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Abstract

The theory of an elastic string in classical special relativity is considered. Standard

elasticity concepts are applied to parametrize the elastic tensor, which is put into

a Lagrangian in order to define canonical variables. A few specific models for

the elastic potential energy as a function of elastic strain are examined, with brief

comments about their possible suitability for canonical quantization.

∗This LATEX version has only cosmetic changes from the original, handwritten manuscript, dated

September 15, 1974, except for the abstract and introduction, added in July, 2007, and new

string models, added in January, 2009, and reparametrized in July, 2011.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Kinematics of point motion . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3 Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Material conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Elastic Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Canonical variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

(a) The dual string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

(b) The dual string with mass . . . . . . . . . . . . . . . . . . . . . . . . . 14

(c) A stable string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

(d) A tachyonic, stable string . . . . . . . . . . . . . . . . . . . . . . . . . 15

(e) Tachyon removed from string (d) . . . . . . . . . . . . . . . . . . . . . 16

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

i



1 Introduction

This article lays out the theory of a classical, elastic string in special relativity. It is

self-contained, and aims to develop a possible foundation for the canonical quantiza-

tion of strings in conventional space-time. It does not include an actual attempt at

quantization.

Although we reinvented it for ourselves, the formulation of elasticity for a string

was not new in 1974, when we finished the body of this work. Thus we only claim that

Sections 2–5 establish our notation, not that they break new ground.

New models were added to Section 7 in January, 2009. Model parametrization

was revised in July, 2011, to make it easier to discuss the properties sought for models:

stability, nontachyonicity, simplicity of or freedom from constraints, and simplicity of

the four-momentum density expressed in canonical variables.

Two of the models from the original manuscript remain the most promising, those

for the dual string and the dual string with mass.

2 Kinematics of point motion

t

x

We may parametrize the orbit of a point, massive

particle in Minkowski space by

x(t) = (t,x(t)) . (2.1)

Along the orbit, dx is assumed to be positive

timelike. In units where the speed of light c is

unity, the velocity

v(t) = (1, v(t)) , v(t) ≡ dx

dt
(t), (2.2)

is proportional to a four vector.

The proper time elapse between times t0 and

t is

�(t) − �(t0) = ∫
t

t0

dt′


(|v(t′)|) , 
(v) ≡ 1√
1 − v2

, |v| < 1 . (2.3)

This quantity is Poincaré invariant. We take the active view. First of all, translations:

v evaluated at the image of a point on the orbit is unchanged by a four-dimensional

translation. Secondly, we claim that if x′ = (t′,x′(t′)) = Λx, Λ ∈ L↑, and if t′ and t′
0

are the images of t and t0 on the orbit under Λ, then

�′(t′) − �′(t′
0
) = ∫

t′

t′
0

dt′′


(|v′(t′′)|) = �(t) − �(t0) . (2.4)

Proof. Note that dt∕dt′ = (dt′∕dt)−1 > 0 if Λ ∈ L↑. Now

d

dt′

(
t′,x′(t′)

)
= Λ

d

dt′
(t,x(t)) = Λ

dt

dt′
(1, v(t)) . (2.5)
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Hence

1 − v′2 =
(

dt

dt′

)2

(1 − v2) ,
dt

dt′
=


(v)


(v′)
. (2.6)

The result follows by a change of variable in the integral.

We choose to parametrize

x(t) = y(�) , t(�) − t(�0) ≡ ∫
�

�0


 d�′, (2.7)

where 
 is now understood as a function of �: 
 = 
(|v(t(�)|). We have chosen arbi-

trary values �0 and t0 = t(�0) at which we set x(t0) = y(�0). We compute from the

parametrization:

dt

d�
= 
 . (2.8)

We can now see that y(�) is a four-vector:

y′(�) = Λy(�) =
(
t′(�),x′[t′(�)]

)
. (2.9)

Proof. That Λy(�) =
(
t′,x′(t′)

)
is true by definition. The claim is that t′ = t′(�),

where

t′(�) − t′(�0) = ∫
�

�0


(|v′|) d�′, (2.10)

and t′(�0) ≡ t′
0
, the image of t0 under Λ. That is so because:

(a) If we define t′(�) from Λy = x′, we get

dt′

d�
=

dt′

dt

dt

d�
=


 ′




dt

d�
= 
 ′, (2.11)

where we computed dt∕d� from the unprimed definition y(�) = x(t) above. This

coincides with dt′∕d� computed from the primed integral definition in Eq. (2.10).

