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Abstract

Recent developments in the formulation of causality restrictions on the .S matrix
are reviewed, with attention focused on the behavior of matrix elements of the
translation operator between suitably localized in and out states. Rapid decrease
for large translations outside the timelike velocity cone of the center of momentum
follows from Poincaré invariance and boundedness of S, as a result of a general-
ization of a theorem of Jost and Hepp. At present, rapid decrease can be proved in
the Haag-Ruelle scattering theory, when the in state is translated to large positive
times, but not for the remaining timelike directions, where thresholds of interme-
diate particles play a role. In the case of two-particle reactions, we show that rapid
decrease for timelike directions is equivalent to permanence of smoothness of the
p-space wave function, as an application of rapid convergence properties of the
angular momentum expansion.
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1 Introduction

The consensus for some time, mainly due to experience with dispersion relations, has
been that the analytic stucture of scattering amplitudes in some way expresses their
causal content. More recently some quantitative meaning has been given to this no-
tion, growing out of the Coleman-Norton [, 2] interpretation of “nonnegative-a” type
Landau singularities as corresponding to kinematically and causally realizable, mul-
tiple scattering processes. The concept of macroscopic causality for the .S matrix of
strongly interacting particles has been given an impressively complete formulation in
studies of F. Pham [3] and of C. Chandler and H. P. Stapp [4], as a catalog of rapid
cluster properties, corresponding to the kinematical and causal possibility or impos-
sibility of having contributions to a given scattering process from multiple scattering
events, when the space-time scale is made large enough. The vacuum cluster property
[5, 6] (connectedness structure) and the one-particle pole structure [7, 8, 9, 10] of the
S matrix are special cases that have been studied extensively.

Pham argues that if the p-space, connected scattering amplitudes are boundary
values of analytic functions, if the physical region boundary values are analytic except
for nonnegative-a type Landau singularities, and if the physical region discontinuities
across these singularities (with the +ie prescription) are given by the Cutkosky rules,
then the amplitudes, smeared with suitable smooth wave functions, have the rapid,
multiscattering decomposition properties that are identified with macrocausality [3].

Chandler and Stapp, on the other hand, take macrocausality as a postulate, and
prove that the connected amplitudes are C* in the physical region, except on the Lan-
dau surfaces. If they assume in addition that the amplitudes are analytic in the phys-
ical region whenever they are C®, they also get the +ie prescription for continuation
around the Landau singularities [4]. On their line of reasoning, the +ie prescription can
be expected to follow in the sense of distribution theory even without the assumption
of analyticity at points of infinite differentiability. The physical region singularities
(points where the amplitude is not C*) should be parametrized by connected, mass-
shell multiple scattering amplitudes, but with all internal mass-shell delta functions
replaced by Feynman propagators with the usual +ie.

We find the formulation of macrocausality proposed by these authors appealing.
If we accept it, the relation between physical region differentiability and macrocausal
properties of scattering amplitudes can be systematically understood. But we also feel
that not all rapid cluster laws in the list are equally compellng to the intuition, a feeling



that roughly parallels Chandler and Stapp’s classification of the laws of macrocausal-
ity according to weak asymptotic causality (WAC) and strong asymptotic causality
(SAC) [4]. In Section 2, we illustrate the contention that there is an overlap between
those macrocausal laws about whose common sense status we might hesitate (SAC)
and those laws that have so far resisted proof in axiomatic field theory. Macrocausality
is naturally associated with the idea of a coarse-grained space-time structure [7, 9, 1 1],
which we might at first glance think abstracts the physically nonobjectionable content
from the field-theoretic idea of microscopic space-time. Actually, it is unclear how
much macrocausality is guaranteed, if the .S matrix can be interpolated by local or
almost local fields. The rapid cluster properties derived in the Hagg-Ruelle scatter-
ing theory [12, 13] for a class of spacelike separations, including those that increase
the impact parameter, by K. Hepp [6], are convincing evidence that an “almost local”
Wightman field theory of massive particles is indeed a theory of short-range interac-
tions (if there is any interaction at all); but strong timelike cluster properties are gen-
erally much more difficult to prove, because they involve the multiparticle structure of
the .S matrix, corresponding to physical region Landau singularities, in an essential
way. So far, Hepp has obtained results in the cases of the vacuum and one-particle
structures, for “causally independent” configurations [8].

