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Abstract

The relativistic transition amplitude for any two-body reaction involv-
ing only particles of nonzero mass but arbitrary spin is decomposed in
terms of scalar amplitudes that are regular functions in the space of scalar
invariants at points corresponding to regular points of the transitionmatrix
elements inmomentum space, on themass shell. Detailed formulas for the
scalar amplitudes in terms of the original scattering matrix elements are
given. The development is in the framework of analytic S-matrix theory,
and is based on a partial generalization of the Hall-Wightman Theorem.
The results hold on the complete (multisheeted) domain of regularity of
the scattering amplitude.
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1 Introduction

The reduction of a Lorentz-invariant S matrix for arbitrary spins and nonzero masses
into a set of scalar amplitudes was discussed in an earlier paper [1], within the frame-
work of “analyticS-matrix theory” [2–4]. There are, in general, many possible ways to
do such a decomposition. It may happen, however, that for a particular decomposition
the scalar amplitudes will have poles at certain positions, even if theS-matrix elements
themselves are regular at the corresponding points. These singularities are in a sense
spurious, reflecting only the nature of the decomposition; such singularities have been
called “kinematical singularities” [2]. The object of this paper is to give an explicit
decomposition that is free of kinematical singularities, for the case of two-particle to
two-particle transition amplitudes for particles with arbitrary spins and arbitrary, but
nonzero, masses. One of the motivations for this work is to allow theoretical consider-
ations based on the Mandelstam representation to be carried over to this general spin
case.

For the case of multiparticle processes involving photons and spin- 12 particles,
Hearn [5] has given a decomposition that yields for each term of the field theoretic
perturbation expansion a set of scalar amplitudes free of kinematical singularities. In
the present work no reference to field theory or perturbation theory is made.

A decomposition for the simple special case of �-N scattering has been known for
some time [6]; and a decomposition for the nontrivial special case of N-N scattering
has been given by Goldberger, Grisaru, MacDowell, and Wong [7]. Their proof that
the corresponding scalar amplitudes are free of kinematical singularities depends on
rather awkward manipulations involving a partial wave expansion, and on a certain
unproved generalization of the Hall-Wightman Theorem [8]. The more general dis-
cussion given here is more direct and is based on a study of the nature of domains for
which generalizations of the Hall-Wightman Theorem can be proved.

The present paper gives the detailed arguments that were promised earlier [1]. Re-
cently a paper by Hepp [9] on the same subject has appeared. His paper contains the
generalizations of the results of Hall and Wightman needed in our discussion. Con-
sequently our independent proofs of these generalizations will be omitted and Hepp’s
terminology adopted wherever convenient.

The main results obtained in this paper overlap to a considerable degree results
obtained independently by Hepp. Our methods, however, are rather different from
his. Moreover, they are based on elementary considerations and are self contained,
in the sense that they do not depend on mathematical results not generally familiar
to theoretical physicists. It is therefore believed that the present version should be a
useful complement to Hepp’s mathematically more sophisticated approach.

Our considerations deal only with the two-particle to two-particle case, whereas
Hepp has given sufficient conditions for the existence of a global decomposition also
in the general multiparticle case. In general, Hepp’s results are in the nature of an
existence proof, with the precise form of the decomposition not exactly specified. In
the special case of two-particle reactions on the mass shell, his results do specify the
decomposition in principle, but certain implicit relations are left unsolved. In our
results all implicit relations are eliminated to give a specific decomposition, and we
also obtain inversion formulas giving explicit expressions for the scalar amplitudes in
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terms of the original matrix elements.
Care has been taken to show that our results are valid not only on schlicht domains

restricted to the mass shell, but also on locally schlicht domains over the mass shell.
In Sec. 2 the connection between theM-function formalism for theS-matrix intro-

duced by Stapp [3] and the Dirac-spinor formalism is briefly reviewed. Sections 3 and
4 are devoted to the construction of a basis for matrices in the spin space. In effect, this
“spin basis” transforms anM function into an equivalent tensor field under the proper,
homogeneous, complex Lorentz group, +. The spin basis is combined in Sec. 5 with
tensor polynomials constructed from the available momemtum vectors to form a basis
for the M function, and formulas are given for the corresponding scalar amplitudes.
The derivation of the conditions under which kinematical singularities do not occur is
given in Sec. 6, along with a discussion of the concepts required for the definition of
holomorphic, covariant functions on domains over the mass shell. In Sec. 7 it is con-
cluded that the conditions for a holomorphic decomposition are satisfied in analytic
S-matrix theory.

Appendix A1 is devoted to the development of a generalized spinor calculus for
the group +. It is a review of properties of representation matrices for the group,
of details of Clebsch-Gordan anaysis, and of properties of irreducible tensors that are
useful for understanding the text. In Appendix A2 some additional properties of the
spin basis constructed in Sec. 4 are described, and in Appendix A3 a pertinent example
of a kinematical singularity is given. Appendix A4 gives a proof that the map from the
space of three complex four-vectors to the corresponding space of scalar invariants is
open, extending in this special case a result of Bargmann, Hall, and Wightman.

The amplitudes constructed in this paper are in general not independent when there
are symmetries underC , P , and T . However, such symmetries do no affect the question
of kinematical singularities.
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2 TheM Functions

For calculations in analytic S-matrix theory, where the dynamical content comes from
analytic properites and no fields are involved, it is convenient to use the M-function
formalism introduced by Stapp [3]. TheM functions have just the minimum number
of spinor components, whereas the corresponding quantities coming from Dirac fields
have more than needed to describe the spin multiplicity. Moreover, theM functions
have simple covariance properties; and no crossing matrices are required to obtain the
correspondingM functions for related processes reached by analytic continuation.

Because the existing discussions of these functions are quite general and some-
what abstract, it may be useful to review the connection between theM functions and
the standard field theoretic quantities of perturbation theory in a simple case [1, Ap-
pendix II]. Such an example can serve to make plausible, by analogy with field theory,
why analytic properties are assigned to theM functions rather than to some other func-
tions that could be constructed from the S matrix. It should be emphasized, however,
that such an analogy was not the original motivation, either for the assignment of ana-
lytic properties, or for the general construction of theM functions. TheM functions
are constructed directly from the principles of analytic S-matrix theory as formulated
by Stapp [3], and they have a well defined and simple algebraic connection to the S
matrix no matter how it is parameterized in terms of the spins and momenta of the
particles [1, 3].

For the scattering of a spin- 12 particle withmassm and initial and final four-momenta
ki and kf on a spin-0 particle with mass m0 and initial and final momenta pi and pf ,
the S-matrix elements can be expressed as

R ≡ S − I ,
Rab = ūa(kf )  ub(ki) ,

(2.1)

where a, b = ± 12 label the final and initial spin states. For each value of a and b, ūa
and ub are four-component row and column vectors, respectively, the ub(k) being two
independent solutions of the free-particle Dirac equation and the ūa(k) the correspond-
ing Dirac adjoints. The four-by-four matrix  depends on all of the momenta. The S
matrix is normalized by the following choice of energy factors:

I ≡ �ab �(kf − ki) �(pf − pi)
√

m2 + k2i
√

m20 + p2i . (2.2)

It can be assumed without loss of generality thatR has an energy-momentum conserv-
ing � function factored out.

The signature of the Lorentzmetric is taken to be (+−−−); and four-vector indices
have the values 0, 1, 2, and 3. The two-by-two Pauli matrices are written as a four-
vector �� with �0 = I andwith the usual Pauli matrices1 � as three-vector components.
Thus,

k⋅� = k��� = k0 + k⋅� . (2.3)
1Cf. Appendix 1.A for a definition.
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In the representation of the Dirac matrices defined by2


� ≡
(

0 ��
�̃� 0

)

, �̃� ≡ ��, (2.4)

the upper two components of the column vector u(k) transform as a two-component
spinor with a lower undotted index, and the lower two components transform as a two-
component spinor with an upper dotted index. Explicity, u(k) has the form:

ub(k) =
1
√

2

⎛

⎜

⎜

⎝

√

k⋅�∕m�b
√

k⋅�̃∕m�b

⎞

⎟

⎟

⎠

,

ūa(k) =
1
√

2

(

�†a
√

k⋅�̃∕m , �†a
√

k⋅�∕m
)

,

(2.5)

where � is the two-component spin vector that specifies the spin of the particle in its
rest frame,

1
2 �

†
b � �b = sb , (2.6)

and where
√

k⋅�∕m and
√

k⋅�̃∕m are Hermitian matrices belonging to the represen-
tations 

1
2 ,0 and 0, 12 , respectively, of a Lorentz transformation from rest to a frame

where the particle has momentum k, for example,
√

k⋅�∕m = exp (�k⋅�∕2|k|) = (m + k⋅�) ∕
√

2m(m + k0) ,

cosh � = k0∕m , k⋅k = m2 .
(2.7)

If the u± 12
are taken to correspond to spins in the ±z direction in the rest frame,

then theM function corresponding to (2.1) is defined by3

M��̇ =
(√

kf ⋅�∕m R
√

ki ⋅�∕m
)

��̇
,

= 1
2

(

Φ� , Φ� kf ⋅�∕m
)



(ki ⋅�∕m Φ�̇

Φ�̇

)

,

(2.8)

where the relation
√

k⋅�∕m
√

k⋅�̃∕m = I (2.9)
2For matrices, the notation is AT for transpose, A† for Hermitian conjugate, and A∗ for complex con-

jugate. The notation T̃ is used in this paper to indicate the space-inversion operation on the tensor indices
of T .

3The M function is the same, no matter how the spin polarizations are chosen. For the general con-
struction see [1].
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has been used and

Φ± 12
=
⎛

⎜

⎜

⎝

1
2 ±

1
2

1
2 ∓

1
2

⎞

⎟

⎟

⎠

. (2.10)

If one writes  in the two-by-two block form

 =

(

 ++  +−

 −+  −−

)

, (2.11)

then the explicit expression forM becomes

M��̇ = ( ++)�
�′ (ki ⋅�∕m)�′�̇ + ( +−)��̇

+ (kf ⋅�∕m)��̇′ ( −−)�̇
′
�̇

+ (kf ⋅�∕m)��̇′ ( −+)�̇
′�′ (ki ⋅�∕m)�′�̇ .

(2.12)

From this expression, the two-by-two M function corresponding to any four-by-four
 matrix is readily obtained. In perturbation theory, it is the singularity structure of 
that is significant; and it is evident thatM is analytically related to  . This example
is easy to generalize for any number of spin- 12 particles with nonzero masses.

Experimental relationships can be obtained directly from theM functions, bypass-
ing the S functions entirely [3]. The projection operators

P (s) = 1
2 (1 + s⋅�) (2.13)

used in conjunction with S are replaced by the covariant operators

P (k, s) =
√

k⋅�̃∕mP (s)
√

k⋅�̃∕m

= 1
2

(

k⋅�̃∕m − s⋅�
)

,
(2.14)

where s is the pseudo four-vector that reduces to s in the rest frame of the parti-
cle [10, 11]. Stapp defines theM functions in general essentially by the requirement
that the covariant operators (2.14) and their generalization to higher spin give the cor-
relations between experimental observables when contracted with the M functions
in expressions such as Tr(PiM Pf M†). The covariance of the M functions under
the proper, orthochronous, homogeneous Lorentz group L↑

+, which for our special ex-
ample follows from (2.12), follows generally from the postulated Lorentz invariance
of experimental correlations and the constructed spinor transformation character of
P (k, s).
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The general form of the covariance condition can be expressed using the general-
ized spinor transformation operator ΛS defined by the equation,

(

ΛSM
)

(�)(�̇) ≡
(

ΛSM
)

�1⋯�M �̇1⋯�̇N

= S(Λ)(�)(�̇)
(�′)(�̇′)M(�′)(�̇′)

=
[

∏

i
DSi (A)�i

�′i
] [

∏

j
DS

′
j (B)�̇j

�̇′j
]

M(�′)(�̇′) ,

(2.15)

where A and B are the two-by-two unimodular matrices that specify, by means of
Eq. (A1.6) in Appendix A1, the complex, proper, Lorentz transformation Λ(A,B),
and where the DS ≡ S,0 are the (2S+1)-dimensional, irreducible representations of
+, described in Appendix A1.1. The indices �i and �̇j are generalized (2Si+1)- and
(2Sj+1)-valued spinor indices; (�) and (�̇) are the sets of �i and �̇j ; and the summation
convention is used for relatively upper and lower repeated indices. Thus,ΛS represents
the action of the direct product group SL(2, C)×SL(2, C), which is related to + in the
usual way by a two-to-one homomorphism, on a finite-dimensional carrier space of
spinors. If one puts B = A∗, then ΛS represents the real group, L↑

+; and DS (A∗)
corresponds to the representation 0,S . The representations S,0 and 0,S of L↑

+
are obtained by complexification of the representation S of the rotation group. One
augments the angular momentum operators J, which are infinitesimal generators for
the rotation group, by the particular choicesK = ∓J, respectively, for the infinitesimal
generators of the velocity transformations.

Let K = (k1,… , kl) be the set of momentum vectors for the process described by
the spinor-valued function M(K), and let ΛK ≡ (Λk1,… ,Λkl) be the transformed
momenta. Then one obtains from the Lorentz invariance of physical correlations the
covariance relation [3, 4]

ΛSM(Λ−1K) =M(K) , (2.16)

for physicalK and Λ in L↑
+. Using this and the assumption thatM(K) is holomorphic

in some real neighborhood (on the mass shell) of some real pointK , it is a consequence
of a theorem of Stapp [4] that the domain of regularity ofM can be covered by sheets,
each of which maps onto itself under any transformation in +, and on each of which
(2.16) holds for any K and for any Λ in +. This is summarized by the statement
thatM is +-covariant throughout its domain of regularity, or thatM is “completely”
+-covariant. The notions of a domain of regularity, of a sheet, and of complete +
covariance are described precisely in Sec. 6.

