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Abstract

We present a second heuristic FKN formula for fermions which is more suitable
for constructing relativistic fields in the interacting case than our first attempt. The
FKN formula remains Hermitean, and the Euclidean Dirac fields remain undou-
bled. This version is based on a local extension of Osterwalder-Schrader positivity
to overlapping, Euclidean time arguments, which is not quite so immediate for us
as it was for them. We propose a modified set of axioms for Euclidean Dirac fields,
abstracted from the FKN formula. We show from Osterwalder-Schrader positiv-
ity that the Schwinger functions relative to the physical Hilbert space are at least
well-defined as distributions, and they rigorously correspond to Wightman fields
if one admits their existence as analytic functions with the appropriate continu-
ations from Euclidean to Minkowski points. We do not check in this paper the
natural conjecture that Nelson’s Axiom (A’) implies the continuation.
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I. Introduction

In an earlier paper [ 1], hereafter referred to as (I), we presented a Euclidean Dirac (ED)
field theory for free fields that required no doubling of particles or spin states, and pro-
posed an interacting theory, based on a Hermitean Feynman-Kac-Nelson (FKN) for-
mula that preserved a certain positivity condition obeyed by the free field, and admitted
the construction of a “physical” Hilbert space and a Hermitean, contraction semigroup
on it for imaginary time evolution.

Although that theory still seems to us to have an interesting structure, we have not
found a way to construct relativistic fields from it, in the interacting case. The present
treatment is more promising in that respect.

In (I) we did not fully appreciate that the free ED field in fact obeys three apparently
distinct analogs of Nelson [2, 3] or Osterwalder-Schrader [4, 5] (OS) positivity (besides
Symanzik positivity [6], which is the statement that the smeared fields are operators on
a Hilbert space). The positivity condition we used for the interacting theory in (I) was
nonlocal, but was a direct analog of Nelson’s Markov plus reflection property [2] for
bosons. Of the three conditions, it is perhaps the least direct analog of OS positivity
(although we called it that), insofar as OS positivity is regarded as an intrinsic property
of the relativistic field. The connection to the relativistic free field for the positivity
condition in (I) is through a nonlocal transformation, which we describe in Appendix E.

There is a second positivity condition, also expressed in terms of the nonlocal,
Euclidean field ¢ defined in (I), which we give in Appendix D. From it one reconstructs
the dotted and undotted spinor parts of the relativistic free fields.'

The positivity condition that we use in this paper, which we call oS positivity, is a
direct extension of OS positivity to overlapping time arguments in the Euclidean fields.
This was automatic for Osterwalder and Schrader [5], and also in (I), because there the
positivity condition was expressed in terms of a unitary, metric operator, which com-
muted with the Wick expansion. In this paper, we have to argue a bit more to achieve
the same end. We discuss OS positivity in Sec. II, and prove it for free ED fields in
Appendix A. Continuing in Sec. II, we adopt ﬁ-positivity as an axiom for interacting
ED fields, and show that the Euclidean time evolution passes to a Hermitean, contrac-
tion semigroup on the physical space (proof in Appendix B). We then show that the
appropriate objects, to be identified eventually with the Wick rotated, relativistic field
operators, are densely defined operators on the natural domain in the physical space,
when smeared in time (proof in Appendix C). The analogous result for nonsharp time,
boson fields is also true; and as far as we know, the fact that it follows just from OS
positivity is new. A similar result is true for the nonlocal, ¢ fields in (I); but they do not
have, without some as yet unclear transformation in the interacting case, the necessary
properties to guarantee relativistic invariance and locality in case the continuation to
Minkowski points should exist. The present treatment remedies that defect. We do not
give the details of the proof, because it is a very direct imitation of Nelson [2]; but we
indicate at the end of Sec. II what is involved.

I'We have heard by word of mouth that J. Frohlich and K. Osterwalder have considered Euclidean,
spin one-half fields corresponding to only one type of relativistic spinor index. We do not know if our
construction is related to theirs, particularly since we construct both types of relativistic spinors from the
same Euclidean theory.