(b) Furthermore t′(�0) = t′
0

by definition. Hence t′(�) = t′, the image of t(�), for

all � , where t′(�) is defined by the primed integral.

We define the four-velocity

u(�) =
dx

d�
= 


dx

dt
= (
, 
 v(t)) . (2.12)

It is a Minkowski unit vector,

u⋅u = 
2(1 − v2) = 1 , (2.13)
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and a four-vector,

u′(�′) =
dx′

d�′
(�′) = Λ

dx

d�
(�) = Λu(�) . (2.14)

The four-acceleration is also a four-vector:

a(�) ≡ du

d�
(�) , a(�)⋅u(�) =

1

2

d

d�
u⋅u = 0 . (2.15)

The latter equation shows that a(�) is spacelike. Finally, we compute:

a(�) =
dt

d�

d

dt
(
, 
v) = 


(
v

(1 − v2)
3

2

,
vv

(1 − v2)
3

2

+ 
a

)

=

(
v

(1 − v2)2
,

vv

(1 − v2)2
+

a

1 − v2

)
,

a ≡ dx

dt
.

(2.16)

3 Deformation

We introduce a reference, or undistorted string, which lies at rest on a straight line in

three-dimensional space. It has length l, and points on it are parametrized isometrically

by a body coordinate �, −l∕2 ≤ � ≤ l∕2.

We give a family of motions in Minkowski space, one for each of the body points

�:

x(t, �) =
(
t,x(t, �)

)
. (3.1)

We assume that x(t, �) is sufficiently smooth in t and �. At time t, each body point

moves with velocity

v(t, �) =
)x

)t
(t, �) , (3.2)

and acceleration

a(t, �) =
)v

)t
(t, �) . (3.3)

The state of distortion at time tmay be described by the family of vectors)x(t, �)∕)�.

In particular, local dilatation is described by

(
�|x|
��

)2

≡ )x

)�
⋅

)x

)�
. (3.4)

We need a covariant description of this information. And in the relativistic regime,

we may also wonder about a distortion in relative proper time elapse (aging) of neigh-

boring points on the string. As an initial step, we parametrize the orbits with proper

time instead of t:

y(�, �) ≡ x(t, �) . (3.5)
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For now, we defer the question of the convention for the initial �’s as a function of �.

Where no confusion seems likely, we follow the conventions that )y∕)� means � is

fixed and )x∕)� means t is fixed, while partial derivatives with resptect to t or � are

always with � fixed.

The family of Minkowski orbits y(�, �) defines a two-dimensional surface in R
4

whose shape can be described by giving at each point two tangent vectors, with appro-

priate normalization. We choose the tangent vectors to be four-vectors.

The natural choice for the first tangent vector is the four-velocity:

u(�, �) =
)y

)�
(�, �) . (3.6)

The second, linearly independent tangent vector could be chosen as )y∕)�. How-

ever, we choose instead the component of this vector which is orthogonal to u:

�(�, �) =
)y

)�
− u u⋅

)y

)�
. (3.7)

The question then arises what information we throw away by that choice. That

question is related to the choice of initial proper times as a function of �. Suppose we

define

�(t, �) = �(t0, �) + ∫
t

t0

dt′


(|v(t′, �)|) . (3.8)

The function �0(�) ≡ �(t0, �) is at our disposal. If in a given frame we should start

the string at time t0 from rest in the undistorted configuration, it might be natural to

choose �0(�) = �0 to be independent of � in that frame. But let’s leave �0(�) arbitrary.

Then

)y

)�
(�, �) =

)x

)t
(t, �)

)t

)�

||||� +
)x

)�
(t, �) . (3.9)

Also,

)�

)�

||||� = 0 =
)�

)t
(t, �)

)t

)�

||||� +
)�

)�

||||t
=

1




)t

)�

||||� +
)�

)�

||||t .
(3.10)

Thus,

)y

)�
=

)x

)�
− u

)�

)�

||||t , (3.11)

and from Eq. (3.7),

�(�, �) =
)x

)�
− u u⋅

)x

)�
. (3.12)
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We see that � is totally independent of any particular �0(�), which according to

Eq. (3.11) enters )y∕)� only through )�∕)�|t. The quantity )�∕)�|t also measures

the distortion in relative age of neighboring body points �, and that is the information

which is absent in �.