Each (2S+1)-valued spinor index of anM function corresponds to a particle of spin
S. In the spin- 12 example given above, one of the spinor indices was dotted and one
was undotted; and both were lower. This is purely conventional. The choice depends
only on the way in which R is contracted with the operators

√

k⋅�∕m and
√

k⋅�̃∕m to
giveM , or more generally, on the conventions for the generalized covariant operators
P (k, s). Simple conventions have been adopted [3] that lead to unambiguous transfor-
mations for altering the character of the spinor indices of M functions. For present
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purposes it will be convenient to let all indices be of the same type. It will be seen in
the following section that this is no restriction on the generality of the results.

From now on, theM functions are to be considered as defined by (2.16), with Λ
in +. It is easily shown from this equation that the sum of the spins of anM function
is an integer [3,1] (i.e., in every scattering process the total number of initial and final
fermions is even); and thus theM function is equivalent to a tensor function.
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3 Reduction of Spins

To simplify the problem of expanding the M functions, and hence the S matrix, in
terms of scalar amplitudes, we shall first decompose them into irreducible parts. Of
course this is a “trivial” procedure, even for the S matrix itself; but for the S matrix
the reduction is somewhat messy, due to the somewhat complicated transformation
law of the spin indices. For theM functions, because of their simple transformation
law, the reduction is algebraically simple, involving only the familiar addition of spins
by contracting with combinations of Clebsch-Gordan (C-G) coefficients. We follow
the same procedure as that of Fano and Racah [12] for the rotation group. Details of
the construction of the appropriate projection operators are given in Appendix A1.3.

As mentioned above, one needs only to considerM functions with all indices of
the same type, say lower undotted. Any upper index can be lowered by contracting
with the metric symbol {S} defined in (A1.18). Any dotted index can be converted
into an undotted index by contracting with one of the “metric” symbols introduced by
Stapp [3,1],

[S, k ]�̇� ≡ DS (k⋅�̃∕m)�̇� ,

{S, k}��̇ ≡ DS (k⋅�∕m)��̇ ,
(3.1)

where k is the momentum of the particle of spin S whose index is to be transformed,
and where the matrix elements of DS are labeled according to the index types of the
argument. These spinors satisfy the orthogonality relations

{S, k}��̇ [S, k ]
�̇�′ = DS (k⋅� k⋅�̃∕m2)�

�′ = ���
′
,

[S, k ]�̇
′� {S, k}��̇ = ��̇

�̇′ ,
(3.2)

because of the identity

k⋅� k⋅�̃ = k⋅�̃ k⋅� = k⋅k = m2. (3.3)

In order to reduce the functionM(�) one contracts with the projection operators

[ J : (S,N) ]� (�) ≡ [ J :S1,… , SN ]��1⋯�N , (3.4)

for total spin J . The symbol  stands for the set of intermediate spins that occur
in the reduction of S1,… , SN , beginning at the left. These operators are formed by
contracting successively with the C-G coefficients, as described in Appendix A1.3.
The projections are single-spin functions with the same transformation law as an M
function:

M(J )� = [ J : (S,N) ]� (�)M(�) , (3.5)

or in matrix notation

M(J ) = [ J : (S,N) ]M . (3.6)

8



Equation (3.5) or (3.6) can be inverted by contracting with the inverse projection op-
erators

{(S,N) : J }(�)� =
{

S1,… , SN : J
}

�1…�N
�

= [ J : (S,N) ]� (�).
(3.7)

Writing the orthogonality relation (A1.37) in the form
∑

J ,
{(S,N) : J } [ J : (S,N) ] = I , (3.8)

one finds that

M =
∑

J ,
{(S,N) : J } M(J ) . (3.9)

The summation in these equations is over all J , occurring in the reduction of the
spins (S,N).

It is clear that the decomposition (3.9) does not introduce any extra singularities
intoM(J ) that were not already present inM . Thus the problem of expandingM
in terms of scalar amplitudes without kinematical singularities is solved by finding
such an expansion for the irreducible functionsM(J ). Note that because

∑

i Si is an
integer, J is always an integer. The quantitiesM(J ) are analogous in some respects
to the familiar spherical tensors in the theory of the rotation group.
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4 The Spin Basis: Conversion to an Equivalent Tensor

Fromnowonwe restrict ourselves to spinor-valued functionsM(J ) of the four-momenta
(the symbol  is suppressed because it has nothing to do with the transformation prop-
erties) that satisfy the covariance condition (2.16), with ΛS = DJ (A). In this section
a set of spinors labeled by tensor indices is constructed, which spans the spin space.
These spinors are then combined with available momentum vectors in Sec. 5 to form
a basis in the space ofM(J ) functions.

The elements of the spin basis constructed here are just row vectors from a matrix
that transforms the spinorM(J ) into an equivalent irreducible tensor. There are several
ways of doing such a construction. For example, M(J ) is equivalent to a traceless
tensor of rank 2J that is antisymmetric and selfdual in successive pairs of indices, and
symmetric in the interchange of selfdual pairs of indices. The general transformations
have been given by Barut, Muzinich, andWilliams [1] and are written down in (A1.43)
and (A1.44). Here, we find it algebraically more convenient to construct a spin basis
that is somewhat specialized.

For the case J = 1, one can define a set of four spinors, labeled by the vector index
�,

�� (1 : v)� = [ 1
1
2
1
2 ]�

�

[

�� v⋅�̃
{

1
2

}]

�

, (4.1)

where the symbol [ 1 12
1
2 ]�

�
 = C
(

1
2
1
2 1; �
�

)

is a C-G coefficient in terms of the

convention of Rose [13], �� = ��∕
√

2 is the normalized Pauli spinor,
{

1
2

}

is the

spin- 12 metric symbol defined in (A1.18), and v is some four-vector valued, covariant
function of the available momenta satisfying v⋅v ≠ 0. If the four-vector index in (4.1) is
contracted with a vector w, the result is equivalent to the antisymmetric, selfdual part
of the tensorw� v� . In particular, by using the symmetry of [ 1 12

1
2 ], the antisymmetry

of
{

1
2

}

, and (3.3), one easily calculates the relations

w⋅�(1 : v) + v⋅�(1 :w) = 0 , (4.2)

v⋅�(1 : v) = 0 . (4.3)

Equation (4.3) can be viewed as that relation among the four ��(1 : v) that must exist
because the spin-1 space is three-dimensional.

From various orthogonality relations involving C-G coefficients (such as those
listed in Appendix A1.1 and A1.2, it is easy to verify that

(v⋅v)−1 �� (1 : v)� �� (1 : v)� = ��� , (4.4)

(v⋅v)−1 �� (1 : v)� �� (1 : v)� = g�� − v� v�∕v⋅v

≡ ℎ��(v) .
(4.5)
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The vector v can always be brought to the form
(

√

v⋅v, 0, 0, 0
)

by a transformation in
+. In such a frame, (4.5) reduces to the ordinary three-dimensional metric symbol.
The orthogonality relations (4.4) imply that the �(1 : v) spinors span the spin-1 space.

From the spinor calculus in Appendix A1, one derives the transformation law

D1(A) ��(1 : v) = Λ��(A,B) �� [1 :Λ(A,B)v] . (4.6)

Spinors for arbitrary integral J can be constructed by addition of spins of magni-
tude 1,

��1⋯�J
(

J : v1,… , vJ
)

�

= [ J : (1, J ) ]� (�) ��1
(

1 : v1
)

�1
⋯ ��J

(

1 : vJ
)

�J
, (4.7)

where  = (2, 3,… , J−1) is in this case uniquely determined by our conventions for
the construction of [ J : (1, J ) ] and thus can be suppressed. In condensed notation
this becomes

�(�)(J : v1,… , vJ ) = [ J : (1, J ) ]
⨂

J
��i (1 : vi) . (4.8)

From the orthogonality relations (A1.36) and (4.4) one finds that
∏

i
(vi ⋅vi)−1 �(�)

(

J : v1,… , vJ
)

� �
(�) (J : v1,… , vJ

)� = ��� . (4.9)

The transformation law (4.6) becomes

DJ (A) �(�)(J : v1,… , vJ )

= Λ(�)(�)(A,B) �(�)
[

J :Λ(A,B)v1, … , Λ(A,B)vJ
]

, (4.10)

where

Λ(�)(�) ≡ Λ�1
�1 ⋯ Λ�J

�J . (4.11)

Equations (4.3) and (4.8) lead to
(

vi
)

�i
��1⋯�i⋯�J (J : v1,… , vJ ) = 0 . (4.12)

There are further relations among the �(J : v1,… , vJ ). It is an easily proved algebraic
fact that the projection operator [ J : (1, J ) ] is symmetric in the interchange of any
pair of spin-1 indices; one can see this directly by noting that there is only one way
to get a total spin of J from the addition of J spins of magnitude 1. From this fact
and (4.8) it follows that �(J : v1,… , vJ ) is symmetric in the interchange of any pair
of tensor indices when one simultaneously interchanges the corresponding four-vector
arguments. Furthermore, because it is essentially an irreducible tensor of minimum
rank (see Appendix A2), �(J : v1,… , vJ ) vanishes upon contraction of any pair of
tensor indices.
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It is convenient to choose all of the four-vector arguments v1,… , vJ to be equal,
and to write �(J : v) ≡ �(J : v,… , v). Then from what has just been said, �(J : v) is
symmetric and traceless in its tensor indices. By choosing the four-vector arguments
to be the same, we have in a certain sense reduced the problem for the group + to
an equivalent problem for the three-dimensional, proper, complex orthogonal group,
O+(3, C). In particular, when v is in its rest frame, (4.12) implies that �(J : v) van-
ishes when any tensor index has the value zero; and one is left with a tensor with
respect to O+(3, C). From this one can see immediately that �(J : v) is traceless, for
����3⋯�J (J : v) is a tensor of rank less than J corresponding to the irreducible repre-
sentation J of O+(3, C).

There are precisely 2J+1 linearly independent, symmetric and traceless tensors of
rank J with respect to O+(3, C), and because of (4.9) there are at least 2J+1 linearly
independent spinors among the �(J : v). Thus we have a basis for the spin-J space.

To save words, the space of tensors of rank J that vanish when any index is con-
tracted with vwill be denoted by  (J : v). Then �(J : v) defines a one-to-onemap from
the spin-J spinor space onto the subspace of symmetric and traceless tensors  (J : v).
Later, some use will be made of the fact that

S(�)(�)(J : v) ≡ (v.v)−J �(�) (J : v)� �(�) (J : v)� (4.13)

is the projection operator from the space of J th rank tensors onto the subspace of
symmetric and traceless tensors in  (J : v). It is proved in Appendix A2 that S(J : v)
is a tensor not only with respect to + but also with respect to , the unrestricted,
homogeneous, complex Lorentz group. For completeness, the remaining projection
operators for the space  (J : v) are also given in Appendix A2.
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5 Basis Functions forM(J )

Using the orthogonality relation (4.9) for �(J : v) one readily finds that

M(J ) = f (�) �(�)(J : v) ≡ f ⋅�(J : v) , (5.1)

where

f ≡ (v⋅v)−J M(J )� �(J : v)� . (5.2)

Clearly f is a symmetric and traceless tensor in  (J : v). From (5.2), f has no more
singularities thanM(J ), because v⋅v is assumed not to vanish. A set of basis functions
with the same transformation law asM(J ) is constructed by finding tensors that span
the tensor space and contracting with �(J : v).

For two-body reactions on the mass shell, at most three independent four-momenta
are available, the fourth being determined by energy-momentum conservation. In the
region where the Gram determinant of the momentum vectors K ≡ (k1, k2, k3),

G(K) ≡ det(ki ⋅kj) , (5.3)

does not vanish, one can form a basis in the four-vector space by adding the pseudovec-
tor w, defined below, to the set K . Thus the vectors vi form a basis, where4

vi = ki , i = 1, 2, 3 , v4 = w = [ k1, k2, k3 ] ,

w� ≡ ����� k1� k2� k3� , w⋅w = −G(K) .
(5.4)

A reciprocal basis is formed by the vectors

v̂1 = [ v2, v3, v4 ]∕G , v̂2 = [ v3, v1, v4 ]∕G ,

v̂3 = [ v1, v2, v4 ]∕G , v̂4 = −v4∕G ,
(5.5)

which satisfy

vi ⋅v̂j = �ij ,
∑

i
vi
� v̂i

� =
∑

i
v̂i
� vi

� = g�� . (5.6)

Then the monomials

T [(i,N)] ≡ vi1 ⊗…⊗ viN , ij = 1, 2, 3, 4 , (5.7)

form a basis in the space of tensors of rankN , and a reciprocal basis is formed by

T̂ [(i,N)] ≡ v̂i1 ⊗…⊗ v̂iN , (5.8)

so that

T [(i,N)]⋅T̂ [(j,N)] = �(i,N)(j,N) ,

∑

i
T (�) [(i,N)] T̂ (�) [(i,N)] = g(�)(�).