The formal parametrizatiion of interacting ED theories, based on oS positivity,
is described in Sec. II1.2 Tt has much the same structure as in (I), with Hermitean,
commuting action integrands and a Hermitean FKN formula, while also intuitively
admitting the construction of relativistic fields.

In Sec. IV, we list a modified set of axioms for ED fields, including Nelson’s Ax-
iom (A") [2], which we believe to be sufficient for the construction of a Wightman the-
ory. We intend to present the verification of the reconstruction elsewhere. It is rather
unrewarding, because presumably no new ideas are needed beyond those of Nelson,
and Osterwalder and Schrader, but necessary, because of certain changes of detail. The
point is to verify that Axiom (A’) ensures the existence of the continuation from Eu-
clidean to Minkowski points, after which, according to this paper, we are finished. The
outright existence of the continuation is presumably the weaker assumption, but there
could be a technical advantage for models in making the connection through (A’), or
some other axiom.

The notation in this paper is taken from (I), and we refer to (I) for definitions of the
free ED fields, conventions for ED matrices, etc. We refer to Eq. (X) in (I) as Eq. (I.X).

I1. Osterwalder-Schrader Positivity (Free Fields)

The OS positivity condition is based on the following, general property of Wightman
fields, which we write in simplified form by considering only monomials. Let ¢, >

. >t > 0. Let u/ﬁ(O, ), feSsSR)® C*, be the relativistic, four-component
spinor field or its Hermitean adjoint at time zero, and let Q be the relativistic vacuum.
Then

e Y0, £1) e @TH YA, £)) L. et b0, £) @ )
is a normalizable vector, and
whir, f) = ey, f)et )

is an operator defined on such vectors for #; > ¢ > 0.
Our construction of the two-point function for the free ED field in (I) was designed
to arrange, for example,

t,>..>>0>—-t;>...>—1,:
(Qp. YsWe(n f1) - YoWs s S vswe(=t1, f1) - Yowg (=t fr) Q)

=(Q, y(=it,, f,) ... w(=ity, fpw(ity, f1) ... y*(it,, f,) Q)
>0.

3)

In this expression, all fields are free fields; we have smeared only in three-space;
and the formal correspondence between Euclidean and Wightman fields is that of
Eq. (1.20).

2This theory is actually a return to an unpublished precursor of (I), which we thought unsuccessful
because of a problem with Wick ordering. The trick that resolves the problem is based on the local anti-
commutation relations.



When we wrote (I), we believed that the positivity of the left-hand side of this
expression could be extended to overlapping times ¢, ..., ¢, (after smearing) only at
the expense of Wick ordering the positive time, and separately, the negative time fields,
so that in the Wick expansion no contractions at equal arguments would occur. The
positivity does not extend to overlapping times as it stands.

We have since learned the following. As long as the times are unequal, the 2x-
point function for the ED fields does not change if we put the negative-time fields
in transposed order and supply the signature factor of the permutation, because of
the local anticommutation relations. The semi-transposed expression, as we show in
Appendix A, then remains nonnegative at equal arguments, because of the following
identity for the free, two-point function, valid with four-dimensional smearing (e.g., in
L,(R*) ® C*) and no support restrictions:

Lemma A.

(Qg, rswe(f1) rowi(f2) Qp)

_ “4)
= —(Qg, rovg(f19) 15WE(f20)) Qi) -

Proof. The notation f, indicates reflection of the time argument, Eq. (I1.35). After
recalling the definition of the two-point function, Eq. (I.17), and that y), y5, and yg are
Hermitean, with y, and y5 real, according to our convention, and our convention for
Fourier transforms, Eq. (I1.28), we see that the left-hand side is

T
/d#E g s (AT +7g-p+uys) 78D

=- /dME g1 7o (AT = - 0p— urs) " 7582 )

T
=- /dME g1(=0p)" v (AT +yg - p—pys)  v58,(—0p).

In the last line, we used the invariance of dy, A, and y under reflections. The last line
coincides with the definition of the right-hand side in Lemma A.

We note in passing that Eq. (4) can be used to define an antiunitary, Euclidean,
“time reflection” operator on free ED fields, which leaves the vacuum invariant. Its
action as an automorphism of the restricted Euclidean group is the same as that of the
unitary time reflection, Eq. (I.35), except that U, XU, on the right-hand side is replaced
by U, x U,. Thus, it does not quite have the right to be called “time reflection”.