In this paper, we study the subset of laws of macrocausality associated with rapid
decrease of matrix elements of the operator for timelike and spacelike translations
between in and out states that are smooth and have compact support in p-space; and in
the case of two-particle scattering, we relate them to a regularity condition which says
roughly that the .S matrix preserves the smoothness of the in wave function, except at
normal thresholds. For simplicity, we neglect spin. To define our notation, let ¥ be
the Fock space for one type of massive, spinless particle:

F = @ H,, (1.1)
n=0
where H,, is the Hilbert space of free, symmetric wave functions g(py, ...,p,). with

the usual Lorentz invariant scalar product. The .S matrix is a unitary map of 7 onto
itself, which commutes with the Fock representation U (b, A) of the identity component
of the Poincaré group, P, . We write for the space-time translations

Tb)=Ub,I)=exp(iP-b), (1.2)
where for g € H,,,
T (b) = exp (inj-b) g
0 . > (1.3)
We look at matrix elements of the form
(fIST()|g) = (fout|T(b)|gin), (1.4)

where f,g € D(R3?), D(R"), the Schwartz spaces [14] of C* functions of compact
support. It would not modify the discussion much to let f and g be in the Schwartz
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spaces S(R3) and S(R3") of C*® functions which decrease rapidly with all derivatives
near infinity, but it’s convenient to use functions of type D.

In Section 2, we classify the laws of rapid decrease according to their interpretation
on the basis of macrocausality. We point out that when b increases along space-time
directions that lie outside the timelike velocity cone where the center of momentum of
the free system propagates, rapid decrease of the matrix elements follows already from
the P, invariance and unitarity (or just boundedness) of .S, along with the exclusion of
massless particles from the theory, by a generalization of a theorem of Jost and Hepp
[15], on matrix elements of the translation operator between states generated from
the vacuum by polynomials in the field operators, to matrix elements between C*
vectors of a unitary, continuous representation of 7,.! For timelike directions inside
the center of momentum velocity cone which, roughly speaking, delay the interaction
of the incoming particles until after the outgoing particles have already emerged, thus
violating elementary notions of causality, rapid decrease can be proved in the Haag-
Ruelle scatting theory, if the particles have disjoint velocities, as a straightforward
application of methods developed by K. Hepp. We do not give the proof; no new ideas
are involved. This is a special, but characteristic case of WAC, in the terminology
of Chandler and Stapp, which is thus supported by field theory. For the remaining
timelike directions, we give a physical motivation for the fact that the laws of decrease
depend inextricably on regularity properties of the .S matrix which have not yet been
proved in local or quasilocal field theory. This is a special case of SAC.

Our main technical result is a theorem that pins down the relation between rapid
decrease of the matrix elements for timelike translations and regularity of the .S matrix
in the simplest, nontrivial case of two-particle scattering. To write down the theorem,
we need some more notation.

If we let E, be the projection operator for two-particle states in 7, the two-particle
S matrix is S, = E,SE,. It maps H, into H,. Although we do not assume that .S,
has normal threshold singularities in the variable s = (p; + p,)?, we want to be able
to exclude them in case it does, so we consider a fixed, compact set A of values of the
total four-momentum P; and we let D, be the set of C* g € H, with support A in
the variables P, suppp g = A. Then D, C D(R®). Finally, it turns out that we do
not have to consider all timelike translations; it is enough to look at the one-parameter
family of proper time translations with respect to the center of momentum, exp(i M 7),
where M = 44/ P P is self-adjoint, and —oo < 7 < 0.

In Section 4, we prove the “only if”” part of the following theorem. The “if”” part is
easy, so we prove it further on in this introduction.

Theorem 1. Let A exclude the two-particle threshold; i.e., if P € A, then s = P2 £
4m?. Then

(f

! Although it does not, as far as we know, appear in the literature, some form of this generalization was
already known, and was applied for example, by Hepp [¢]. The version here evolved from a collaboration
(unpublished) between J. Bros and the author.

S,eM7lg) € SR) forall f,g€D,, (1.5)




if and only if S, D, C D, and S; D, C D,. That is, rapid decrease of F(r) =
< f | S, M7 | g> is equivalent to the permanence of smoothness of two-particle states
under the action of .S, and S;r 2

To prove this theorem, we use rapid convergence properties of the angular mo-
mentum expansion for states in D,, above the two-particle threshold, which we give
without proof in Section 3. We also derive there, as an immediate consequence of the
rapid decrease of F(7), that the partial wave amplitudes are C* in s. As A. Martin
has recently emphasized [16], it has not been proved in field theory that the partial
waves, defined as boundary values from above in the cut s plane, are even continuous
anywhere in the elastic region. Thus, the law of macrocausality corresponding to rapid
decrease of F(r) is conceivably stronger at this point than microscopic causality and
the other ingredients of local field theory.

The permanence of smoothness condition, although not enough to give differentia-
bility of the invariant amplitude a(s, t), certainly implies more than the smoothness of
the partial waves. It can be shown that it retricts the growth in total angular momentum
of arbitrary derivatives of the partial waves to that of a polynomial in J.

It is easy to see that permanence of smoothness is equivalent to a six-parameter,
spatial cluster property, where we translate each of the in and out particles by its own
spatial translation. For example, let

ap,ay

g™ =exp—i(p;-a; +py-ay) g (1.6)

and let S; f=weD,. Then

G(ay. ay) = (f| S |g"*) (1.7)

is the Fourier transform of the smooth function wg, up to smooth energy factors; and
hence it vanishes rapidly for large a; or a,. Conversely, if G(a;, a,) vanishes rapidly
at infinity for all f and g in D,, it follows that wg, and hence w, is smooth.