(5.9)

4The convention for the alternating symbol is �0123 = −1.
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The expansion of f , when G ≠ 0, is then

f =
∑

i
ai T [(i, J )] , (5.10)

where

ai = f ⋅T̂ [(i, J )] . (5.11)

ThenM(J ) becomes

M(J ) =
∑

i
ai T [(i, J )]⋅�(J : v) . (5.12)

Equation (5.11) defines a total of 4J scalar functions, but from (5.12) only 2J +1 of
these can be algebraically independent. Indeed, (5.2) and (5.12) imply that they satisfy
the linear relations

ai =
∑

j
aj T [(j, J )]⋅�(J : v)� T̂ [(i, J )]⋅�(J : v)� (v⋅v)−J . (5.13)

It will not restrict the generality of the results, and it will simplify the discussion
to choose v to be one of the available momenta, say k3. Because of (4.12), all terms
such that k3 occurs in T [(i, J )] drop out in the expansion (5.12). From the symmetry
of �(J : k3), all terms where the vectors k1, k2, and w occur in T [(i, J )] the same
number of times, regardless of order, are equal. The terms can therefore be labeled by
a partition of the integer J into three parts. Let

T (�)(i, j, J−i−j) = k1�1 ⋯ k1
�i k2

�i+1 ⋯ k2
�i+j w�i+j+1 ⋯ w�J . (5.14)

The number of tensors T [(i, J )] that contain k1 a total of i times, k2 a total of j times,
and w a total of J−i−j times is just the multinomial coefficient

(

J
i, j

)

= J !
i! j! (J−i−j)!

. (5.15)

Defining

a(i, j, J−i−j) ≡
(

J
i, j

)

f ⋅T̂ (i, j, J−i−j) , (5.16)

where T̂ (i, j, J−i−j) is obtained by replacing the vectors in (5.14) with their reciprocals,
one has the expansion

M(J ) =
∑

0≤i+j≤J
a(i, j, J−i−j) T (i, j, J−i−j)⋅�(J : k3) . (5.17)

From (5.16), a(i, j, J −i−j) can have a singularity G−J in addition to the singu-
larities of f . An example of a holomorphic function that actually gives rise to such a
“kinematical” singularity in the expansion (5.17) is given in Appendix A3.
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So far, the fact that �(J : k3) is traceless has not been used. By using the well-
known identity,

−����� ����� =

⎛

⎜

⎜

⎜

⎝

g�� g�� g�� g��
g�� g�� g�� g��
g�� g�� g�� g��
g�� g�� g�� g��

⎞

⎟

⎟

⎟

⎠

, (5.18)

all tensors T (i, j, J−i−j) with J−i−j > 1, i.e., withw occurring more than once, can
be reduced to combinations of simpler terms [5]. Thus,

ww = −g G(K) + k1 k1
(

m2
2m3

2 − �2
)

+ k2 k2
(

m1
2m3

2 − 
2
)

+ k3 k3
(

m1
2m2

2 − �2
)

+
(

k1 k2 + k2 k1
) (

�
 − �m32
)

+
(

k2 k3 + k3 k2
) (


� − �m12
)

+
(

k3 k1 + k1 k3
) (

�� − 
m22
)

(5.19)

where � = k1 ⋅k2, � = k2 ⋅k3, 
 = k3 ⋅k1, and mi2 = ki ⋅ki. When contracted with
�(J : k3), the term proportional to the metric tensor g vanishes because � is traceless;
only the terms proportional to k1 k1,

(

k1 k2 + k2 k1
)

, and k2 k2 remain, because of
(4.12).

Each of the T ⋅� terms in (5.17) reduces to a linear combination of the following
2J+1 functions:

Y (+)(i : J ) = k1�1⋯ k1
�i k2

�i+1⋯ k2
�J

× �(�)(J : k3) , i = 0,… , J ;

Y (−)(i : J ) = k1�1⋯ k1
�i k2

�i+1⋯ k2
�J−1 w�J

× �(�)(J : k3) , i = 0,… , J−1 .

(5.20)

Then

M(J ) =
J
∑

i=0
b(+)i Y (+)(i : J ) +

J−1
∑

i=0
b(−)i Y (−)(i : J ) . (5.21)

It will be shown in the following section that the scalar amplitudes b(±)i do not have
kinematical singularities.

Before proceeding to a discussion of analytic properties, we give some formulas
for the scalar amplitudes in terms ofM(J ). Setting

�11 = m22m32 − �2, �22 = m12m32 − 
2,

�12 = 2
(

�
 − �m32
)

,
(5.22)
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one can express b(±)i in terms of the a(i, j, J−i−j):

b(±)i =
∑

l,m,n
a
[

m, J± − m − 2l, 2l +
(

1
2 ∓

1
2

)]

×
(

l
n, i − m − 2n

)

�n11 �
i−m−2n
12 �l+m+n−i22 , (5.23)

where J± = J −(
1
2 ∓

1
2 ), and where the summation is over the ordered triple of integers

(l, m, n) satisfying the conditions

max(0, i − l − m) ≤ n ≤
[ i − m

2

]

,

max(0, i − 2l) ≤ m ≤ min(i, J± − 2l) ,

0 ≤ l ≤
[J±
2

]

,

(5.24)

where [a∕b] is the “integer part” of the rational number a∕b.
The b(±)i can also be expressed directly in terms of the traces

t(±)(i : J ) ≡M(J )� Y (±)(i : J )� . (5.25)

A tedious, but straightforward calculation gives

b(±)i = ±
(

m3
2G

)−J ∑

j

∑

l
t(±)(j ∶ J )

× �±(i, j, l) �l11 �
i+j−2l
12 �J±−i−j+l22 , (5.26)

where

max(0, i + j − J±) ≤ l ≤
[

i + j
2

]

,

0 ≤ j ≤ J± ,

(5.27)

and where

�±(i, j, l) =
∑

m,n,r,s,t
22(l−m−n)−s−t

(

J
s, 2r + 1

2 ∓
1
2

)(

s
l − m − n

)

×
(

J± − s − 2r
t − l + m + n

)(

r
m

)(

r − m
i − s − 2m

)(

r
n

)(

r − n
j − t − 2n

)

, (5.28)
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the summation ranging over

max(l − m − n, j − r − n) ≤ t

≤ min
(

J± + l − 2r − s − m − n, j − 2n
)

,

max(l − m − n, i − r − m) ≤ s

≤ min
(

J± − 2r, J± − r − m − j + l, i − 2m
)

,

max(m, n) ≤ r

≤ min
(

J± + n − j, J± + m − i,
[J± − l + m + n

2

])

,

max(0, l − i + m) ≤ n ≤ min
([

j
2

]

, l − m, j + m − l
)

,

max(0, l − j) ≤ m ≤ min
([ i
2

]

, l
)

.

(5.29)
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6 Holomorphy of the Scalar Amplitudes

The procedure followed in the sections above for reducing a covariant function into ir-
reducible parts and for reducing the set of covariant polynomials
T (i, j, J − i−j) ⋅� into the set Y (±)(i : J ) can be used to express any covariant poly-
nomial in the momentum vectors (on the mass shell) in terms of the Y (±)(i : J ), with
coefficients that are polynomials in the scalar invariants. Because the a(i, j, J−i−j) in
(5.16) and (5.17) have at most a singularity G−J in the domain whereM(J ) is holo-
morphic, it follows that the same is true of the b(±)i in (5.21). In this section we derive
a condition for any domain over the mass shell, where M(J ) is holomorphic, that is
necessary and sufficient if the b(±)i are to be holomoprhic functions on the correspond-
ing domain of scalar invariants. This means of course that for such domains the b(±)i
do not have poles when G = 0, i.e., that they are free of kinematical singularities.

We shall see that the condition is essentially (although somewhat weaker than) the
following: the domain whereM(J ) is holomorphic must be such that, if it contains a
point, then it contains all points with the same scalar invariants.

In order to derive the condition, we found it necessary first to prove an extension
to the most general possible domain of that part of the Hall-Wightman Theorem which
says roughly that a holomorphic function invariant under  is a holomorphic function
of  invariants.5 The Hall-Wightman Theorem was used byWong [7] in his proof that
the N-N amplitudes have no kinematical singularities. Its application there was not
strictly justified, however, because the Hall-Wightman Theorem pertains to a special
kind of domain, the future tube. The functions in analytic S-matrix theory, on the
other hand, are defined on the mass shell, which has no points in common with the
future tube. Thus, a generalization of the Hall-Wightman Theorem is needed to justify
using its consequences in our problem.

As already mentioned, the required generalization was proved independently by
Hepp, so that we can avoid some complication by omitting the proof and citing his
result.

Aside from the Hall-Wightman Theorem, we find it necessary for our derivation to
prove the existence of a decomposition ofM(J ) into two parts equivalent to a tensor
and pseudotensor, both of which are holomorphic, and to prove certain linear indepen-
dence properties of the Y (±)(i : J ) at some of the points where G vanishes.

Before we can proceed to the derivation, however, or even state our theorem pre-
cisely, some well-established geometrical facts must be mentioned, and the notion of
covariant and holomorphic functions on locally schlicht domains over the mass shell
must be explained. This will enable us to construct the concept of an “+-invariant
structure”, which with the help of Stapp’s Theorem mentioned in Sec. 2 provides a
suitable framework for our discussion.

5A similar result was proved for the group+, but in the application here, where no pseudoscalars exist,
there is essentially no difference.
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6.1 Complex Four-Vectors
Hall and Wightman [8] have established some geometrical properties of the space
of l complex four-vectors. Let the number of independent vectors at a point K ≡
(

k1,… , kl
)

be denoted by n, and the rank of theGramdeterminant,G(K) ≡ det
(

ki ⋅kj
)

,
be denoted by r. Then n ≤ 4 and r ≤ 4. For r = 3 or 4, one has n = r. For r = 1 or 2,
one can have n = r or n = r + 1. For r = 0, one can have n = 0, 1, or 2. For points K
with n ≠ r, there are always points K ′ with the same scalar invariants, ki ⋅kj = k′i ⋅k

′
j ,

but for which n = r. The converse is also true for r ≤ 2. For any K , there is always
a subset of r independent vectors with nonvanishing Gram determinant. Without loss
of generality, it is assumed in the following that these vectors are

(

k1,… , kr
)

.
A special case of a result of Hall and Wightman [8, Lemma2] is

Lemma 1. If K and K ′ are n = r points having the same scalar invariants, then there
exists a Λ in  such that K ′ = ΛK .

The following lemma also holds:

Lemma 2. Let K be such that n ≠ 4, and if n = 3 then r ≠ 2. Then for any K ′ there
exists a Λ in + such that K ′ = ΛK if and only if there exists an improper Λ′ in 
such that K ′ = Λ′K .

The proof is to note that in these cases, there is always a subspace orthogonal to the
vectors of K. This follows immediately from the considerations of Hall andWightman.
One can then introduce an improper transformation in that subspace that acts as the
identity on K .

The following terminology is standard:

Definition 1. For a set S of pointsK and a group , S is the set of points of the form
K ′ = ΛK , where K is in S and Λ is in . The set K is called the  orbit of K .

Consider now a point K for which r = 2 and l = 3; K ≡
(

k1, k2, k3
)

. Then
G
(

k1, k2
)

≠ 0, by the ordering convention established above. From this it follows
that one can choose two orthonormal vectors (in the Lorentz metric), !1 and !2, in the
space orthogonal to k1 and k2, such that k1, k2, !1, and!2 are linearly independent [8,
footnote 7]:

ki ⋅!j = 0 ; !i ⋅!j = �ij ; i, j = 1, 2 . (6.1)

Because G(K) has rank 2, k3 must have one of the two alternative forms

k3 = a k1 + b k2 + c !± , (6.2a)

where

!± ≡ !1 ± i !2 . (6.2b)

The vectors !+ and !− are on the light cone and are orthogonal to k1 and k2. Notice
that the scalar invariants ki ⋅kj are independent of c. Also, if c = 0, then n = 2; and if
c ≠ 0, then n = 3.
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The transformation !± → �±1!± is, for any � ≠ 0, a transformation in +. Thus
all points K of the above form with the same values of a and b, and for which k3 has
a nonvanishing component along !+, are connected by a transformation in +. The
same is true for points where k3 has a nonvanishing component along !−. Evidently
the point with c = 0 is a limit point of each of these two sets. Lemmas 1 and 2 applied
to the subset of K consisting of its first two vectors alone ensure that one can find a
transformation in+ that takes any pointK ′ having the same invariants asK to a point
such that k′1 = k1 and k′2 = k2. The vector k′3 must then have one of the two forms
given by (6.2a). Thus the set of all points with the same scalar invariants as K is the
union of three+ orbits, two with n = 3 and one with n = 2. By considering the linear
transformation that leaves k1, k2, and !1 unchanged and replaces !2 by −!2, one sees
that points of the two n = 3 orbits are related by an improper Lorentz transformation.
Clearly, any point of the n = 2 orbit is a limit point of both of the n = 3 orbits. Because
of the continuity of the scalar invariants, the union of all three orbits is a closed set.
Moreover, this fact and the discussion above imply that the n = 2 orbit is itself a closed
set, and that the union of the n = 2 orbit with either of the n = 3 orbits is a closed set.

An analogous discussion can be given for r = 1 points. In that case, K has the
form

k2 = a2 k1 + b2 ! ,

k3 = a3 k1 + b3 ! ,
(6.3)

where!⋅k1 = !⋅! = 0. If either b2 or b3 is nonzero, then n = 2, and if both vanish then
n = 1. From Lemma 2, +K = K . This does not mean, however, that there is only
one n = 2, + orbit with the same invariants as the n = r = 1, + orbit. In fact, it is
clear that there is a distinct orbit for each value of the ratio b2∕b3. Any transformation
that leaves k1 unchanged andmultiplies! by a nonzero complex number can bewritten
as a transformation in +, just as before, and thus it is still true that the + orbit of
the n = r = 1 point is closed while that of any of the n = 2 orbits becomes closed by
adding the n = 1 orbit.