In order to write the extended OS-positivity condition (including overlapping ar-
guments) that results from Lemma A as a bilinear form, with the same combination of
fields in both arguments of the form, we introduce some notation. First, in expressions
like the left-hand side of Eq. (3), we absorb the factors y5 and y, into the test functions
and smear in four dimensions; and we re-express the time reflection in terms of the
unitary Euclidean time reflection operator ® defined in Eq. (I.35), which yields for the
semi-transposed expression:

(=17 <II/E(f1) V/E(fn) Qg, Oyg(iKf,)... WE(inl) Qg). (6)
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The matrix K is the ED raising and lowering symbol in Eq. (I.11).
Next, we define an operation on polynomials P[y/é( /)] in the smeared fields:

) (N

] oTr

k{7 |vin| =P |wiaks
where the instructions are:
(1) replace each field by its adjoint (no conjugation of test function);
(i) multiply each test function by iK;
(iii) take the transposed order in each field monomial;
(iv) supply the signature factor of transposition in each field monomial;
(v) do nothing to multiples of the identity.

The operation K can be regarded as an involution on the algebra of test functions.
In Appendix A, we prove the following:

Theorem A (OS positivity). Let 7P, be a polynomial in the free fields l[/é with test
functions having strictly positive time support. Then

(P, Qg, OK[P,]Qg) > 0. (8)

The reconstruction of the relativistic Hilbert space, and of the continuous, Her-
mitean, contraction semigroup of imaginary, positive time evolution follows standard
lines [4, 5, 7]; one only has to verify a few changes of detail due to the fact that, al-
though we work in a Euclidean Hilbert space, our reflection operation ®K is not an
operator because of the factor KC.°

We state the result in a form that is valid for interacting fields which obey Axioms
(i)-(v)in Sec. IV. Let Hg, be the submanifold of the Euclidean Hilbert space generated
from the vacuum by field polynomials smeared with strictly positive time support.
When OS positivity is valid, the physical pre-Hilbert space is

H = Hg,/ Ker K, 9

phys

where Ker OK is the kernel of the sesquilinear form on the field algebra defined by
OK. Let [P, ]Q € H,y, be anotation for the equivalence class defined by P, Q. Let
U(t), t > 0, be the Euclidean time evolution operator.

Theorem B. Let Axioms (i)-(v) in Sec. I'V be valid. Then
PPQ= [UOIPLUM ™| Q (10)

defines a continuous, Hermitean, contraction semigroup on H which leaves the

phys>
physical vacuum € invariant.

3Hegerfeldt has already remarked, in a note at the end of [7], that it is not necessary to have the reflection
operation in his discussion of OS positivity be an operator.
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The proof is reviewed in Appendix B.

The relativistic fields are constructed by analytic continuation from the Schwinger
functions, which goes through by inspection for the free field. For interacting fields,
one must of course ensure that the continuation to Minkowski points exists, and check
that it has the right covariance and locality properties. As a preliminary result in that

direction, we note that operators w#(f, ), where f. has strictly positive, compact time
support, later to be identified with the continued, relativistic field operators by the
formula

Vi) = Z/d“ng(—iyo,y)ha(y), (11

exist on the appropriate domain in H.

To describe that result, we introduce a notation for those Euclidean fields which
are to correspond to relativistic fields:

G =wetsh): v =wiwS)- (12)

Theorem C. Let y/é obey Axioms (i)-(v) in Sec. I'V. Let P, be any polynomial in y/é

with test functions having time support strictly greater than # > 0. Let the time support
of f1< € S(R*) ® C* be strictly between 0 and ¢. Then the expressions

P[P, Q= [U(=9)P,,U(s)| Q;  0<s<1; (13a)

WH(fe) [Po] @ = [wé(fM) P>,] Q; (13b)
densely define P~° and l[//E( f+<) as linear operators on .