Note that in �, the first term,

)x

)�
=
(
0,

)x

)�

)
, (3.13)

is all that survives in the nonrelativistic limit, since u is of order v∕c in units where c

is not necessarily one.

Our invariant measure of stretch relative to the undistorted body is thus

−� ⋅� = −
)y

)�
⋅

)y

)�
+

(
u⋅

)y

)�

)2

=
)x

)�

||||t ⋅
)x

)�

||||t +

(
v⋅

)x

)�

||||t
)2

1 − v2
.

(3.14)

4 Material conservation

Let the undistorted rest mass per unit length of the string be �0(�). The rest mass

density field is then

�(x) = ∬ �[x − y(t, �)] 
(�, �) �0(�) d� d� , (4.1)

where the � integration is from −∞ to +∞, and the � integration from −l∕2 to +l∕2.

This can also be written

�(x) = ∬ �[x − x(t, �)] 
 �0(�)
dt



d�

= ∫ �[x − x(x0, �)] �0(�) d� .

(4.2)

To see that the definition is correct, let �V (x0) be a volume in R
3 which contains the

image of the body segment �� at time x0. Then

∫
�V (x0)

�(x0,x) d3x = ∫
��

�0(�) d� , (4.3)

which is the rest mass of the segment ��.

The definition of �(x) implies the continuity equation as an identity for distribu-

tions; i.e., let v(x) be any continuous function which agrees with v(t, �) whenever

x = x(t, �):

v[x(t, �)] = v(t, �) ; (4.4)
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then

)t �(x) + (⋅[v(x)�(x)] = 0 . (4.5)

Proof. Let f (x) ∈ (R4) (Schwartz test functions). Then

∫ f [)t� + (⋅(v�)] d4x = −∫
[
()tf )� + ((f )⋅v�

]
d4x

= −∬ u⋅
)f

)y
[y(�, �)] �0(�) d� d�

= −∬
)

)�
f [y(�, �)] �0(�) d� d�

= ∬ f [y(�, �)]
)

)�
�0(�) d� d� = 0 .

(4.6)

The rest mass density �(x) is not a scalar field because of Lorentz contraction of

the volume element. If we define 
(x) in terms of v(x), we get a scalar field by

�(x)


(x)
= ∬ �[x − y(�, �)] �0(�) d� d� . (4.7)

The covariant kinetic stress-energy-momentum tensor field is

K��(x) = ∬ �[x − y(�, �)] �0(�) u
�(�, �) u�(�, �) d� d�

=
�(x)


(x)
u�(x) u�(x) .

(4.8)

In the last line, u(x) is defined in terms of v(x), and is thus arbitrary away from the

world surface of the string.

We get two material identities for K�� , true in the sense of distributions, which

one again proves by smoothing with a test function:

)�K
�� = ∬ �[x − y(�, �) �0(�)]

)u

)�

�

(�, �) d� d�

=
�(x)


(x)
a�(x) , a�[y(�, �)] =

)u

)�

�

(�, �) , (4.9a)

u� )�K
�� = ∬ �[x − y(�, �)] �0(�) u⋅a d� d�

= 0 . (4.9b)

5 Elastic Tensor

We parametrize the class of elastic strings by giving stress-energy-momentum tensors

of the form

T ��(x) = K��(x) + E��(x) . (5.1)
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The elastic tensor E�� describes the effect of elastic forces in the string.

The equations of motion will then be

)�T
��(x) = f �(x) , (5.2)

where f � is the external force per unit volume. It is constrained to obey

u(x)⋅f (x) = 0 (5.3)

for x on the world surface, at which points u(x) = u(�, �), in order to have the proper

balance between power supplied and work done by f . Thus we demand

u� )�T
�� = 0 , (5.4)

which implies

u� )�E
�� = 0 , (5.5)

because K�� identically drops out.