6.2 Holomorphy and Covariance on Domains Over the Mass Shell
The mass shell, l, is defined by the equations

ki ⋅ki = m2i ,
∑

i
ki = 0 ,

m2i > 0 , i = 1,… , l + 1 ,
(6.4)

where the masses, mi, are constants. The requirement mi ≠ 0 implies thatl contains
no r = 0 points. The topology of l is taken to be that induced from the complex
number space C4(l+1) in which it is embedded. Because of the conservation equation
in (6.4), points in l can be represented by K =

(

k1,… , kl
)

.
Since l is not a Euclidean space, but rather an algebraic variety, holomorphy on

l must be defined in a generalized sense. The concept of holomorphy on “complex
spaces”, which need be only locally Euclidean at most points, has been extensively
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developed by mathematicians in recent years [14], but has been, as yet, little used
by physicists. The generalization needed here is relatively simple, and stays close to
concepts that are familiar for functions on ordinary locally schlicht domains. Cer-
tain essential properties of holomorphic functions continue to hold; in particular, a
holomorphic function of a holomorphic function is holomorphic, and a holomorphic
function has a unique analytic continuation.6

The most direct generalization of holomorphy is to functions on complex mani-
folds. A complex manifold of (complex) dimension d is a connected Hausdorff space7
with a complex structure. This means that the space can be covered with open sets
U� each of which is mapped into the space Cd of d complex numbers by a homeo-
morphism (a one-to-one continuous map with a continuous inverse) ℎ� :U� → Cd ,
which is such that if U� ∩ U� is not empty, then ℎ�◦ℎ−1� is a holomorphic mapping
of ℎ�

(

U� ∩ U�
)

onto ℎ�
(

U� ∩ U�
)

. A complex-valued function f is said to be holo-
morphic on such a manifold if and only if each of the functions f◦ℎ−1� is holomorphic
on ℎ�

(

U�
)

; that is, f must be holomorphic when expressed in terms of any of the
“local coordinates”.

Stapp has shown [4] that the “restricted mass shell”, ′
l, obtained by deleting all

n = 1 points from l, has a complex structure such that the components of the four-
momenta are holomorphic in the local coordinates. With that structure, ′

l is a com-
plex manifold of dimension 3l−1. It is easy to show that′

l is dense inl. Thus any
continuous function on l is determined by its values on ′

l. A function is said to be
holomorphic on l, according to the standard procedure for complex spaces, if it is
continuous, and if it is holomorphic on ′

l, regarded as a complex manifold with the
complex structure just described.8

In order to introduce the notion of “multivalued” functions in a well-defined way,
we define the concept of a “locally schlicht domain”.9

Definition 2. A locally schlicht domain D over l, or domain over l, is a pair, D =
(S,Φ), where S is a connected Hausdorff space and Φ a map of S into l that is a
local homeomorphism. IfΦ is a global homeomorphism, thenD is said to be schlicht.

In general, the notationD will be used for locally schlicht domains, andU for domains
that are also schlicht. Then Φ∕U , the restriction of Φ to U , is a homeomorphism, for
U ⊂ D.

The symbol P denotes a point of the locally schlicht domain D over l, and K =
ΦP denotes its image under the mappingΦ intol. The pointΛP in a schlicht domain
U ⊂ D is (Φ∕U )−1ΛΦP .

6The concept of a locally schlicht domain over an arbitrary complex space is developed by G. Scheja
[15].

7“Connected” in this paper means “arcwise connected”. A Hausdorff space is a topological space such
that any two distinct points lie in disjoint neighborhoods. A neighborhood of a point contains an open set
containing the point.

8Hepp has shown [9] thatl is a “normal” algebraic variety in C4(l+1), that is, a function holomorphic
in l is locally the restriction of a function holomorphic in the embedding space, C4(l+1).

9A domain is a connected open set. For standard concepts having to do with locally schlicht domains,
cf. A. S. Wightman [16].
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Two schlicht subdomains of a locally schlicht domain are said to “lie over” each
other if their Φ images coincide. If they also contain a common point then they are
identical; this follows straightforwardly from the definitions.

A function f defined on a locally schlicht domain D is said to be holomorphic
on D if and only if f◦(Φ∕U )−1 is holomorphic on ΦU for every schlicht subdomain
U of D. Analytic continuation of functions holomorphic on locally schlicht domains
proceeds, in the usual way, by addition of locally compatible function elements. The
domain of holomorphy is the largest domain onto which the function can be continued
with equivalent function elements identified [15, 16]. For spinorM functions, which
have several components, the following terminology has been introduced by Stapp [4]:

Definition 3. The domain of regularity, (M), of an m-component spinor function
M is the largest domain over l onto which all components can be simultaneously
analytically continued, with equivalent m-component function elements identified.

+ covariance for domains overl is defined in terms of+ covariance for schlicht
domains.

Definition 4. A spinor functioin M is +-covariant on a schlicht domain U if and
only if it satisfies

M(P ) = Λ−1S M(ΛP ) (6.5)

whenever P and ΛP are in U and Λ is in +.

Definition 5. A spinor functionM is +-covariant in a domainD overl if and only
if it is +-covariant on some schlicht subdomain of D.

The very weak requirement imposed by Definition 5 will soon be shown to be
equivalent, when M is holomorphic, to a very strong requirement. For this purpose
we introduce

Definition 6. An +-invariant structure  of a domain D over l is a set of +-
invariant sheets whose union isD. A sheet is a schlicht domain that cannot be properly
contained in any schlicht domain. An +-invariant schlicht domain U is one that
satisfies +ΦU = ΦU , i.e., its image in l is a union of + orbits.

The intersection of any two sheets U1 and U2 of  is +-invariant; for if P is a
point of U1 ∩ U2 there must be an +-invariant, connected, open neighborhood of P
contained in U1 that lies over an +-invariant neighborhood of P contained in U2.
These two schlicht domains both contain P and hence are identical, according to an
earlier remark. Hence the entire orbit +ΦP is in Φ

(

U1 ∩ U2)
)

.

Definition 7. LetM be a spinor function defined on a domain D over l. ThenM
is completely +-covariant on D if and only if D has an +-invariant structure  and
M is +-covariant on the schlicht domain U for every sheet U in  .

Stapp has proved [4]
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Lemma 3. If M is +-covariant in a domain D ⊂ (M) over l, then M is com-
pletely +-covariant on(M).

Actually, Stapp’s result is somewhat stronger, requiring only L↑
+ covariance on a

domain in(M), which can even be real. This ensures that the scattering functions of
analytic S-matrix theory are completely +-covariant on their domains of regularity,
as indicated in Sec. 2.

Because of Lemma 3 and certain special properties of domains with l = 3, it turns
out that the problem of decomposingM(J ) on locally schlicht domains can be solved
completely by considering separately each sheet in the+-invariant structure. We now
develop the result that makes this possible.

First, it will be remarked that the orbit +P of a point P in a domain with an +-
invariant structure  is well defined; it is the inverse image of the + orbit ofK = ΦP
with respect to any of the sheets in  that contain P . By a previous remark on the +
invariance of the intersection of sheets in  , all such orbits coincide.

Definition 8. Let M be +-covariant in a domain D ⊂ (M) over l. Then D is
said to be weakly I+-saturated in(M) if and only if every r ≠ n, + orbit of a point
in D has at least one r = n limit point10 in(M).

The terminology “I+-saturated”, chosen to conform with that of Hepp [9], is asso-
ciated with the map I+ :l → l+. Herel+ is the space of scalar and pseudoscalar
invariants, ki⋅kj and ki1⋅[ ki2 , ki3 , ki4 ], that correspond to points ofl. The correspond-
ing map for the group  is I :l → l, where l is the space of scalar invariants.
For l = 3, the maps I+ and I are the same, because all pseudoscalars vanish. The
following is essentially Hepp’s definition:

Definition 9. A subset S of a schlicht domain overl is said to be I+-saturated if and
only if I−1+

[

I+(ΦS
]

= ΦS.

For domains with an +-invariant structure in spaces with l = 3, the following
lemma is true:

Lemma 4. Let M be +-covariant in D ⊂ (M) over 3, and let D be weakly
I+-saturated in (M). Then for every U in the +-invariant structure  there is an
I+-saturated domain V such that D ∩ U ⊂ V ⊂ U .

For the proof we require another lemma, originally proved by Bargmann, Hall, and
Wightman for the map I and for n = r points.11

Lemma 5. The I+ image of a neighborhood of a point K of 3 is a neighborhood of
I+(K) in3+; i.e., the map I+ :3 → 3+ is open.

The proof of Lemma 5 is given in Appendix A4. The fact that the lemma is not re-
stricted to n = r points is a rather special property of l = 3 spaces.

10The term “limit point” as used in this paper does not apply to points at infinity.
11Cf. [8, Lemma 3]. The form of the statement here, when restricted to n = r points, is slightly different,

but the proof is not affected.
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To prove Lemma 4, let U be an element of  that has points in common with D.
(If D ∩ U is empty, there is nothing to prove.) Since U is open and U = +U , the
domain +(D ∩ U ) is already saturated with respect to n = r points, because the +
image of a neighborhood of an n = r point contains, by virtue of Lemmas 1 and 2,
all n = r points with the same invariants, hence limit points of all n ≠ r points with
these invariants, and hence, by the openness and + invariance, all points with these
invariants. There remains the question of whether +(D∩U ) is saturated with respect
to n ≠ r points. Since r ≤ l = 3, this can only occur for r = 1 or 2.

Let P be an n ≠ r point ofD∩U . BecauseD is weakly I+-saturated in, there is
an n = r limit point P0 of +P in. Clearly P0 is at least on the boundary of the +-
invariant sheet U . Let U0 be a sheet of  that contains P0. Then U ∩U0 is nonempty,
and from the discussion following Definition 6 it is a schlicht, +-invariant, open set.
Thus U ∩ U0 contains +P .

One can now construct a neighborhoodN0 of P0 with the following properties:

(i) N0 ⊂ U0 ;

(ii) N0 = +N0 ;

(iii) For every P ′ inN0 there is a P ′′ in D ∩ U such that I+(ΦP ′) = I+(ΦP ′′) ;

(iv) Every r = 3 point ofN0 is also in +(D ∩ U ).

It is trivial to find a neighborhoodN ′
0 of P0 satisfying (i) and (ii) becauseU0 is open

and +-invariant. To satisfy (iii), choose a neighborhood N ⊂ D ∩ U of P such that
+N is contained in U ∩U0. This is always possible, because +P is in U ∩U0, and
becauseU∩U0 is+-invariant and open. Then because of Lemma 5 and the continuity
of the map I+, (Φ∕U0)−1

{

ΦN ′
0 ∩ I−1+

[

I+(ΦN)
]}

≡ N0 is a neighborhood of P0
contained in U0. From the fact that I+(A ∩B) ⊂ I+(A) ∩ I+(B) ⊂ I+(A), it follows
that I+(ΦN0) ⊂ I+(ΦN). Thus (iii) is satisfied becauseN ⊂ D ∩ U .

Property (iv) is already satisfied by N0. This follows because for every r = 3
point P ′ of N0 there is a corresponding point P ′′ of N with I+(ΦP ′) = I+(ΦP ′′).
By Lemmas 1 and 2, ΦP ′ and ΦP ′′ are connected by a transformation in +. Now
by construction bothN andN0 are contained in the +-invariant sheet U0, and hence
P ′ and P ′′ are on the same + orbit. But P ′′ is in N ⊂ D ∩ U , and hence P ′ is in
+(D ∩ U ).

It will now be shown that the domain V obtained by adding to +(D ∩ U ) all
possible neighborhoods N0 constructed in this way is a schlicht domain contained in
U .

First we shall show that V is schlicht. If V is not schlicht, then it must contain at
least two distinct points Q0 and Q′0 that lie over each other, ΦQ0 = ΦQ′0. Since  is
a Hausdorff space, there must then be two disjoint neighborhoods W0 and W ′

0 of Q0
and Q′0, respectively, contained in V . Because  is locally schlicht, one can choose
W0 andW ′

0 to be schlicht and to lie over each other. But ifW0 andW ′
0 lie over each

other, then any r = 3 points must be common to both, since all r = 3 points of V
are in the schlicht domain +(D ∩ U ). Now every schlicht open set over 3 contains
r = 3 points, because G(K) is holomorphic everywhere on 3; and if it vanishes for
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any open set it vanishes everywhere. ThusW0 andW ′
0 cannot be disjoint, which is a

contradiction. Therefore V is schlicht.
Moreover, the same argument shows that no point of V −U can lie over U . But U

is a sheet, i.e., a maximal schlicht domain. Thus V is contained in U , for otherwise
U ∪ V would be a schlicht domain properly containing U .

By construction, V is +-invariant. Moreover, for every n ≠ r point of V there
is by (iii) a point of D ∩ U with the same invariants, and hence, by construction, an
n = r point of V with the same invariants. Because V is open, it follows by the same
argument used at the beginning of the proof thatΦV = I−1+ [I+(ΦV )]. Thus Lemma 4
is proved.

Because V is contained in U one can write V = (Φ∕U )−1I−1+ [I+(ΦV )]. Because
I+(ΦV ) = I+[Φ(D ∩ U )], we also have V = (Φ∕U )−1I−1+

{

I+[Φ(D ∩ U )]
}

. This
I+-saturated domain V ⊂ U we shall denote simply by I−1+ ◦I+(D ∩ U ); it is the “I+
saturation” of D ∩ U .

6.3 Condition for the Absence of Kinematical Singularities
Hall and Wightman have proved, among other things, that an -invariant function f
holomorphic on the future tube has the form f = f ′◦I , with f ′ holomorphic on the
I image of the future tube. A partial generalization of their result, for l = 3 and the
group +, is needed for the proof of our basic theorem on kinematical singularities.
+ invariance is defined by setting ΛS = 1 in Definitions 4, 5, and 7.

Lemma 6. Let f be +-invariant in a domain D ⊂ (f ) over 3. Then for every
sheet U in the +-invariant structure of (f ),

f∕D ∩ U = f ′◦I+∕D ∩ U , (6.6)

with f ′ holomorphic on I+(D∩U ),12 if and only ifD is weakly I+-saturated in(f ).

