°(t) = £(¢ — s) that we need in this section
is that & is an even, L? function with sufficiently many derivatives also in L2.

It saves writing to assume, with no loss of generality, that

1
€= (& )2 =1. (32)
Let us also define 5 5
=—-—, 33
d0sy 05y 3-3)
which is twice the derivative with respect to s, — s; in the coordinates (s; +55)/2,

Sy — 87.

It is sufficient for us to evaluate everything at s; = 0, and we shall then simply
write “lim” for the limit s, — 0. The following comes from straightforward Taylor
expansions, becoming an order of magnitude more tedious with each derivative:

lim Dy, =1lim Dy_ =0, (3.5)
lim D%, = &+ ¢|I€|1%, (3.6)
. EIEN% + ENENP

limD%y_ = —2=>" >0~ (3.7)
me EE

All limits may be taken as strong limits, if £ has enough strong derivatives. When ¢ is
proportional to the zero mode eigenfunction (1.2), it is C* in the strong sense.

Now let P, DP, and D? P be the limits of the projection operator and its derivatives
P$, DPS, and D?>PS, as s, — s, = 0. We find

P=loel + Lo, (338)

DP =0, (3.9)
)

o= ig+giarel + HEEDE Lhe o)

The analogous results hold when s, — s # 0.

4. Coincidence is Critical

We assume a translation covariant family of finite action solutions ¢* to (1.1) and
(1.3) exists for n = 2, labeled continuously and differentiably by s = (s, 5,). Transla-
tion covariance means

¢l12)(t — a) = lrteta). @1

The system of equations (1.1) and (1.3) is translation covariant, and if ¢* is a solution,
50 is ¢p517@5274)_ The action is translation invariant, so S(¢*) depends only on s, — 51,

4



an2d criticality and stability may be discussed entirely in terms of the derivatives D and
D-.
Consider

DS(¢*) = (J(¢"), D$*), 4.2
where we define

J(@) =~p+id’ =i’ 4.3)
Let E® = I — P? be the projection operator complementary to P°. Then the orthogo-
nality condition (1.3) can be restated:

¢ =E'¢’, (4.4)

which is to be interpreted in a dual sense because ¢° is not in L2, due to its approach
to i,u/ﬁ at |[t| = oo. The field equation (1.1) implies

E*J(¢") =0; 4.5)
i.e., E’ kills the source of ¢°.
Note that
D¢* = D(E*¢®) = (DE®) ¢* + E*D¢’, (4.6)
(J, D¢*) =(J, (DE*) ") +(E*J, D¢’) = (J, (DE") ¢’). 4.7)
Then (3.9) implies that
lim DS (¢*)=0. 4.8)
Sr—=>8)

To summarize, the essential features of the argument were the existence of a trans-
lation invariant, regular family of finite action solutions ¢*, and property (3.9) of the
source projector. The analog of (3.9) for projectors P* with s = (sl, cees sn) should be
straightforward to discuss. A sufficient condition for a critical point, under the same
regularity and translation covariance assumptions, would then be the vanishing of the
gradient of P* with respect to the difference variables formed from s.

5. Uniqueness Gives Stability

The argument for stability is more involved. First, we get a convenient expression
for the second derivative:

D>S(¢*) = (DJ(¢°), DP*) + (J (¢*), D*¢*). 5.1

Let us abbreviate ¢ = ¢°, J = J(¢*). Upon twice differentiating the identity for
all s, (J, ¢) =0, we find

2DJ, D) + (D*J, ¢} + (J, D*¢) =0; (5.2)
SO
D%S = —(DJ, Dp) — (D*J, ¢)

_ 1y prgy - Lip G:3)
_2<J7D¢> 2<DJ7¢>7
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where the last line comes from adding the preceding line to (5.1).
Let us now insert ¢ = E¢ and J = PJ into the two terms above, and use PE =
EP =0to get

(J, D*¢) =(J, (D*E) ¢ + 2(DE)D¢), (5.4)
(D*J, ¢) = ((D*P) J +2(DP)DJ, ¢). (5.5)

Ats; = s,,since DE = DP = 0, we get

(J, D*¢y =—(J, (D*P) ¢}, (5.6)
(D*J, ¢y = ((D*P) J, ) = (J, (D*P) $): (5.7)

soats; = s,
D>S =—(J, (D*P) ¢). (5.8)

At sy = s, = 0, assuming ¢* is smooth enough in s, the source is a finite linear
combination of & and é:
J =aé+pé. (5.9

Thus, from eq. (3.10) for D> P, we find

DS = —alé, $) - 5 9). (5.10)