To deserve the name “elastic tensor”, we demand that E�� depend only on the

distortion variable � and the kinematic variable u, plus an explicit dependence on �, to

allow for variable “spring constants”. We make the Ansatz:

E��(x) = ∬ d� d� �[x − y(�, �)]

×
[
e00 u

� u� + e01 u
� �� + e10 �

� u� + e11 �
� ��

]
,

(5.6)

where e��′ can depend only on �⋅� and �. We do not know offhand how to rule out the

remaining covariant possibility �����u���, and so there may be less than full generality

at this point.

After applying the above conservation law in the sense of distributions, we find

0 = u�

{
)

)�
(e00 u

� + e01 �
�) +

)

)�
(e10 u

� + e11 �
�)

−
)

)�

[
u⋅

)y

)�
(e10 u

� + e11 �
�)

]}
. (5.7)

To derive this, we used the fact that

� ⋅
)f

)y
[y(�, �)] =

(
)

)�
− u⋅

)y

)�

)

)�

)
f [y(�, �)] . (5.8)
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Simplifying:

0 =
)e00

)�
+ e01 u⋅

)�

)�
+

)e10

)�
−

)e10

)�
u⋅

)y

)�
− e10 a⋅

)y

)�

+ e11

(
u⋅

)�

)�
− u⋅

)y

)�
u⋅
)�

)�

)

=
)e00

)�
− e01 a⋅� +

)e10

)�
−

)e10

)�
u⋅

)y

)�
− e10 a⋅�

+ e11

(
u⋅

)�

)�
+ u⋅

)y

)�
a⋅�

)
. (5.9)

Further note that

1

2

) � ⋅�

)�
= � ⋅

)u

)�
− � ⋅a u⋅

)y

)�

= −u⋅
)�

)�
− � ⋅a u⋅

)y

)�

(5.10)

which leads to

0 =
)e00

)�
−

e11

2

) � ⋅�

)�
− e01 a⋅� − e10 a⋅� +

)e10

)�
−

)e10

)�
u⋅

)y

)�
. (5.11)

As the canonical class of elastic strings, we choose1

e01 = e10 = 0 . (5.12)

This gives

)e00

)�
=

)e00

) � ⋅�

)� ⋅�

)�
=

e11

2

) � ⋅�

)�
, (5.13)

e11(�, � ⋅�) = 2
)e00

) � ⋅�
(�, � ⋅�) , (5.14)

E�� = ∬ d� d� �[x − y(�, �)]

×
[
e00(�, � ⋅�) u

� u� + e11(�, � ⋅�) �
� ��

]
, (5.15)

)�E
�� = ∬ d� d� �[x − y(�, �)]

×

[
)

)�

(
e00 u

� − u⋅
)y

)�
e11 �

�

)
+

)

)�

(
e11 �

�
)]

. (5.16)

1Note that e01 = −e10 = constant in � and �2 would also cancel e01 and e10 from the equation.
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The e00 term in E�� has the same structure as K�� . It represents the flow of elastic

potential energy, whch gives a correction to the rest mass density. The e11 term is the

elastic stress term, and embodies the familiar statement characterizing elastic media

that stress is the gradient of elastic potential energy with respect to strain.

We have already seen that there are other solutions, with �01 = −�10 ≠ 0. Just as

in the analogous situation with three-dimensional elastic media [1], we think they cor-

respond to velocity-dependent elastic forces, which may persist in the nonrelativistic

limit. We put such solutions outside the canonical class.

6 Canonical variables

In the variables � , � the equations of motion can be written (no external force):

0 =
)

)�

[
�0(�) u

� + e00 u
� − u⋅

)y

)�
e11 �

�

]
+

)

)�

(
e11 �

�
)
,

e11 = −
)e00

)D
, D ≡ −

� ⋅�

2
.

(6.1)

These equations of motion can be written as Euler-Lagrange equations of the form

)

)�

�L

�
)y�

)�

+
)

)�

�L

�
)y�

)�

−
�L

�y�
= 0 , (6.2)

corresponding to the stationary action integral2

I = ∬ L

(
y,

)y

)�
,
)y

)�
, �, �

)
d� d� , (6.3)

if we choose

L =
1

2

(
�0+ e00

)
u⋅u +

1

2
e00 (6.4a)

or

L =
(
�0+ e00

)√
u⋅u , (6.4b)

subject to the constraint u⋅u = 1.