That the condition of weak I+ saturation is necessary is trivial, because I+ is a holo-
morphic map and (6.6) defines an invariant analytic continuation of f onto the domain
I−1+ ◦I+(D ∩ U ). To show that the condition is sufficient, we note that Hepp has in-
dependently proved the result for schlicht, I+-saturated domains [9]. Lemma 6 then
follows by applying Lemma 4 and Lemma 3.13

The basic result on the absence of kinematical singularities to be proved in the
remaining sections is the following:

12The set l+, which contains I+(D ∩ U ), is an algebraic variety (cf. [8, 9]), and for the general case,
one would have to define holomorphy for functions on this variety just as was necessary for functions on
l . However, 3+ is an ordinary Euclidean space of two complex dimensions, characterized for example
by the Mandelstam variables s, t, and u, with s+ t+ u =

∑

i m
2
i , so that no generalization of holomorphy is

required.
13One can also prove this by following rather directly the original methods of Bargmann, Hall, and

Wightman. See Sec. 6.7 for remarks about the case of arbitrary l.
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Theorem 1. LetM(J ) be +-covariant in a domain D ⊂ [M(J )] over 3. Then
M(J ) has a unique decomposition on D,

M(J ) =
J
∑

i=0
b(+)i Y (+)(i : J ) +

J−1
∑

i=0
b(−)i Y (−)(i : J ) , (6.7a)

with b(±)i holomorphic onD, where for everyU in the+-invariant structure of[M(J )],

b(±)i ∕D ∩ U = b′(±)i ◦I+∕D ∩ U , (6.7b)

with b′(±)i holomorphic on I+(D ∩ U ), if and only if D is weakly I+-saturated in
[M(J )].

Again, that weak I+ saturation is a necessary condition is trivial, because (6.7b) with
(6.7a) defines a covariant analytic continuation ontoV = I−1+ ◦I+(D∩U ), the Y (±)(i : J )
being polynomials.

As for the converse, note that Lemma 4 implies that D ∩ U ⊂ V ⊂ U , and that
Lemma 3 implies thatM(J ) has a covariant analytic continuation onto V . It is enough
to prove the result for each I+-saturated, schlicht domain V . The fact that the b(±)i in
(6.7a) are uniquely defined and holomorphic onD follows at once from the existence of
a unique, holomorphic decomposition on each V and from the fact that these schlicht
domains coverD, and hence overlap. The uniqueness, of course, follows at once from
the linear independence of the Y (±)(i : J ) at r = 3 points.

Without loss of generality, for the remainder of the proof we write M(J ) for the
analytic continuation of M(J ), restricted to V . The details of the proof are given in
the following sections. Here we outline the basic steps.

First, we show thatM(J ) can be written as the sum of two functions holomorphic
on V , M±(J ), equivalent in a sense to a tensor and a pseudotensor, which can be
expanded, respectively, in terms of Y (±)(i : J ). The discussion in Sec. 5 implies that
the scalar amplitudes b(±)i in this expansion are holomorphic on V except possibly for
poles of the form G(K)−J , at points with r < 3. For points with r = 2 and n = 3, we
show that the Y (+)(i : J ) are linearly independent, and so are the Y (−)(i : J ), although
the two sets are not independent of each other. From these facts, we show that the
b(±)i are continuous at such points; and with the help of Lemmas 5 and 6 we show that
they are also single-valued functions of the invariants at such points. This extends the
definition of the scalar amplitudes to all r = n = 2 points, and by means of Lemmas 5
and 6 we are then able to show that they are holomorphic functions of the invariants
for all except r = 1 points. The r = 1 points are shown to be isolated in the space of
invariants, and they are easily handled by a standard theorem on analytic continuation.

6.4 Tensor-Pseudotensor Decomposition
Because V = I−1+ ◦I+(D ∩ U ) is I+-saturated, and because of Lemma 2, if K is in
V then so is K̃ ≡

(

k̃1, k̃2, k̃3
)

, where k̃� ≡ k�. Then any tensor f under + that
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is holomorphic on V can be decomposed into unique tensor and pseudotensor parts
under , both holomorphic on V , namely,

f±(K) ≡
1
2

[

f (K) ± f̃ (K̃)
]

, f̃ (�) ≡ f(�) . (6.8)

From + covariance and simple algebra, one finds that

Λf+(K) = f+(ΛK) , Λf−(K) = f−(ΛK) det(Λ) , (6.9)

for any Λ in .
By means of (5.2),M(J ) is converted into a symmetric and traceless tensor f in

the space  (J : k3). Writing

M±(J ) ≡ f± ⋅�(J : k3) , (6.10)

with f± defined by (6.8), one has

M(J ) =M+(J ) +M−(J ) . (6.11)

It is straightforward to see that, along with f , f± are both symmetric and traceless and
that both are in  (J : k3). Thus, the projection operator S(J : k3), defined in (4.13),
acts as the identity on f±, and one has

f± =M±(J )� �(J : k3)� m3−2J . (6.12)

TheM±(J ) can be expanded individually by (5.21). The coefficients in these ex-
pansions are scalars under , because of Lemma 6, and the fact that no pseudoscalars
can be formed from the three momentum vectors. It is shown in Appendix A2 that the
projection operator S(J : k3) is a tensor under . Thus, the expressions

f±(i : J ) ≡ Y (±)(i : J )� �(J : k3)� m3−2J (6.13)

are, respectively, tensors and pseudotensors under , from (5.20). The expansions
therefore take the form

M±(J ) =
∑

i
b(±)i Y (±)(i : J ) , i = 0, 1,… , J − ( 12 ∓

1
2 ) . (6.14)

6.5 Independence of the Y (±)(i :J )
The final ingredient for the proof of Theorem 1 is

Lemma 7. If K is an n = 3 point, the corresponding spinors (for fixed J ) Y (+)(i : J )
are a linearly independent set, and so are the Y (−)(i : J ).

From the construction in Sec. 5, this lemma is trivial if r = n = 3, when all of the
Y (±)(i : J ) are linearly independent. We are interested here in the case r = 2 and
n = 3. Then the Y (+) are not independent of the Y (−), because when k3 depends, for
example, on !+, as in (6.2a), the vectorw occurring in Y (−) is proportional to !+, and
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is thus not linearly independent of the ki. For the proof of Lemma 7, however, it is just
as easy to consider all n = 3 points at once, and not just those with r = 2.

Let the Y (+) be considered first. If there exist complex numbers ci such that
∑

i
ci Y

(+)(i : J ) = 0 , (6.15)

then
∑

i
ci Y

(+)(i : J )� �(�)
(

J : k3
)� m−2J3

=
∑

i
ci k

�1
1 ⋯ k�i1 k

�i+1
2 ⋯ k�J2 S(�)(�)(J : k3)

= 0 .

(6.16)

By a transformation in +, k3 can be put into its rest frame; and then only the
three-vector part of any vector contributes when contracted with S(J : k3), because of
(4.12). In such a frame, we can just as well let � and � represent three-vector indices.
Then contracting every � index of S(J : k3) in (6.16) with the same three-vector x, we
get

S(�)(�)(J : k3) x�1⋯ x�J = x�1⋯ x�J

+ �1 x⋅x
∑

P (i)
��i1�i2 x�i3 ⋯ x�iJ

+ �2 (x⋅x)2
∑

P (i)
��i1�i2 ��i3�i4 x�i5 ⋯ x�iJ

+⋯ ,

(6.17)

where the �i are numerical constants, ��� is the three-dimensional Kronecker �, (i1,… , iJ )
is a permutation of (1,… , J ), and the summations are over all such permutations.
Equation (6.17) is proved by noting that, in the rest frame of k3, S(J : k3) is the pro-
jection operator for symmetric and traceless tensors under the group O+(3, C).14 The
right-hand side is then obtained by consulting any standard reference on the decom-
position of a tensor into irreducible parts.15

Defining �1 = k1 ⋅x, �2 = k2 ⋅x, �3 =
√

x⋅x, we get from (6.16), after contracting
with x,

0 =
∑

i
ci

[

�1
i �2

J−i + �32 J−2
i

(

�1, �2
)

+ �34 J−4
i

(

�1, �2
)

+⋯
]

,
(6.18)

14Cf. Appendix A2.
15Cf., for the real orthogonal groups, [17, Chap. 10, Secs. 5-7]. The procedure is the same for the complex

groups.
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where N
i
(

�1, �2
)

is a homogeneous polynomial of degree N in �1 and �2. By hy-
pothesis, k1 and k2 are independent in the rest frame of k3; and therefore the variables
�i are independent as x varies. The polynomial (6.18) is identically zero, and hence
the coefficient of each distinct term must vanish. Therefore, each ci vanishes, and the
Y (+)(i : J ) are linearly independent.

The only difference when the Y (−) are considered is that one has a polynomial of
the form

0 =
∑

i
ci

[

�1
i �2

J−1−i d + �32 J−3
i

(

�1, �2
)

d

+ �34 J−5
i

(

�1, �2
)

d +⋯
]

,
(6.19)

where

d ≡ k1×k2 ⋅ x =
√

G(k1,k2, x) . (6.20)

Considered as a function of the �i, the region where d ≠ 0 is an open set, and on that
open set (6.19) can be divided by d. The resulting equation is therefore valid for all
�i. Again, the ci vanish and the Y (−)(i : J ) are linearly independent.

6.6 Completion of the Proof

We have seen that the scalar amplitudes b(±)i in (5.21), and hence in (6.14), are holo-
morphic on V except for the possibility of poles, G(K)−J . Because V is I+-saturated,
Lemma 6 implies that

b(±)i = b′(±)i ◦I+ , (6.21)

where the b′(±)i are at least meromorphic on I+(V ), the only possible poles being those
just mentioned, but with G considered as a function of invariants. Thus the b′(±)i in
(6.21) are well defined, and regular for r = 3 points in V .

If G vanishes, its rank is one or two. The rank two case will be considered first.
Let V ′ represent the domain obtained by deleting all r = 1 points from V . V ′ is a
domain because every point of rank r has a neighborhood consisting entirely of points
of rank r or greater. V ′ is clearly also I+-saturated. Let V ′′ denote the domain obtained
by deleting all n = 2 points from V ′.16 Then I+(V ′) = I+(V ′′), because for every
n = r = 2 point K ′ of V ′ there is an n = 3 point K ′′ of V ′′ with I+(K ′) = I+(K ′′).

Lemma 7 implies that the Y (+)(i : J ) are a linearly independent set on V ′′, and so
are the Y (−)(i : J ). The discussion of Sec. 6.4 implies thatM±(J ) are each holomorphic
on V , and that at least for r = 3 points of V ′′ they can be expanded respectively in
terms of Y (±)(i : J ). It will now be shown that the coefficients b(±)i of this expansion
have a continuous extension to all of V ′′, which is then unique because the r = 3 points
of V ′′ are dense in V ′′.

16Again V ′′ is a domain because every point with given n has a neighborhood containing no points of
smaller n.
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Consider for the moment the complex scalar product in the (2J + 1)-
dimensional vector space, e.g.,

⟨

Y (+)(i : J ), M+(J )
⟩

≡
J
∑

�=−J
Y (+)(i : J )�∗ M+(J )� . (6.22)

At any point of V ′′ one can compute the projectionsP±M±(J ) ofM±(J ), respectively,
onto the subspaces spanned by Y (±)(i : J ),

P±M±(J ) =
∑

i
c(±)i Y (±)(i : J ) . (6.23)

The coefficients c(±)i are uniquely determined by solving
⟨

Y (±)(j : J ), M±(J )
⟩

=
∑

i
c(±)i

⟨

Y (±)(j : J ), Y (±)(i : J )
⟩

. (6.24)

The determinant of either of the (±)matrices on the right side of (6.24) does not vanish
anywhere on V ′′ because of the independence of the Y (±)(i : J ), respectively. Because
M±(J ) are continuous on V ′′, the c

(±)
i are continuous, and because of the uniqueness

of the decomposition, c(±)i = b(±)i at all r = 3 points. Thus the b(±)i have a continuous
extension onto V ′′.

Moreover, they are functions of invariants; i.e., they can be written in the form
(6.21), everywhere on V ′′. To see this, let K and K ′ be two r = 2 points of V ′′ such
that I+(K) = I+(K ′). Then Lemma 5 and the fact that every neighborhood contains
r = 3 points imply that there are sequences Km and K ′

m of r = 3 points converging
respectively to K and K ′ such that for all m, I+(Km) = I+(K ′

m). The continuity of the
b(±)i on V ′′ and the validity of (6.21) at r = 3 points yield the result.

Applying Lemma 5 again, one sees that the b′(±)i are continuous on the domain
I+(V ′) = I+(V ′′). The b

′(±)
i are holomorphic on I+(V ′) except at the zeroes ofG, and

they are continuous there. Because of a basic theorem on removable singularities [18,
p. 173], the b′(±)i are therefore holomorphic on I+(V ′).

Only the r = 1 points remain. These points satisfy

ki ⋅kj = ±mimj , (6.25)

and thus they are isolated in the domain I+(V ). It is a consequence of a standard
theorem that a function of more than one complex variable holomorphic on a domain
always has an analytic continuation to isolated points of the domain [18, p. 71]. Thus,
the b′(±)i have a continuation onto I+(V ), and (6.21) defines holomorphic functions on
V .