The proof is given in Appendix C.
The immediate consequence of Theorem C is that expressions like

Qg i) W) Q)
=(Q, w”(—iylo,yl) wﬁ(—iyno,yn) Q),
le > ... > yi’lO’

(14)

are well-defined for interacting y/é in the sense of distributions (including the time

variables), where the rightﬁand side is defined with respect to the physical space if
wh(—iyy. y) is replaced by w¥(y).*

Of course, a necessary condition for the relativistic construction is that such ex-
pressions actually be analytic functions in the strictly ordered y, variables, and not
just distributions. That is the aim of Nelson’s technical axiom (A”) [2], which we have
included as Axiom (vi) in Sec. I'V. In anticipation of that, we can state the following:

“4In the physical space, one may consider operators to the right of the dividing line beween positive and
negative times to act to the right, and operators to the left of it to act to the left. The dividing line may be put
anywhere by a time translation, from the invariance of the vacuum. We emphasize that Theorem C holds
even if there is no continuation to Minkowski points.



Theorem D (Wightman reconstruction). Let the ED fields obey Axioms (i)-(v) in
Sec. IV, and assume that the sharp time, three-space smeared (in S(R*)®C*) Schwinger
functions

SCs1s e 5,) = Qg W1 1) oo W5y £) Qi)

are analytic in the region Res; > ... > Res,, and exist in the limit on the bound-
ary Res; = 0, Vi, as tempered distributions in Sm s;. Then S(s{,...,s,) are the
Schwinger functions of a Wightman field theory.

The proof is an imitation of Nelson’s argument [2], based on the analytic contin-
uation of Euclidean invariance under the action of the infinitesimal generators of the
restricted Euclidean group, which yields relativistic invariance, and on the antisymme-
try of the Schwinger function, due to the local, Euclidean anticommutation relations,
which leads to local anticommutation relations for the Wightman fields, via antisym-
metry at Schwinger points, which leads to antisymmetry at Jost points [8, 9]. We do
not repeat the argument.

II1. Heuristic Parametrization of Interaction

Our procedure for formally parametrizing interacting ED field theories is generally
the same as in (I), the essential difference being a modification of the class of formal
Euclidean action integrands. With the same notation for Euclidean action as in (I), we
now demand the following properties:

(i) V(p) is a local polynomial in free, Euclidean, fermion and boson fields, of only
even order in y/é.

(ii) V(y) is Hermitean.
(iii) V() locally commutes with itself.

(iv) V(y) transforms like a scalar field under the full Euclidean group, with positive
signature under reflection.

V) K[Vl =Vy).
The Yukawa interaction class formally obeys all requirements:

V() = werswe(): Ploe)], (15)

where ¢ is a scalar, Euclidean boson field.> We interpret the action of K in this case
by formally equating the Wick square to the square minus the vacuum expectation

SBecause of the 75 in the transformation from Euclidean to relativistic fields, this corresponds to scalar
coupling in the relativistic interaction. Pseudoscalar coupling to an odd polynomial in a pseudoscalar field
is also allowed.



value. Of course, none of the terms in such a local expressiion is well-defined for
four-dimensional Euclidean fields, but we note that

KlyrWTye0)] = wE()Tye(y)

. « (16)
KLy Wye():] = wp(WTye(y):
is true whenever
KIrg-l=r (17)

and whenever yy and 1//;; are both regularized by convolution with the same approxi-
mation to the delta function. X does nothing to bosons.
The positive and negative time action exponentials, defined as in (I), obey

E=EE_=EE,, (18a)
£, =exp(-V,) =€ >0, (18b)
=0&.07!, (18¢)

= KI&,]. (18d)

The action of K is interpreted here in the sense of formal power series expansion in
V,.
The K invariance of £, follows from the following combinatoric lemma:

Lemma B. Let at least N—1 of the field polynomials 7, ..., Py be of only even order
in y/é. Then
Proof. Letny, ...,ny be the orders of the monomials in any term of P; ... Pp. Such

terms enter differently in the left-hand and right-hand sides of Eq. (19) at most in the
product of signature factors
> n; n n
(_1)[7] . (_1)[71] (_1)[TN] s
where [X] is the integer part of X, and where the first factor is the signature of the

total transposition, the remaining factors those of the subtranspositions. If all but one
of the n;’s are even, the above quantity is +1.