In either case, we find3

�L

�u�
=
(
�0+ e00

)
u� +

)e00

)D

�D

�u�
,

�D

�u�
= u⋅

)y

)�
�� , (6.5a)

�L

�
)y�

)�

=
)e00

)D

�D

�
)y�

)�

,
)D

)
)y�

)�

= −�� . (6.5b)

2With finite limits in the � integration.
3Derivatives of D in these expressions are taken before the four-velocity constraint is applied.

9



Note that

u⋅
)y

)�
= u⋅

)x

)�
−

)�

)�

||||t
= −u⋅

)x

)�
−

)�

)�

||||t .
(6.6)

From Eqs. (3.12) and (3.13),

u⋅
)x

)�
= u⋅� − u⋅u u⋅

)x

)�
, (6.7)

which implies

u⋅
)x

)�
=

u⋅�


2
=

�0



; (6.8)

so we get the expression for the canonical four-momentum:

Π�(�, �) =
�L

�u�
=
(
�0+ e00

)
u� − e11 u⋅

)y

)�
�� (6.9a)

=
(
�0+ e00

)
u� + e11

(
�0



+

)�

)�

||||t
)
��. (6.9b)

By inspection of Eqs. (4.8) and (5.15), we find

T �0(0,x) = ∫ d� �[x − x(0, �)]

[
Π�(�, �) − e11

)�

)�

||||t �
�

]

t=0

= ∫ d� �[x − x(0, �)] (Π�)t=0 ,

(6.10)

if in the last line we adopt the convention

)�

)�

||||t = 0 . (6.11)

The infinitesimal generators of the Poincaré group are:

P � = ∫ d3x T �0(0,x) , (6.12a)

M�� = ∫ d3x
(
x�T �0 − x�T �0

)
t=0

. (6.12b)

To save writing, put

x(�) ≡ x(0, �) , (6.13a)

Π�(�) ≡ Π�(�, �)t=0 . (6.13b)
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Then we get:

P � = ∫ d� Π�(�) , (6.14a)

M0j = −∫ d� xj(�) Π0(�) , (6.14b)

M ij = ∫ d�
[
xi(�) Πj(�) − xj(�) Πi(�)

]
. (6.14c)

The canonical variables are x(�) and �(�). One would expect eventually to quan-

tize the theory by imposing canonical commutation relations:

[
xi(�),Πj(�′)

]
= i �ij �(� − �′) . (6.15)

It is thus important to expressΠ0 as a function of the canonical variables in the classical

theory.

As an initial step, we compute from Eq. (6.9b):

Π⋅Π =
(
�0+ e00

)2
+

(
e11

�0




)2

� ⋅� . (6.16)

This suggests that we need canonical expressions for the variables (�0∕
)
2 and �⋅�, on

the latter of which e00 and e11 depend. This can be done by two identities:

)x

)�
⋅

)x

)�
= −� ⋅� −

(
�0




)2

, (6.17a)

�⋅

)x

)�
=

�0




(
�0+ e00 − e11 � ⋅�

)
. (6.17b)

To compute these identities we used the following:

u⋅� = 
 �0 , u⋅
)x

)�
=

�0



, �⋅

)x

)�
= −� ⋅� . (6.18)

The last of these is valid at t = 0, with our convention for )�∕)�.

Putting these identities together, we get � ⋅� in terms of
(
�⋅

)x

)�

)2
and

)x

)�
⋅

)x

)�
by

solving

(
�⋅

)x

)�

)2
= −

(
� ⋅� +

)x

)�
⋅

)x

)�

) (
�0+ e00 − e11 � ⋅�

)2
. (6.19)

Then we have in canonical form

[
Π0(�)

]2
=
(
�0+ e00

)2
− e2

11
� ⋅�

(
� ⋅� +

)x

)�
⋅

)x

)�

)
+�⋅� , (6.20)

by substituting the solution for � ⋅� into e00 and e11.
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7 Models

To solve for �⋅� in terms of canonical variables, we consider amenable models for the

potential energy function e00. It is convenient to write e00 not as a function of −� ⋅�,

but of its square root, and to scale out a �0 factor. In the following, we suppress any

explicit � dependence:

� ≡ √
−� ⋅� , 0 ≤ � ≤ ∞ , (7.1a)

e00 ≡ �0w(�) , (7.1b)

e11 = −
�0

�

)w

)�
≡ −

�0

�
w′(�) , (7.1c)

�0 ℎ(�) ≡ �0 + e00 − e11 � ⋅� = �0
(
1 +w − �w′

)
, (7.1d)

(
�

�0
⋅

)x

)�

)2

=
(
�2 −

)x

)�
⋅

)x

)�

)
[ℎ(�)]2 . (7.1e)

If we like some function ℎ(�) because it admits a pleasant solution of the last equa-

tion for � in terms of canonical variables, we can find a corresponding potential energy

function w by solving the inhomogeneous differential equation

w − �w′ = ℎ − 1 . (7.2)

The solution of the homogeneous equation is w = ��, w′ = �, with integration con-

stant �; so the inhomogeneous solution is unique if either w or w′ is specified at the

undistorted value � = 1. The general inhomogeneous solution and its first two deriva-

tives are

w(�) = �� − 1 − � ∫
�

1

ℎ(x)

x2
dx , � = w(1) + 1 , (7.3a)

w′(�) = � −
ℎ(�)

�
− ∫

�

1

ℎ(x)

x2
dx , (7.3b)

w′′(�) = −
ℎ′(�)

�
. (7.3c)

With this parametrization, Eq. (6.20) gives the following for the scaled square of

the canonical four-momentum:

Π⋅Π

�2
0

= (1 +w)2 −w′2
(
�2 −

)x

)�
⋅

)x

)�

)
, (7.4a)

= (1 +w)2 −
w′2

ℎ2

(
�

�0
⋅

)x

)�

)2

, (7.4b)

= 2(w + 1)ℎ − ℎ2 +w′2 )x

)�
⋅

)x

)�
, (7.4c)
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where the second version results from Eq. (7.1e). The Hamiltonian density Π0 can be

extracted from these.

Here are two basic properties of the potential energy that we look for, expressed

alternatively as properties of w or of ℎ:

• nontachyonicity: The requirement that the kinetic plus elastic rest mass density

be nonnegative is expressed as

w + 1 ≥ 0 ⇐⇒ � ≥ ∫
�

1

ℎ(x)

x2
dx . (7.5a)

At least tachyonic regions should not be reachable via the equations of motion

from initial conditions of interest.

• stability:

w′ = 0 ⇐⇒ � =
ℎ

�
+ ∫

�

1

ℎ(x)

x2
dx . (7.5b)

w′′ > 0 ⇐⇒ ℎ′ < 0 . (7.5c)

Now we try some examples.

(a) The dual string. Let ℎ = 0. Then

w + 1 = � � , � > 0 ,

w′ = � , w′′ = 0 .
(7.6)

Note that the−�0 term in the elastic part of the rest mass density, e00 = �0 (�� − 1),

exactly cancels the kinetic term. To requirement � > 0 avoids tachyons. The model

is not conventionally stable, because w′ = � ≠ 0 holds for all �. The potential energy

function rises linearly from its totally compressed value at � = 0 through the undis-

torted reference value at � = 1 to infinity at the totally stretched � = ∞. If started at

rest, the string will shrink to a point.4

By Eq. (7.1e) the canonical momentum has only transverse components,

�⋅

)x

)�
= 0 ; (7.7)

so canonical quantization has to deal with a constraint. Because ℎ = 0, Eq. (7.1e)

doesn’t give an equation to solve for the canonical form of �. That’s not needed because

from Eq. (7.4c), the squared canonical four-momentum is given by

Π⋅Π

�2
0

= �2
)x

)�
⋅

)x

)�
, (7.8)

and has no explicit � dependence.

4In finite time?
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I have shown that this model is identical to the Nambu dual string [2, 3], where

any nonzero rest mass density is due to elastic stretch energy. It is known that there

are classical motions where the string rotates about a perpendicular axis, with the ends

moving at the speed of light.5

(b) The dual string with mass. Because of widespread interest in the dual model it

seems sensible to try a minimal modification that avoids the transversality constraint.