Equation (6.7a) is therefore a holomorphic expansion without the kinematical sin-
gularities G−J , and Theorem 1 is proved.
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6.7 Alternative Methods of Proof and an Alternative Statement of
Theorem 1

In the proof of Theorem 1, strong use was made of Stapp’s result, which, fortified by
Lemma 4, allowed the problem to be reduced to one of schlicht domains. This served as
a device that simplified the discussion considerably, but it is not essential. In an earlier
version of the proof that did not use Stapp’s Theorem, it was first necessary to construct
a generalization of the map I+, which relates weakly I+-saturated domains overl to
corresponding domains over l+, and to show that the generalized map is open for
n = r points. This is rather straightforward to do, given the proof of Bargmann, Hall,
andWightman for themap I on schlicht domains [8]. Then the partial generalization of
the Hall-Wightman Theorem (Lemma 6) for weakly I+-saturated domains overC4(l+1)
or over l (for arbitrary l) can be proved directly, essentially by a detailed inspection
of Hall and Wightman’s original proof.17

The delicate point is then to establish that the M functions over 3 have a de-
composition into unique tensor and pseudotensor parts (this is not globally true for
arbitrary l without additional assumptions), a result that follows at once in the present
version from the fact that our domain can be covered by schlicht, saturated domains
where M is +-covariant and holomorphic. To give a direct proof without Stapp’s
Theorem requires a fairly sophisticated local property of + orbits, namely, that for
any neighborhoodN of a point K0, there is a neighborhoodN ′ of K0 contained inN
such that for any two points K and K ′ in N ′, with K ′ = ΛK and Λ in +, there is a
connected arc in + from the identity to Λ whose image in the + orbit of K and K ′

lies inN . The author has proved this result for neighborhoods of r ≥ 2 points (which
is actually sufficient for the application being discussed here), but the proof for the
general case, achieved by Stapp [4], is difficult. In fact, this result is the key ingredient
in the proof of Stapp’s Theorem.18

Having established these points, the proof of Theorem 1 proceeds as before. The
discussion is at least superficially more complicated. It amounts essentially to prov-
ing that part of Stapp’s Theorem that is really needed. No real simplification results
from permitting all domains to be locally schlicht and not insisting that the problem
be reduced to schlicht domains, unless one assumes at the outset that the domain can
be covered by saturated domains whereM is holomorphic and +-covariant. Given
Stapp’s Theorem, one can show that such a covering always exists for domains that
are weakly I+-saturated in the domain of regularity; and Lemma 4 says something
stronger for the case l = 3, namely, that for any covering by +-invariant sheets, there
are subdomains of the sheets that already constitute an I+-saturated covering.

17The statement of the result in Lemma 6 is somewhat special due to the use of Lemma 4. In the general
statement one removes the restriction that Eq. (6.6) must hold for every +-invariant sheet and uses instead
the generalized map I+. Hepp has given an elegant abstract proof for saturated domains that is valid for
all of the classical complex groups, to appear in Math. Annalen. He has shown, moreover, that the spaces
of invariants are normal algebraic varieties, so that one has holomorphy in the stronger sense described in
footnote 8.

18Post-thesis note: The assertion about “local +-connectedness” for r ≥ 2 points is correct; but only
a few months after this was written, R. Jost constructed a counterexample for n = 2, r = 1 points. R. Seiler
characterized the points for which it is true, and P. Minkowski and D. N. Williams extended the proof of
Stapp’s Theorem to the remaining points [19].
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That part of Hepp’s work [9] that corresponds to the case of four four-vectors on
the mass shell studied here is a proof for I+-saturated domains, and for irreducible
representations j1,j2 with |j1−j2| ≤ 1. His method is first to prove the existence of
a local holomorphic decomposition for I+-saturated domains in the space of l four-
vectors (on or off the mass shell), and arbitrary j1 and j2, and then for the special case
l = 3 to use the linear independence properties of his spanning set of polynomials to
show that there is a local holomorphic decomposition that is also unique, and hence
global, when |j1−j2| ≤ 1.19

By way of contrast, our method is to first construct a polynomial basis with conve-
nient linear independence properties, and then to use these properties with the gener-
alized Hall-Wightman Theorem to get the result.

Our principal result can be stated rather simply by defining a map J+ :l → l+,
which is the same as I+ for n = r points, but which maps n ≠ r points into the
empty set. Thus J+ “sees” only n = r points. By virtue of Lemmas 1 and 2, there
is only one n = r, + orbit for each point of l+. Thus, in a way, J+ is a one-
to-one correspondence between orbits and invariants. An examination of Hall and
Wightman’s proof of the openness of the map I for n = r points [8, Lemma 3] shows
that in every neighborhood of an n = r point one can find a neighborhood of the point
which contains, for every n ≠ r point, an n = r point with the same I (and hence
I+) image. Thus every neighborhood of an n = r point contains a neighborhood N
of the point such that +N is I+-saturated. It has already been mentioned that the
map I+ :l → l+ is open for n = r points, and thus it follows that the J+ image
of an open set is also open, and from continuity that the I−1+ ◦J+ image of an open
set is open. Thus, for any schlicht domain U , I−1+ ◦J+(U ) is a saturated domain. It is
obtained from +U by deleting all n ≠ r + orbits whose limit points are not in +U .

This procedure of deletion is well-defined even for nonschlicht domainsD. Hence,
although in this paper we have defined the maps I+ and J+ only for schlicht domains,
we shall use the symbol I−1+ ◦J+(D) to represent the “I+-saturated part” of+D. From
the remarks just made, the I+-saturated part of +D is a domain whenever D is a
domain. Then an immediate consequence of Theorem 1 is the following:

Theorem 2. LetM(J ) be +-covariant in a domain D ⊂ [M(J )] over 3. Then
the decomposition (6.7a) holds with unique invariant amplitudes b(±)i defined and holo-
morphic on I−1+ ◦J+(D), and for any schlicht domain U ⊂ D, these amplitudes have
the form b(±)i = b′(±)i ◦J+, with the b

′(±)
i holomorphic on J+(U ). In particular, one can

let D = [M(J )], and one can let U be any sheet in the +-invariant structure.

This theorem is equivalent to Theorem 1, when taken together with Lemma 4. It
can be summarized by the statement that the invariant amplitudes are uniquely defined
and holomorphic over the J+ image of any domain (over3) onwhichM(J ) is regular.

19For functions restricted to the mass shell, one can use the “metric” spinors in (3.1) to convert dotted
indices to undotted indices and back again. By using such manipulations with the Clebsch-Gordan series
one can eventually expand, without introducing singularities, a holomorphic function covariant under any
representation in terms of holomorphic functions covariant under representations of the form j,j . Thus,
on the mass shell, Hepp’s condition |j1−j2| ≤ 1 for l = 3 is not a restriction in principle.
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7 Conclusion

Equations (3.9) and (6.7a) provide a global decomposition of the S matrix for two-
particle reactions that is free of kinematical singularities for any weakly I+-saturated
domain on which theM functions are holomorphic. According to Stapp’s postulate of
minimal analyticity [3], for any scattering process there is a sheet, called the physical
sheet, contained in the domain of regularity ofM , such that all physical points are on
the boundary of the sheet, and such that the boundary is defined by equations in the
scalar invariants. This physical sheet is therefore I+-saturated, and the decomposition
theorem applies. The postulate of maximal analyticity [2,3] says that theM functions
are holomorphic everywhere except for those singularities demanded by unitarity. Al-
though it is not as yet clear precisely how this postulate is to be formulated, one can
take as a provisional interpretation that it shall imply that singularities of theM func-
tions can occur only at points determined by the Landau equations [3,20]. Again, these
are equations involving scalar invariants. Thus, the domain obtained by omitting the
Landau singularities is I+-saturated, and the theorem again applies.

It is possible that the domain of regularity of anM function contains some, but not
all, of the points corresponding to a certain solution of the Landau equations; for these
equations do not guarantee the existence of a singularity. If this were to occur then
the domain of regularity would not be saturated. At least for dispersion relations in
the space of scalar invariants, however, this seems to be of little practical importance.
There, the singularities in the scalar invariants are the important consideration, and the
fact that some of the corresponding points in the vector variables might be regular is
irrelevant.
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A1 Spinor Calculus for Representations of the Complex Lorentz
Group

In this appendix are collected the basic relationships of a direct generalization of the
ordinary two-component spinor calculus [21, 22] to a calculus for arbitrary finite-
dimensinal representations of the proper, homogeneous, complex Lorentz group, +.
This generalized spinor calculus was used in a previous work [1], is useful in the
present work, and appears to be of value in many problems involving higher spins.
The development is essentially notational, and serves to define the quantities used in
the text.

A1.1 Representations of +
The complex homogeneous Lorentz group, , is the group of all complex four-by-four
matrices satisfying the equation

ΛTGΛ = G , (A1.1)

where

G =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎟

⎠

.

The proper complex homogeneous Lorentz group, +, is that part of  connected to
the identity, the set of unimodular four-by-four matrices satisfying (A1.1).

Representations of the two-by-two unimodular group, SL(2, C), can be used for
the construction of a spinor calculus for +, making use of the well-known two-to-
one homomorphism between SL(2, C)×SL(2, C) and +. This homomorphism can be
expressed in terms of the two-by-two Pauli matrices

�� = (I,�) , �̃� ≡ �� = (I,−�) , (A1.2)

where

�0 =
(

1 0
0 1

)

, �1 =
(

0 1
1 0

)

,

�2 =
(

0 −i
i 0

)

, �3 =
(

1 0
0 −1

)

. (A1.3)

They satisfy the transformation law

A �� BT ≡ Λ��(A,B) �� (A1.4)

where A and B are arbitrary two-by-two unimodular matrices, and the Λ(A,B) so
defined are the corresponding complex Lorentz transformations. By using the orthog-
onality relation

1
2 Tr

(

�� �̃�
)

= g�� , (A1.5)
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the correspondence can be written in the equivalent form

Λ��(A,B) =
1
2 Tr

(

�̃� A�� B
T) . (A1.6)

It is clear from (A1.4) or (A1.6) that Λ(A,B) = Λ(−A,−B).
Two-component spinor indices (with values ± 12 ) transforming according to the

two-by-two unimodular transformation A are customarily written as lower undotted,
those transforming by B as lower dotted, and those transforming by the contragredient
transformationsA−1T andB−1T , respectively, as upper undotted and upper dotted. The
summation convention is used for the invariant contraction of upper with lower indices
of the same type. The raising and lowering metric spinors are C−1 �� = C−1 �̇�̇ , and
C�� = C�̇�̇ , where

C−1 = −C =
(

0 1
−1 0

)

= i �2 . (A1.7)

To raise or lower an index one always contracts with the right index of C−1 or C ,
respectively.20 These operations give quantities having the correct transformation law
because of the identity for an arbitrary two-by-two matrix,M ,

C−1MT C =M−1 det(M) . (A1.8)

According to these conventions and (A1.4), the matrix elements of �� should be
written �� ��̇ . Using (A1.8) the matrix �̃� can be considered to be defined by the
relation

�̃� = C−1 �T� C ; (A1.9)

and hence the matrix elements of �̃� should be written �̃ �̇�
� , corresponding to the

transformation law

B−1T �̃� A−1 = Λ��(A,B) �̃� . (A1.10)

The �� and �̃� satisfy also a second orthogonality relation,

1
2 �� ��̇ �̃

� �̇′�′ = ���
′
��̇
�̇′ . (A1.11)

For higher spins, a certain class of irreducible representations of SL(2, C)×SL(2, C)
will be defined by their action on the space of homogeneous polynomials [11]

X
(

j1, j2
)

��̇ =

(

� 1
2

)j1+� (
�− 12

)j1−�
(

� 1̇
2

)j2+�̇ (

�
− 1̇2

)j2−�̇

[(

j1 + �
)

!
(

j1 − �
)

!
(

j2 + �̇
)

!
(

j2 − �̇
)

!
] , (A1.12)

where � = j1, j1 − 1,… ,−j1 , �̇ = j2, j2 − 1,… ,−j2 , and where � and � are two-
component spinors transforming according to

�′ = A� , �′ = B � . (A1.13)
20Alternatively, an index can be lowered by contracting with the left index of C−1.
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The (2j1+1)(2j2+1)-dimensional irreducible representations, j1,j2 , where j1 and j2
are nonnegative half integers, are defined by the equation

X′ (j1, j2
)

�′�̇′ = j1,j2 (A,B)�′�̇′
��̇ X

(

j1, j2
)

��̇ , (A1.14)

where the left-hand side is obtained by substituting (A1.13) into (A1.12).
Equations (A1.12) and (A1.14) lead to the direct product decomposition

j1,j2 (A,B) = j1,0(A) ⊗ j2,0(B) . (A1.15)

The irreducible representations of the proper, orthochronous, homogeneous Lorentz
group, L↑

+, are obtained by setting B = A∗. Henceforth, the notation

Dj(A) ≡ j,0(A) (A1.16)

is used. This notation should not be confused with the standard notation for represen-
tations of the rotation group,j , which are unitary. It is true, however, that for unitary-
unimodular two-by-two matrices, U , which correspond to rotations, Dj(U ) = j(U ).

The calculus for arbitrary spins is constructed by close analogy with the spin- 12
case. The spinor indices have values j, j−1,… ,−j. Indices transforming by Dj(A) and
Dj(B) are written as lower undotted and dotted, respectively, and indices transforming
by the contragredient transformations Dj(A)−1T and Dj(B)−1T as upper undotted and
dotted, respectively. Contraction of upper and lower indices of the same type is clearly
an invariant operation. Equation (A1.8) generalizes to

Dj(C−1)Dj(A)T Dj(C) = Dj(A)−1, (A1.17)

where the group property of the representation matrices, the fact that A is unimodular,
and the identity Dj(AT) = Dj(A)T have been used. Thus one can define raising and
lowering metric spinors

[ j ]�� = [ j ]�̇�̇ = Dj(C−1)�� = (−1)j−� ��−� ,

{j}�� = {j}�̇�̇ = Dj(C)�� = (−1)j+� ��−� ,

[ j ]�� = (−1)2j {j}�� = {j}�� ,

(A1.18)

where one contracts on the right index of [ j ] for raising or of {j} for lowering. These
are just the familiar unitary matrices dj(±�), representing three-dimensional rotations
by ∓� about the y axis [23, p. 59].