The invariance of £, now follows from the invariance of V,_ and the restriction that

V' (y) be even in y/ﬁ.

The interacting, Euclidean Hilbert space Hy is defined as in (I), by using the &£

metric, and interacting fields wf/ are defined as in Eq. (I.50). The adjoint on w\/} is

that appropriate to the £ metric. The positive time interacting fields are again formally
functions of the positive time free fields:

vl =¢6"viurpe, (20)



where wave function renormalization is omitted for simplicity. As in (I), the symme-
try operations of the full Euclidean group remain unitary, and the interacting vacuum
Qy = Qg is invariant.

We define a Ky, operation on polynomials in y/{i, by substituting the label V for the
label E in Eq. (7). We have to distinguish it from the K operation on free fields because

we are going to use both.

Theorem E (& positivity). Let V' (y) obey the conditions (i)-(v). Let Py, = P[y/g,( Sl

be a polynomial in q/\ﬁ/ with test functions having strictly positive time support. Then

(Pyy Q. OKy(Py,) Qy)y 2 0. (1)

Proof. Except for a positive normalization factor, the left-hand side, according to the
definition Eq. (1.48), is

<pV+ QE’ £®]CV(PV+) QE)
_ (P[w@(m] Qp. £,08, PYENGK [ Q)

1 1 1 1
EPIWE(S)IEL Qp, OE2PLYE (K £ E] Q) 22)
1

1 1 L 1
<é‘+2 Pluf(fIE] Qg OK {Sﬁ Plyl(role] } Q)
0

v

1
In the next to last line, we used the K invariance of €+2 and Lemma B, and the last
inequality is a formal consequence of oS positivity for free fields. It is at this point
that we really need the extension of OS positivity to overlapping arguments, because

1
the times in €] would overlap those in the field polynomial, even if the times in the
polynomial would be kept distinct.

The Hermitean FKN forumula is precisely the same as in Eq. (I.58).

From here, the formal construction of a relativistic theory proceeds along the lines
indicated in the discussion of Theorems B and C, up to the point where one needs the
existence of the analytic continuation of the Schwinger functions at unequal arguments
to Minkowski points.

IV. Axioms for Euclidean Dirac Fields

We now use the notation yi(f) and u/é( f) for possibly interacting, Euclidean Dirac
fields.

Axioms (i)-(iv) are identical with Axioms (i)-(iv) in Sec. VII of (I). They assert
the Euclidean invariance, temperedness, and irreducibility of the fields, the cyclicity,
uniqueness, and invariance of the vacuum, and local anticommutation relations.



(v) OS positivity. Define the involution X on polynomials in the smeared fields 1//]2

by analogy with Eq. (7). Let P, be any such polynomial where the test functions have
strictly positive time support. Let Qg be the unique, Euclidean vacuum. Then

(P, Qg, OK(P,) Q) > 0.

(vi) Existence of analytic continuation. The fields yxé obey the natural analog of

Nelson’s Axiom (A') [2].

In the absence of surprises, Axiom (vi) is a sufficient technical condition for the
existence of the analytic continuation to Minkowski points. In that case, as we have
already indicated, the relativistic construction goes through, by imitation of arguments
of Nelson and/or Osterwalder and Schrader.

V. Concluding Remarks

(1) We would like to see a definition of the FKN formula, Eq. (I.58), from the formal
relativistic interaction. The remark in (I) that we expected that to be straightforward
was misdirected, to say the least, because it is still not clear whether the parametrization
of action in (I) admits interacting Wightman fields at the heuristic level.

(i) We are not certain that the structure of interaction in (I) is uninteresting for rela-
tivistic theories.

(iii) As in (I), cutoffs may be introduced without destroying oS positivity, at the ex-
pense of restricted Euclidean invariance. It remains to be checked whether the analog
of Osterwalder and Schrader’s Feynman-Kac formula with cutoffs [5, Eq. (5.15)], is
true. If so, it remains to be seen whether there is a technical advantage in dealing with
Hermitean rather than non-Hermitean actions.