Up to now, we have not assumed uniqueness, for a particular choice of boundary
conditions at |f| = co. Since we are assuming two and only two values s; and s, for
which the orthogonality condition (1.3) is obeyed (which means one zero of order two
when s; = s,), the boundary conditions on a finite action solution of (1.1) are of the

same sign type. We take ¢ = u/ \ﬁ at |t| = oo, leaving the other case to the reader;
and we assume there is but one family ¢* of solutions to (1.1) and (1.3) with n exactly
2.
It follows at s; = s, = O that f§ = 0, for if the solution ¢(¢) is not even then
¢_(1) = p(~1) obeys _
J(p) = al - p¢, (5.11)

as well as the two constraints {¢_, &) = (¢_, ef) = 0 and the boundary conditions.
That violates uniqueness.
Notice that
. 42
) (5.12)
da a=0

is nonvanishing, because by hypothesis the function (£, ¢) has a single zero of order
two at a = 0. As |a| — oo, that function is positive, because it is the convolution of
the positive, zero mode pulse & with a function ¢ that is positive and bounded away
from zero at |¢t| = oo.Therefore, (£¢, ¢) is non-negative; and

(E, ¢p)>0. (5.13)



The conclusion so far is that, if the multi-instanton pair configurations for positive
boundary conditions are unique, then @ < 0 at s; = s, means stability (from (5.10),
D?S > 0), while & > 0 means instability.

Here we invoke the positivity lemma from sect. 2. If @ > 0, then by inspection
of the field equation (5.9), with § = 0, it follows that the source af is positive; so

¢ > u/\/4> 0forall £, and
(¢, 8)>0. (5.14)

Hence, the orthogonality constraint cannot be satisfied, a > 0 is ruled out, and the
solution must be stable.

To summarize the argument for stability, we found that the existence and regularity
of a translation invariant family of finite action pair solutions of (1.1), (1.3) implied
criticality at coincidence and led to a simple form in (5.10) for the second derivative
of the action, that the additional assumption of uniqueness led to the absence of & in
the source, that (£, ¢) had to be positive for positive boundary conditions at || = oo,
and that, thanks to the positivity lemma, the orthogonality constraint could then be
satisfied only in the stable case.

6. Discussion

In a sequel to this paper [2], we present a numerical study of the nondilute pair
configuration which demonstrates its existence and its stability at coincidence. There
is no uniqueness proof, but also no indication of nonuniqueness. The action of that
family of solutions at coincidence turns out to be

S, (coinc) = 0.82047 S,(dilute), 6.1)

where .S, (dilute) = 2.5 is the action of a far separated pair, double the one-kink action.
Our definition of the multi-instanton pair therefore has a solution that agrees with the
general recognition that nondilute instantons in the double well model attract [4].

Thus we expect the leading coincident pair correction to the dilute gas, propor-
tional to exp[—S,(coinc) /)], to be somewhat larger than second order in the leading,
exponentially small one-instanton behavior. This kind of systematics is problematic
in that there will be higher “loop” corrections that are powers of # (or the coupling)
times the one-instanton exponential,> much larger than the weak coupling exponential
squared.

Nevertheless, the square of the one-instanton exponential has been kept in the past
[5,6] as the next step in the exponentiation to the dilute gas; and that is the role that we
conjecture for the coincident pair. It should exponentiate into another constituent of the
instanton gas, including far separated single instantons and coincident pairs. Indeed,
it is tempting to conjecture a similar role for the n-instanton, coincident configuration,
in a dilute gas of single and coincident multi-instantons of all orders.

3See remarks by Zinn-Justin [4, p. 126], on the necessity for partial summation, and the example of the
ground state energy [4, p. 131].



Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

D. N. Williams, “Instanton Gas Parameters in the Double Well Model”’, Mathemat-
ical Problems in Theoretical Physics, Proceedings of the VIth International Con-
ference on Mathematical Physics, Berlin (West), August 11-20, 1981, R. Schrader,
R. Seiler, D. A. Uhlenbrock, eds. (Springer-Verlag, Heidelberg, 1982), pp. 295—
297.

D. N. Williams, “Computational Solution for the Double Well Nondilute Pair Con-
figuration”, University of Michigan, Randall Laboratory of Physics Preprint UM-
TH-89-07, 1989.

J. Rauch and D. N. Williams, “Topics on Euclidean Classical Field Equations with
Unique Vacuua”, Feynman Path Integrals, Proceedings of the International Collo-
quium on Feynman Path Integrals, Marseille, 1978, S. A. Albeverio, ed. (Springer-
Verlag, Heidelberg, 1979), pp. 189-202.

J. Zinn-Justin, “Multi-Instanton Contributions in Quantum Mechanics”, Nucl.
Phys. B192 (1981) 125-140.

S. Coleman, “The Uses of Instantons”, The Whys of Subnuclear Physics, Proceed-
ings of the 1977 International School of Subnuclear Physics, Erice, July 23-August
10, 1977, A. Zichichi, ed. (Plenum Press, New York, 1979), pp. 812—-820.

E. Gildener and A. Patrascioiu, “Instanton Contributions to the Energy Spectrum
of a One-Dimensional System”, Phys. Rev. D16 (1977) 423.