The types of the spinor indices of the matrices Djare taken to be the same as those
of their arguments, except that they are of course (2j+1)-valued instead of 2-valued.

One notes in passing that

�� �� = (−1)2j �� �� . (A1.19)

The irreducible representations of + discussed so far are characterized by two
half integers. The general finite-dimensional irreducible representations of + are
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characterized by four half integers, two for each occurrence of SL(2, C) in the direct
product, SL(2, C)×SL(2, C). This follows because all irreducible representations of a
group that is the direct product of two groups are obtained by taking direct products
of irreducible representations of the two component groups. In this case they can be
written

j1,j2,j3,j4 (A,B) = Dj1(A) ⊗ Dj2(B) ⊗ Dj3(A∗) ⊗ Dj4(B∗) . (A1.20)

The corresponding spinor calculus has eight index types rather than the four already
discussed. Although the notation becomes cumbersome, the generalization is straight-
forward.

Those representations that depend on A∗ or B∗, however, require no special con-
sideration in analytic S-matrix theory or in field theory. This is because covariance
under + in physical theories is generally a consequence of covariance under L↑

+ and
analytic properties [4, 24, 25]. Only representations depending on A and B arise un-
der those circumstances. Of course, one may have occasion to consider the complex
conjugate functions, which transform according to the complex conjugate representa-
tions; but this situation is trivially handled without complicating the spinor calculus
with extra index types.

The total number of incoming and outgoing fermions in any scattering process is
even. The sum of the spins of the incoming and outgoing particles is therefore an in-
teger, and the correspondingM function transforms according to a tensorial represen-
tation of +. The tensorial representations are obtained by combining Clebsh-Gordan
(C-G) coefficients with tensor products of terms of the form A⊗A, A⊗B, and B⊗B.
Because they correspond to tensorial representations, these quantities are polynomials
in Λ. The explicit dependence is given by21

A�
� A�′

�′ = 1
8 Λ��(A,B) Λ�′�′ (A,B)

×
(

�� �̃�
′
{ 12}

)

��′

(

{ 12} �
� �̃�

′
)��′

,

B�̇
�̇ B�̇′

�̇′ = 1
8 Λ��(A,B) Λ�′�′ (A,B)

×
(

{ 12} �̃
� ��

′
)

�̇�̇′

(

�̃� ��
′
{ 12}

)�̇�̇′
,

A�
� B�̇′

�̇′ = 1
2 Λ��(A,B) �

�
��̇′ �̃

� �̇′�̇ .

(A1.21)

21The general expression for A or B in terms of Λ is given by Wightman [11]. The formulas here are an
easy consequence of (A1.4), (A1.10), and (A1.11).
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A1.2 C-G Coefficients as Isotropic Spinors
The identity

�jj′ Dj(A)��
′
=

∑

��′

′
C
(

j1j2j; �
�
)

C
(

j1j2j
′; �′
 ′�′

)

× Dj1 (A)��
′ Dj2 (A)
 


′
,

(A1.22)

for j = |j1−j2|, |j1−j2| + 1,… , j1+j2, expresses the fact that the C-G coefficients,
C
(

j1j2j; �
�
)

in the notation of Rose [13], are matrix elements of a unitary transfor-
mation that reduces a direct product of representations into a direct sum. By using the
orthogonality of the C-G coefficients,

∑

j,

C
(

j1j2j; ��

)

C
(

j1j2j; �′�′

)

= ���
′
��
�′ , (A1.23)

one easily finds that

C
(

j1j2j; ��

)

=
∑

�′�′
′
Dj1 (A)−1�′� Dj2 (A)−1�′�

× Dj(A)
 

′
C
(

j1j2j; �′�′
 ′
)

. (A1.24)

This is just the transformation law of an isotropic spinor (a spinor with the same nu-
merical values in every Lorentz frame) with a lower undotted spin-j index, an upper
undotted spin-j1 index, and an upper undotted spin-j2 index.22 Because A is arbitrary
in (A1.24) one can just as well replace it by B and get the transformation law of an
isotropic spinor with correspondingly dotted indices. Thus one can write

C
(

j1j2j; ��

)

≡ [ jj1j2 ]
 �� = [ jj1j2 ]
̇ �̇�̇ . (A1.25)

Because the C-G coefficient is a spinor, one can raise its spin-j index, using (A1.18),
to get

[ jj1j2 ]
�� = (−1)j−
 C
(

j1j2j; �, �,−

)

= (−1)j+j2−j1
√

2j+1
(

jj1j2
)
�� ,

(A1.26)

where
(

jj1j2
)
�� =

(

jj1j2
)


�� =
(

j1 j2 j
� � 


)

(A1.27)

is the standard Wigner 3-j symbol [26, p. 290]. By carrying out the raising and low-
ering operations one finds that

[ jj1j2 ]
 �� = (−1)2j [ jj1j2 ]
 �� . (A1.28)
22This property is familiar from the rotation group. Cf. A .R .Edmonds [23, p. 46] and E. P. Wigner [26,

pp. 292–296].
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The orthogonality relations for the C-G coefficients then become

(−1)2j [ jj1j2 ]
 �� [ j′j1j2 ]

′
�� = �jj′ �
 


′
,

(−1)2(j1+j2)
∑

j
[ jj1j2 ]
 �

′�′ [ jj1j2 ]
 �� = ���
′
��
�′ ,

(A1.29)

where the fact that (−1)2j = (−1)2j1+2j2 has been used. The unsightly factor (−1)2j
can be absorbed in the definition of an “inverse” spinor,

{j1j2j}��
 ≡ [ jj1j2 ]
 �� , (A1.30)

if desired; various formulas such as (A1.29) then acquire a neater look.23
A useful expression for the metric spinors (A1.18) can be calculated from explicit

formulas for the C-G coefficients:

[ j ]�� =
√

2j+1 [ 0jj ]0�� ,

{j}�� =
√

2j+1 {jj0} ��0.
(A1.31)

It is clear that Eqs. (A1.26)-(A1.31) remain valid when all indices are dotted.

A1.3 Reduction of a Spinor: Isotropic Spinors as C-G Coefficients
Just as for the rotation group, an arbitrary spinor under + can be reduced into its
irreducible parts by projecting with C-G coefficients. The projection operators are
constructed by the standard method [12]. The reduction operators for a spinor withN
lower undotted or lower dotted indices can be written in the form

[ j : j1⋯ jN ]��1⋯�N = [ j : j1⋯ jN ]�̇ �̇1⋯�̇N , (A1.32)

where  stands for the set ofN−1 intermediate spin values that occur in the step-wise
reduction, beginning at the left with j1 and j2 and resulting in spin j. In other words,

 =
(

l1,… , lN−1
)

, (A1.33)

where li+1 = li + ji+2, l0 ≡ j1, in the sense of vector addition of angular momenta.
These spinors are defined inductively in terms of C-G spinors, (A1.25), by

[ j( ′j′) : j1⋯ jN ]��1⋯�N

= [ jj′jN ]��
′�N [ j′ ′ : j1⋯ jN−1 ]�′�1⋯�N−1 . (A1.34)

23In S-matrix theory one can usually arrange it so that this factor does not occur, because the total spin
is an integer.
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One can, of course, obtain reduction operators for spinors with upper indices by
lowering the indices of the symbols just defined. It is convenient, however, to define
another symbol, differing by a phase,

{

j1⋯ jN : j
}

�1⋯�N
� ≡ [ j : j1⋯ jN ]��1⋯�N

=
{

j1⋯ jN : j
}

�̇1⋯�̇N
�̇ ,

(A1.35)

which is constructed by precise analogy with (A1.34), using the symbol defined in
(A1.30). One can then prove the orthogonality relations

[ j : j1⋯ jN ]��1⋯�N
{

j1⋯ jN : j′ ′}
�1⋯�N

�′

= �JJ ′ �  ′ ��
�′ ,

(A1.36)

∑

j,

{

j1⋯ jN : j
}

�1⋯�N
� [ j : j1⋯ jN ]�

�′1⋯�
′
N

= ��1
�′1 ⋯ ��N

�′N ,
(A1.37)

where the sum is over all j, occurring in the reduction of the spins j1⋯ jN . The
proof is by induction from (A1.29), using the relation

(−1)2j = (−1)2(j1+⋯+jN ) (A1.38)

which also follows by induction.
Exactly the same equations hold for the spinors with all indices dotted.
In order to reduce an arbitrary spinor, it is clearly sufficient to consider the case

where all indices are lower. The notation will be simplified by writing (�,M) ≡
�1⋯ �M , and (j,M) ≡ j1⋯ jM . Then an arbitrary spinor �(�,M)(�̇,N) reduces to

���̇(jj
′ :  ′)

= [ j : (j,M) ]� (�,M) [ j′ ′ : (j′, N) ]�̇ (�̇,N) �(�,M)(�̇,N) , (A1.39)

which transforms according to the irreducible representation j,j′ . One can use the
orthogonality relation (A1.37) to transform the set of irreducible spinors on the left
side of (A1.39) back into the original spinor.

Because they are constructed from C-G coefficients, the reduction operators are
isotropic spinors. Suppose that � is an arbitrary isotropic spinor satisfying the trans-
formation law

⨂

m
Djm (A)

⨂

n
Dj′n (B) � = � . (A1.40)

If one substitutes � into (A1.39), the resulting irreducible spinor must be isotropic.
This implies that j = j′ = 0, for the isotropy of ���̇(jj′ :  ′) means that it spans a
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one-dimensional, invariant subspace of the irreducible representation j,j′ . Inverting
(A1.39), one has the result for any isotropic spinor:

�(�,M)(�̇,N)

=
∑

 , ′
{(j,M) : 0 } (�,M)

0 {(j′, N) : 0 ′}
(�̇,N)

0 a( , ′) , (A1.41)

where the summation is over those sets  , ′ that lead to zero spins in the reduction.
The Wigner-Eckart Theorem for the rotation group is a special case of a formula

that is analogous to (A1.41) [12, Chap. 14].
Equations (A1.38) and (A1.41) imply that an isotropic spinor has an even number

of undotted and an even number of dotted half odd-integer spin indices.

A1.4 Isotropic Spin Tensors
The Pauli matrices, ��, form the fundamental spin tensor. That this spin tensor is
isotropic follows by moving the Λ in (A1.4) to the left-hand side of the equation. It
is convenient for the construction of orthogonality relations to define normalized spin
tensors:

�� ≡ 1
√

2
�� , �̃� ≡ 1

√

2
�̃� (A1.42)

The � spinors can be regarded as a transformation from a tensor index to an equiv-
alent dotted and undotted pair of spin- 12 spinor indices, and vice versa. In fact, (A1.6)

expresses the well-known equivalence between the 
1
2 ,
1
2 and the self representations

of +. Any function having tensor indices can be converted to an equivalent function
having only spinor indices by contracting each tensor index with that of a � spinor. The
resulting spinor is converted back to the original function by means of the orthogonal-
ity relation (A1.5). Not all spinors can be converted into equivalent tensors, however,
because not all representations of + are tensorial representations. The conversion is
possible if and only if the function has an even number of half odd-integer spin indices.
This property holds, for example, for isotropic spinors, from the comment following
(A1.41), and for isotropic spin tensors, which can be converted to isotropic spinors.
Thus isotropic spinors and spin tensors are equivalent to isotropic tensors.

In order to get a representation for an arbitrary isotropic spin tensor, one converts to
an isotropic spinor, applies (A1.41), and converts back again. As a result, all isotropic
spin tensors can be decomposed in terms of Pauli matrices and C-G coefficients.

It is also possible to represent an arbitrary isotropic spin tensor in terms of gen-
eralized Pauli matrices. These quantities have been constructed and some of their
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properties discussed elsewhere [1]. In the present notation, they are defined by

�(�,N)(jj′ :  ′)��̇ = [ j : ( 12 , N) ]�
(�,N)

× [ j′ ′ : ( 12 , N) ]�̇
(�̇,N) ��1 �1�̇1 ⋯ ��N �N �̇N ,

(A1.43)

�̃(�,N)(j′j : ′ )�̇� =
{

( 12 , N) : j
′ ′

}

(�̇,N)
�̇

×
{

( 12 , N) : j
}

(�,N)
� �̃�1

�̇1�1 ⋯ �̃�N
�̇N�N .

(A1.44)

These spin tensors transform the irreducible parts of an arbitraryN th rank tensor into
the corresponding irreducible spinor transforming according to j,j′ . The tensor in-
dices of these � spinors have the maximum symmetry of an irreducible tensor. From
(A1.5), (A1.11), (A1.36), (A1.37), and (A1.42), one gets the orthogonality relations

�(�,N)
(

jj′ :  ′)
��̇ �̃

(�,N) (s′s : ′
)�̇′�′

= �js �j′s′ �  � ′ ′ ��
�′ ��̇

�̇′ ,
(A1.45)

∑

jj′,  ′
�(�,N)

(

jj′ :  ′)
��̇ �̃(�′,N)

(

j′j : ′
)�̇�

= g�1�′1 ⋯ g�N�′N .
(A1.46)

It was shown elsewhere [1] that the individual terms in the sum in (A1.46) are projec-
tion operators for the reduction of a tensor into its irreducible parts.

All of the remarks in this section apply to the representation of isotropic tensors,
which are isotropic spin tensors having only spin-0 indices.

A1.5 Isotropic Tensors
It is easy to show that all isotropic tensors under + are composed from the metric
tensor g�� and the alternating symbol �����.24 First, one converts to an equivalent
isotropic spinor with spin- 12 indices. Next, one shows that all spinors of that type can be

composed from [ 12 ]metric symbols, by looking at the structure of the [ 0 :
(

1
2 , N

)

]
symbols that occur in the expansion (A1.41). Finally, one converts back to the original
isotropic tensor. By using the standard identity

�� �̃� �� =
1
2

(

g�� �� − g�� �� + g�� �� − i ����� ��
)

, (A1.47)

induction, and (A1.5), the result follows.