(iv) Although we have fewer derivatives in the action than in (I), the Euclidean renor-
malization problem may still be more divergent than in the corresponding relativistic
theory, because of the extra power of four-momentum we put into the Euclidean two-
point function to make it positive. Indeed, one could imagine that the Euclidean theory
corresponding to a given, renormalizable, relativistic theory might be unrenormaliz-
able; i.e., the Hilbert space Euclidean theory could exist in a cutoff version, but in
the limit only the unequal argument Schwinger functions might exist (no Symanzik
positivity in the limit).
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Appendix A. Proof of Theorem A

Following Osterwalder and Schrader [5], we introduce a map from test functions over
R* with positive time support into test functions over R3. Let f, € L,(R*) have
strictly positive time support. Define

fx)=@n)! / ek g (—iw, k) Pk, (A1)

where g (—iw, k) is the analytic continuation of the Fourier transform of f,. By Os-
terwalder and Schrader’s criterion, f, € L,(R%) implies f € L,(R?).

The notation wé is defined in Eq. (12).

It is a straightforward calculation from the definition of the two-point functions,
Eqgs. (I1.16, 17), that

Qs VEFOWE (L) Q) = (@ wHO. D ™0, 7) @), (A2)

where relativistic free fields at time zero appear on the right-hand side.

Let :M[wg( f4)]: be any Wick monomial in y/é with test functions having strictly
positive time supports. If we replace f,, by f,, or f, in the above notation, we indicate
the corresponding Wick monomials where reflection of the time argument or complex
conjugation is performed on all test functions. Let : M[y#(0, f )]: be the corresponding
Wick monomial in relativistic free fields at time zero. Then it follows from the Wick
expansion and Eq. (A.2) that

> ey Qg MlwE T M IwE(f )] Q)
i,j
=) e, (Q My, NI M0, P Q) (A.3)
ij

20’

where the ¢; are arbitrary complex numbers, and there is a transposition of order in the
left factor in the first line.
Now consider the following polynomials, at first with no positive time restriction:

Pyt (AT and  Plyf (1™

To keep the complex conjugation straight, think of P as a sum of field monomials,
with all numerical coefficients absorbed into test functions. Put the monomials in
these expressions into one-to-one correspondence via the correspondence

v () — v, (A4)

Corresponding fields appear in the same order in corresponding monomials.

10



Focus on a corresponding pair of monomials, and make their Wick expansions. Put
the Wick monommials in the two expansions into correspondence, and look at their
coefficients. A typical pair coming from monomials of order N would be:

./ﬁ\*' /ﬁ\*' _1[%]/./3 /\ﬁ . A5
coiwp () owg (f): <= (=Dt ey wp(fie) o wp(f1g):s (A.5)
where 2i + j = N, [x] is the integer part of x, and the coefficients c¢,; and céi are

products of i corresponding two-point functions.
Because of the identity in Eq. (4),

¢ =(=D'cy. (A.6)

Thus, the right-hand member is equal to
N J - -~

ol cnlsl cygg W (f10) W (fi0): (A7)
where we transposed the order of the Wick monomial. But

(—1)[%] (—1)[£] =D =1. (A.8)
Thus, putting in the positive time restriction, it follows that

(Qe. Pyl O™ Plyf(f,0))"™ Qp) 2 0. (A.9)
because we have reduced the left-hand side to the same form as the left-hand side of
Eq. (A.3).

Theorem A now follows by absorbing the real, symmetric matrices y, and y5, and
applying the definitions of ® and K.

Appendix B. Proof of Theorem B

The argument is a trivial variation of that due to Osterwalder and Schrader [4], and
refined by Hegerfeldt [7].
Let U (¢) be the unitary, Euclidean time evolution operator. Then

eUMO ™! =U(-1), (A.10)
and for t > 0, U (¢) preserves Hg, . From the definition of K and the action of U (?),
UOKPIUGO™ = K[UOPUMN ™. (A.11)
Let P, and 734’_ be positive time polynomials. Then

(UWP, Qg OK(P,) Q)
= (P} Q. OUHK(P,) Q) (A.12)
= (P! Qp, OK[UOP,UMN '] Q).