We propose ℎ(�) = � = constant:

w + 1 = (� − �) � + � , � > � > 0 ,

w′ = � − � , w′′ = 0 .
(7.9)

The behavior of the potential energy function is then qualitatively the same as be-

fore, with the same instability property and the same avoidance of tachyons; but the

kinetic term does not cancel; and rest mass density at totally compressed � = 0 is

nonzero. Of course � = 0 recovers the usual dual model.

The canonical momentum is not constrained, and we have

�2 =
)x

)�
⋅

)x

)�
+

(
�

��0
⋅

)x

)�

)2

. (7.10)

The scaled, squared canonical four-momentum is given by:

Π⋅Π

�2
0

= �2 + (� − �)2
)x

)�
⋅

)x

)�

+ 2(� − �)�

√
)x

)�
⋅

)x

)�
+

(
�

��0
⋅

)x

)�

)2

.

(7.11)

(c) A stable string. We look for a potential energy function that describes a string in

stable equilibrium in the reference configuration, with restoring forces towards equi-

librium. We choose ℎ(�) to get a quadratic equation for �2. Thus, let

ℎ =
�

�2
, w + 1 =

(
� −

�

3

)
� +

�

3�2
,

w′ = � −
�

3
−

2�

3�3
, w′′ =

2�

�4
.

(7.12)

To have no stress at � = 1, we put � = �. The second derivative is always positive

when � > 0, which makes the minimum of w at � = 1 unique. Thus

w + 1 =
�

3

(
2� +

1

�2

)
, w′ =

2�

3

(
1 −

1

�3

)
, w′′ =

2�

�4
. (7.13)

5I have not located the notes that, if I remember correctly, verified these claims from my original

manuscript.
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For the minimum value,

w(1) + 1 = � > 0 ⇐⇒ �0 + e00 > 0 ; (7.14)

i.e., there is never a tachyonic region.

The plot below shows w for the special case � = 1.

0 1 2 3

model (c) with κ = 1

w

1

ξ

In this model � is a solution of the equation

(
�

�0
⋅

)x

)�

)2

=
(
�2 −

)x

)�
⋅

)x

)�

)
�2

�4
. (7.15)

Hence6

�2 =

1 ±

[
1 − 4

(
�

��0
⋅

)x

)�

)2
)x

)�
⋅

)x

)�

]1

2

2

(
�

��0
⋅

)x

)�

)2
. (7.16)

There is a constraint, which could pose a problem for canonical quantization:7

(
�

��0
⋅

)x

)�

)2
)x

)�
⋅

)x

)�
≤ 1

4
. (7.17)

(d) A tachyonic, stable string. To avoid the constraint on the size of the longitudi-

nal canonical momentum, we try

ℎ = �� ,

w + 1 = �(� − � ln �) , w′ = −� ln � , w′′ = −
�

�
.

(7.18)

6Use the minus sign to make �2 regular at zero denominator.
7We don’t know whether the equations of motion preserve the constraint.
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There is a unique minimum at � = 1 if � < 0, but unfortunately that point then has

a tachyonic neighborhood. We therefore reject this model, even though the solution

for � is unconstrained:

�2 =
1

2

⎡
⎢⎢⎣
)x

)�
⋅

)x

)�
+

√(
)x

)�
⋅

)x

)�

)2
+ 4

(
�

��0
⋅

)x

)�

)2 ⎤⎥⎥⎦
. (7.19)

(e) Tachyon removed from string (d). To remove the tachyonic region in the pre-

ceding model, we shift w upward by a positive constant �:

ℎ = �� + � ,

w + 1 = �(� − � ln �) + � , w′ = −� ln � , w′′ = −
�

�
.

(7.20)

The unique minimum at � = 1 remains for � < 0, but there is no tachyon as long

as � ≥ −�. From Eq. (7.1e) the canonical equation for � is quartic:

(
�

��0
⋅

)x

)�

)2

=
(
�2 −

)x

)�
⋅

)x

)�

)(
� +

�

�

)2

. (7.21)

We have not analyzed whether it leads to a constraint.

The plot below shows w + 1 for � = −2 and � = 2.2.

0

1

2

0 1 2 3

model (e) with κ = −2.0, α = 2.2

w + 1

ξ
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