24This well-known fact was proved for the general linear groups by Cramlet [27]. Cf. also P. Franklin
[28].
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A2 The Spin Basis in Terms of Isotropic Spin Tensors: Projection
Operators on  (J : v)

The spin basis constructed in Sec. 4 is related to one of the transformations of a (2J+1)-
dimensional spinor into an equivalent irreducible tensor defined in (A1.43). It can be
written in terms of the isotropic spin tensor

��1�1⋯�J �J
(

J0 :0 ′
0
)

�0̇ ,

where the special choices 0 =
(

1, 32 ,… , J− 1
2

)

and  ′
0 =

(

0, 12 , 0,
1
2 ,… , 0, 12

)

are
made. A brief calculation shows that, up to a sign, this spin tensor is the same as

[ J : (1, J ) ]
J

⨂

i=1
��i�i (1, 0) ,

where �(1, 0) is selfdual in its tensor indices, i.e.,

i
2 ����� �

��(1, 0) = ���(1, 0) . (A2.1)

Then the spinors in (4.8) can be written

(

− 12
)J

�(�)(J : v1,… , vJ )

= v1 �1 ⋯ vJ �J [ J : (1, J ) ]
J

⨂

i=1
��i�i (1, 0) . (A2.2)

Equation (4.2) results from the more general identity (A2.1). Spinors of the type
�(J0 :0 ′

0 ) above, which have the minimum possible number of tensor indices, van-
ish upon contraction of any pair of tensor indices.25 It is because of this general prop-
erty that the expression in (4.8) or (A2.2) is traceless.

At the end of Sec. 4 it is mentioned that the construction of a spin basis has in a
certain sense been reduced from a problem for + to a problem for O+(3, C). To make
this notion precise, consider the space  (N : v) of N th rank tensors that vanish upon
contracting any index with the four-vector v, where v⋅v ≠ 0. The subgroup of + that
leaves the space  (N : v) invariant, denoted by +(v), is the group of transformations
that leave v unchanged. It is easy to see that the group+(v) is isomorphic to O+(3, C).

The invariant subspaces of  (N : v) with respect to +(v) thus correspond to the
invariant subspaces of the N th rank tensors with respect to O+(3, C). One can gener-
alize the �(J : v) spinors in Sec. 4 to

�(�,N)(J : v) = [ J : (1, N) ]
N
⨂

i=1
��i (1, v) , (A2.3)

25Cf. [1], where a verification of this well-known fact is given in terms of the properties of C-G coeffi-
cients and Pauli matrices.
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where J can have the values 0, 1,… , N . Then from (4.4) and (A1.36) one gets the
orthogonality relation

(v⋅v)−N �(�,N) (J : v)� �(�,N)
(

J ′ ′ : v
)� = �JJ ′ �  ′ ��

� ; (A2.4)

and from (4.5) and (A1.37) one gets

(v⋅v)−N
∑

J ,
�(�,N) (J : v)� �(�,N) (J : v)�

≡
∑

J ,
P (�)(�)(J :N, v)

= ℎ�1�1 (v) ⋯ ℎ�N �N (v) ≡ P (�)(�)(N : v) .

(A2.5)

It is easily verified that P (N : v) is the projection operator from the space ofN th rank
tensors onto  (N : v), and by arguments similar to those given by the author else-
where [1], that the P (J :N, v) are projection operators for the invariant subspaces
of  (N : v)with respect to+(v). By putting v in its rest frame one gets the projection
operators for the irreducible tensors under O+(3, C).

So far, only spinors with undotted indices have been considered. An analogous
construction exists for spinors with dotted indices, and the relation beween the two
constructions can be used to show that the operators P (J :N, v) are tensors not only
under + but also under . Instead of (4.1) one has

�̃� (1 : v)�̇ ≡ −[ 1 12
1
2 ]

�̇
�̇
̇

(

�̃� v⋅� [
1
2 ]
)�̇
̇

, (A2.6)

or

�̃� (1 : ṽ)�̇ = �� (1 : v)� , (A2.7)

where ṽ� ≡ v�. In general one has

�̃(�,N)(J : v) =

[ N
⨂

i=1
�̃�i (1 : v)

]

{(1, N) : J } , (A2.8)

and

�̃(�,N) (J : ṽ)�̇ = �(�,N) (J : v)� . (A2.9)

Equations (A2.4) and (A2.5) remain valid when � is replaced by �̃. It is easy to
show that

[ J : v ] �(�,N)(J : v) = �̃(�,N)(J : v) , (A2.10)

where [ J : v ] is defined in (3.1). From this and (3.2) one sees that

�̃(�,N) (J : v)�̇ �̃(�,N) (J : v)�̇

= �(�,N) (J : v)� �(�,N) (J : v)� , (A2.11)
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and hence that

P (�)(�)(J :N, v) = P(�)(�)(J :N, ṽ) , (A2.12)

where (A2.9) has been used. Manifestly, P (J :N, v) is a tensor under +. Equa-
tion (A2.12) shows that it is also a tensor under , because it transforms as a tensor
under space inversion.
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A3 Example of a Kinematical Singularity

First, the projection operator S(2 : v) defined by (4.13) can be computed:

S(�)(�)(2 : v) = 1
2

[

ℎ�1�1 (v)ℎ�2�2 (v) + ℎ�1�2 (v)ℎ�2�1 (v)
]

− 1
3 ℎ

�1�2 (v)ℎ�1�2 (v) . (A3.1)

An example of a holomorphic, +-covariant function for spin two is:

M(2) = k2� k2� ���(2 : k3) . (A3.2)

Computing from (5.2),

f (�) =M(2)� �(�)
(

2 : k3
)� m3

−4

= S(�)(�)(2 : k3) k2�1 k2�2 ;
(A3.3)

and using (5.16), one finds in particular that

a(2, 0, 0) = f�� k̂1� k̂1�

= −

[

m22 m32 −
(

k2 ⋅k3
)2
]2

3m32G(K)
.

(A3.4)

This expression clearly has a pole for most of the zeroes of G.
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A4 Proof of Lemma 5

The proof follows very closely that given by Bargmann, Hall, and Wightman for n = r
points and the map I . As already mentioned, the maps I+ and I coincide for l = 3.
Thus3+ can be regarded as embedded in the space of 3×3 symmetric matrices, and
the topology of3+ taken to be the restriction of that of the 3×3matrices. If the mass
constraints are disregarded, then 3+ is simply replaced by the space of symmetric
3×3 matrices. The lemma will be proved without the mass constraints, except for the
assumption that no vectors on the light cone occur. The lemma with mass constraints
then follows by restriction of the topology.

Thus it is to be proved that for any neighborhoodN of a pointZ(0) =
(

z(0)1 , z
(0)
2 , z

(0)
3

)

in the space of three complex four-vectors, excluding vectors on the light cone,26
I+(N) is a neighborhood of I+

(

Z(0)). Because of the proof given by Bargmann, Hall,
and Wightman, it is sufficient to assume that Z(0) is an n ≠ r point, with n = r + 1,
and r = 1 or 2. The proof for the more easily treated n = r points would also follow
from the proof given here, with slight changes of wording.

The convention that z(0)1 ,… , z(0)r have nonzeroGramdeterminant and that z(0)1 ,… , z(0)n
be linearly independent will be used, along with the notation  ≡ I+(Z),  ≡ I+(Y ),
etc.

A series of transformations depending only on Z(0) will be made to simplify the
problem.

For any r = n − 1 point, one can write

z(0)i =
r
∑

j=1
�ij z

(0)
j + �i ! , (A4.1)

where ! is on the light cone and orthogonal to the space spanned by z1,… , zr,27 and
where �i = 0 for 1 ≤ i ≤ r. The �ij depend only on Z(0). Define the new variableswi
by

wi = zi , i = 1,… , r

wi = zi −
r
∑

j=1
�ij zj , i > r .

(A4.2)

This transformation has determinant one, and it gives w(0)i = �i !, for i > r. One can
express the w(0)i in the form

w(0)i =
n
∑

j=1
�ij w

(0)
j . (A4.3)

26If Z(0) contains no vectors on the light cone, then there is a neighborhood of Z(0) with the same
property.

27Cf. Sec. 6.1.
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Then let
xi = wi , i ≤ n

xi = wi −
n
∑

j=1
�ij wj , i > n .

(A4.4)

The �ij depend only on Z(0). This transformation also has determinant one, and it
makes x(0)i = 0 for i > n. Next one performs the transformation that orthonormalizes
the first r vectors ofX(0) and does nothing to the rest. Then by a Lorentz transformation
(Lemma 1), the resulting vectors can be brought to the form

y(0)1 = (1, 0, 0, 0) ,

y(0)2 = (0, 1, i, 0) ≡ !12 ,

y(0)3 = 0 ,

(A4.5a)

for r = 1, and

y(0)1 = (1, 0, 0, 0) ,

y(0)2 = (0, i, 0, 0) ,

y(0)3 = (0, 0, 1, i) ≡ !23 ,

(A4.5b)

for r = 2.
The net effect of all of these transformations is a nonsingular matrix A, depending

only on Z(0),

yi =
3
∑

j=1
Aij zj , (A4.6)

with the property

A(0)AT =  (0) =
(

I 0
0 0

)

, (A4.7)

where the identity block of the 3×3 matrix  (0) is an r×r matrix. The transformation
A is evidently a homeomorphism, both of the space of vectors and of the space of
invariants, that preserves the map I+. Thus it is sufficient to consider neighborhoods
of Y (0).

Let Y be in a neighborhood of Y (0). The final transformation to be made depends
on the corresponding point  which is in a neighborhood of  (0). It will be such as to
make the first r vectors of Y orthogonal to the rest. In particular take

y′i = yi , i ≤ r

y′i = yi −
r
∑

j=1

ij yj , i > r .

(A4.8)
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where 
ij is determined by the requirement that y′i ⋅y
′
j = 0 for i > r and j ≤ r. Then


ij =
r
∑

k=1
ik

[

(r)−1
]

kj , i > r , j ≤ r , (A4.9)

where (r) is the upper left r×r block of  .
Note that  ′(0) =  (0). Also note that, because of its continuity, one can keep

det
[

(r)
]

bounded away from zero in a sufficiently small neighborhood of  (0) (or of
Y (0)), and thus guarantee the existence and boundedness of (r)−1 there. Thus, if one
writes, in such a neighborhood, (A4.8) in the form

y′i =
3
∑

j=1
Bij () yj , (A4.10)

then the set of B() is bounded and the set of inverses B−1() exists and is bounded.
The boundedness of the B() implies that a neighborhood of  (0) (or of Y (0)) can
be found such that the corresponding points  ′ (or Y ′) lie inside of any preassigned
neighborhood of (0) (or of Y (0)). This plus the existence of the bounded set of inverses
B−1() implies that for any neighborhoodN of Y (0), one can find neighborhoods0
of  (0) andN0 of Y (0) such that if  ′ = B() B()T, with  in0, then any Y ′ in
N0 satisfying I+(Y ′) =  ′ has the property that the vectors

∑3
j=1 B

−1()ij y′j form a
point in N.

The above statement also holds for any subneighborhood 1 of  (0) in 0, and
it reduces the problem to the question of whether one can find a sufficiently small
1 such that for any point of the form  ′ = B() B()T, with  in 1, there
is a corresponding Y ′ in N0. Because of the boundedness of B() it is sufficient to
find a small neighborhood  ′ of  ′(0) =  (0) in the space of  ′ such that there is
a corresponding Y ′ in the fixed neighborhood N0. To show that such an  ′ exists,
write Y ′ = Y (0) + V , and

 ′ =

(

C1 0
0 C2

)

+
(

I 0
0 0

)

,

=

⎛

⎜

⎜

⎜

⎜

⎝

(

y(0)1 + v1
)2 (

y(0)1 + v1
)

⋅
(

y(0)2 + v2
) (

y(0)1 + v1
)

⋅
(

y(0)3 + v3
)

⋯ 2!12 ⋅v2 + v2 ⋅v2 !12 ⋅v3 + v2 ⋅v3
⋯ ⋯ v3 ⋅v3

⎞

⎟

⎟

⎟

⎟

⎠

,

(A4.11)

for r = 1; and

 ′ =
⎛

⎜

⎜

⎝

(

y(0)i + vi
)

⋅
(

y(0)j + vj
) (

y(0)i + vi
)

⋅
(

y(0)3 + v3
)

⋯ 2!23 ⋅v3 + v3 ⋅v3

⎞

⎟

⎟

⎠

(A4.12)

with i, j = 1, 2, for r = 2.
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Taking all but the first r components of vi, for i ≤ r, to vanish, Bargmann, Hall, and
Wightman showed that one can find a bound forC1 such that there are always solutions
for the first r components of these vectors that are as small as desired. Accordingly, we
take the first r components of vi, for i > r, to vanish and show that C2 can be bounded
in such a way that small solutions exist for the remaining components. These choices
already guarantee that the off-diagonal blocks in (A4.11) and (A4.12) vanish.

For r = 1, write

C2 =
(

� �
� 


)

, (A4.13)

and choose

v2 =
(

0,−�
4
,− �
4i
, 0
)

, v3 =
(

0,−
�
2
,−

�
2i
, i
√



)

. (A4.14)

If C2 is small, then v2 and v3 are small, as required.
For r = 2, C2 is a number, and

v3 =
(

0, 0,−
C2
4
,−
C2
4i

)

(A4.15)

is a solution with the right property.
Therefore Lemma 5 is proved.
It is worth emphasizing that the same proof does not work for neighborhoods of

n ≠ r points in spaces with l > 3. Upon adding the necessary extra elements to the
lower right block of the matrix in (A4.11), for example, one soon discovers that it is
not possible in general to find small solutions for V .
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