From this formula, we can read off the following:

11



(1) Fort > 0, U(r) preserves the kernel of OK.
For, [P, ]Q = 0 means precisely
(PLQg, OK(P,) Q) =0

for all Pjr. Reading backwards, and using the invariance of € in the first line of
Eq. (A.12), we see that [P, ]Q =0 = [U(t)P+U(t)‘1]Q = 0. Thus, Eq. (10) defines
an operator P’ for each 7 > 0, which leaves the vacuum Q invariant.

(i) P'is Hermitean.
(iii) Since Eq. (10) is well-defined,

P'PS = P35, t,s>0. (A.13)

Next, to see that P’ is a contraction, we have the estimate of Osterwalder and
Schrader, in a form we take from Hegerfeldt [7]:

(P'[P,1Q, P'[P,]Q)

2N+1t

<Pl " 1P e, 1) (A.14)

-N
< PIQIZ 7" (1Pl - 1P HeN)
which gives the result as the integer N — oco. The last line contains norms, both in
Hpys and Hg. The essential ingredients in this estimate are the Hermiticity of P,
the boundedness of ® and U (f) on Hy, the iterability of the smeared fields on Qp, the
invariance of Qg, and the fact that XC preserves the test function space.

Finally, we can read from Eq. (A.12) that P’ is weakly continuous on the pre-
Hilbert space H . It follows that P is strongly continuous on H,, ., because of the
contraction semigroup property, and hence strongly continuous on the closure of H
(contraction semigroup property, again).

phys

Appendix C. Proof of Theorem C

To prove that Eq. (13a) defines an operator, we show that [P, ,]Q =0 = [U(-s)P,,U(s)]Q =
0.
Choose an e > 0 such that P, has time supports > r+&. Note that U(—s") P, U(s")
has strictly positive time support if 0 < s’ < ¢ + £. Then we can compute the physical
norm
2
lU(=s"/2)P,, U /19|

= <U(—s’/2) P, Qp, OK[U(-s'/2) P, U(s'/2)] Q)

= (U(=s")Ps; Qg, OK(P;,) Q)

= ([U(=s P, U(H] Q, [P,]1 Q).

(A.15)
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This vanishes if [P,,]Q = 0. By induction, the same hypothesis gives

[U(=s'EN2 P, UG’ TN 212 =0. (A.16)
We can cover every point in the closed interval [0, #] by numbers of the form s” Y {V 27",
so the result follows.

We apply the same criterion to show that Eq. (13b) defines an operator. We may
drop the hat because the y, and y5 play no role. We compute

2
|vi s Po €|
£ (WE(S ) Py Qg OKPs) i (K f 1) )
+ <Wé(f+<t) Py Qp, G)WE*(in+<r) K(Ps1) QE>

= = (W e focr) W) Py Qi OK(P,) Q).

(A.17)

We have so far used the definition of £, local anticommutativity, and the action of ®,
without keeping track of signs.

Now we insert the factor U(—1)U (t) on both sides of I[/é*(l'}/EO Iy <) in the last
line. The innermost conjugation changes the negative time support function f,, <) to
positive time support. The rightmost factor U(¢) preserves the positive time support
of what follows it. The leftmost factor U (—f) we send through to the right-hand side
of the scalar product, where it remains U (—t). Then we apply the result for Eq. (13a)
to conclude that if [P,,]Q = 0, then the last line is zero, thus proving that Eq. (13b)
defines an operator.

All that remains is to note that the domain on which the operators in Egs. (13a)
and (13b) are defined is dense. That follows by a simple argument from the fact that
all vectors P'[P. . 1Q are in the domain, and [P, ]Q is dense by definition.®

Appendix D. Reconstruction of Free, Relativistic,
Two-Component Spinor Fields

We show how to compute the relativistic combinations
Vi =V +or5)f /2l o=+, (A.18)

from the free, nonlocal, Euclidean fields (,bn, defined in Eqgs. (I1.32, 33).

There are several identities which relate the two-point functions of @* to those of
w¥, and some of these even induce identities among the ¢¥ two-point functions. For
example, at time zero:

<QE’ $0,70f) $*(0, f’) QE) = <QE’ $*(0, VOfI) $(0, 1) QE) . (A.19)

SIf y belongs to a dense set, and ¢ is orthogonal to all Py, then 0 = <¢, P’u/) = (P’¢,y/> =>
P'¢p=0 = ¢ =0,because P! = exp—tH is invertible.
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From this identity, one can determine two subalgebras of the time zero ¢¥ algebra
for which the vacuum is a central state, by restricting to test functions which obey
f = =xyof, ' = xyyf’. We are not interested in that particular possibility here, but
we do in fact make an algebraic restriction on the class of test functions.

Define é)\ﬁ with four-dimensional smearing by

b_()=mpl +75)//2].
b,(f) = Plirs" - o +70)f /2],
& (f) = ¢"livg - 0 — 10)/21.
() =md [ = y)f /2]

(A.20)

Thus, we are effectively restricting (;lA)G to test functions which obey y, f = f, and @;
to those which obey y, f = —f. In the van der Waerden representation, that means the
upper components of f are equal, respectively, to + the lower components of f.

We introduce the notation

fi=fM®6s(yy—1

for Euclidean test functions at sharp time, with f € L2(R3) ® C*. Then, we claim the
following identities for the nonvanishing two-point functions:

t>0> -t :
(Qp. () T, (f}) Q) (A21)
= Q. wil=it. (I + s@ro)f /21 wh Tt . = s@ro)f' /21 Q)

where T is the unitary time reflection operator defined in Eq. (1.40), and s(}f) = (-) if
#f =% and (+) in the other case. The imaginary time notation is the same as in Eq. (2).
In general, this identity is to be understood in the sense of distributions, although
those two-point functions containing only dA)_ and dA)i are also directly well-defined
as functions, and at 7 = ¢/ = 0, in particular. In the right-hand side of Eq. (A.21), the
(I +075)/2, for example, picks out the upper or lower components of (I +s()yy)f /2.
These fields are nonlocal, just as ¢ is. From Eq. (I.34) it is easy to compute:

~

{d-D. &0} =0,
{@-D. §} = {87 20 |

I+, I-y (A.22)
- /dllE g (p) TO YE0PO TO gD,

~ oA, 2 N I-
(8.0} =2 [nee 0 5 reanore 0512 20,

with all other anticommutators vanishing. Except for the first one, the above anticom-
mutators do not generally vanish when f and f’ have disjoint supports.
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We have not explored whether the positivity condition implied by Eq. (A.21) can
be extended to overlapping arguments. Although we are by no means sure it would be
fruitless to try, we do no see at the moment a natural way to build these fields into an
interacting theory which would formally admit interacting, relativistic fields.

Appendix E. Sharp-Time Reconstruction of Free Dirac Fields

The nonlocal, Euclidean field ¢, defined in Eqs. (I.32, 33), exists at sharp time. We
look for a transformation of the test functions over three-space, f — X f, which lets
us identify the free, Euclidean and Dirac fields at time zero on the time zero subspace
of the Euclidean Fock space:

¢*(0. X ) =y*0. /),
$0.X ) = w0, f),
(Q, 30, X 1) ¢*0, X 1) Qp) = (Q, w(0,/) y*(0, /) Q),
(Qp. ¢*(0.Xf) p0. X f7) Qg) = (Q, y* (0. /) (0, 1) Q).

(A.23)

We find solutions which are multiplication by a matrix in p-space: i.e., under the
three-dimensional Fourier transform:

f(x) — gk,

(A.24)
X f(x) = X(k)g(k),

where X (k) is a 4 X 4 matrix. By inspection of the two-point function, Egs. (I1.33),
(I.16), such solutions must obey:

% I+]/5
X (k) -y X(k)=(y - k+my,
m

(A.25)
* I - 75
X (k) WX(k)=Yo(V'k—m)~

With the van der Waerden convention for Dirac matrices, the solutions are

UkWVk-o UkVk-6

X(k) = y/m (A.26)

U'k)Vk-¢ -U'(k)Vk-o

where U and U’ are SU(2)-valued, Lebesgue measureable functions of k.
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