Of course the rapid decrease of G(a;,a,) has a macrocausal interpretation; and
since the theorem tells us that it is equivalent to rapid decrease of F(r), the interpre-
tations of the two laws ought to be related. The relation is discussed in Section 2.

The following corollary makes the connection with matrix elements of T'(b):

Corollary 1. (f|S expiMz|g) € SRR), for all f and g € D,, if and only if
(f1ST(b)|g) € S(R*), forall f and g € D,.

We prove the corollary, and incidentally the “if”” part of the theorem, in two steps:

(i) Permanence of smoothness implies that 7(b) = (f| S T(b) |g) € S(R*). That
is because

d’p, &p,

Fhe'Pb 1.8
26()1 2(,02 f ¢ ( )

T(b) =

2Differentiability in 7 is automatic, because M can be applied arbitrarily many times to f or g, leaving
themin D,.



where i = .S, g is smooth. By the implicit function theorem, this can be written as the
Fourier transform of a C* function with compact support in the variables P, as long
as A does not contain the two-particle threshold, since P is smooth in p; and p,, and
oP,/0p;, i = 1,2, has rank four.

(i) If T7(b) € S(R*), then f h is smooth in P, and hence in \/E P, because the
change of variables \/E < PYis smooth whenever s > 0, as it is in the physical range.

Then F(zr) € S(R) because it is the Fourier transform of a smooth function in \/E with
compact support. That proves the “if” part of the theorem and of the corollary. It also
proves the “only if”” part of the corollary, because if F(r) € S(R), then the theorem
tells us that we have permanence of smoothness; and thus 7 (b) is in S (RY).

It takes more work to prove that rapid decrease of F(r) implies that .S, and S;
preserve smoothness. That is what we do in Section 4.

A last introductory remark: all of our results go through for particles with different
nonvanishing masses and spins, as long as we are careful about choosing the spin
conventions with respect to which smoothness is defined. The canonical and spinor
conventions are suitable, but the helicity convention is not [17].

2 Macrocausal Interpretation

The intuitive foundation for the formulation of macrocausal properties of the .S matrix
of massive particles is the notion that, because the interactions are short range, the
regions and times of interaction of a collection of incoming and outgoing particles,
and the orbits along which they propagate before or after collision, can be adequately
described on a large space-time scale by the free, multiparticle wave functions, if they
are sufficiently well localized.

Macrocausality is a list of statements about what happens to the transition am-
plitudes (f out|gin) when the in and out particles are grouped according to regions
and times of interaction, which are then moved away from each other by large, four-
dimensional translations [3, 4]. We distinguish two types of statement:

(1) If the regions and times of interaction are separated from each other in such a
way that it is always possible to connect them with intermediate, real particles, sat-
isfying the mass shell and four-momentum conservation constraints at each “vertex”
(region of interaction), and moving forward in time on classical, free orbits, the tran-
sition amplitude should factorize for large separations (up to a phase depending on the
separation) into a product of scattering amplitudes, one for each region of interaction,
with integrations over the allowed internal momenta.

(i) If the regions and times of interaction are separated in such a way that it is
impossible for physical particles, propagating forward in time and conserving four-
momentum, to communicate between them, the amplitude should go to zero for large
separations.

The rate at which the amplitude factorizes or vanishes should depend, insofar as
the principle of short range is valid, on how well the free wave functions localize the
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external particles, i.e., on how well they restrict the interactions to finite regions and
times. The first type of statement is always strong, in the sense of SAC, while the
second can be either strong or weak.

In this paper, we are directly concerned only with the particularly simple subset
of laws of type (ii) where all in particles interact in one space-time region, and all
out particles in another. Thus, we study the decrease of matrix elements for large,
four-dimensional translations between suitably localized in and out states. Before we
can discuss these laws more quantitatively, we must specify what “suitably localized”
means: in what sense are the space-time regions of interaction defined when we choose
our p-space wave functions to be of Schwartz class D? We call the localization pro-
vided by these wave functions Ruelle localization, because it derives from his lemma
on smooth solutions of the Klein-Gordon equation [13].

For one-particle states, it goes as follows: Let g be in D(R?), and let

3
7 = — 3 / % e"* g(p). (2.1)
@2n)?

Ruelle’s lemma says that the particle essentially propagates inside its four-dimensional
velocity cone, which is defined by

C(g)E{x:X=Bx0,withp€suppg}. 2.2)
w

For technical reasons, we follow a formulation of K. Hepp [ 18], and actually consider
the velocity cone C,(g) generated by the closure # of some open neighborhood of
supp g. The relevant part of Ruelle’s lemma says that, for every integer N, there is a
bound Cjp, depending only on g and #, such that

~ -2
0l < Cy (142 +x2) 70

(2.3)
for x & C,(g). For x € C,(g), the decrease is like ||x|| =/, where the norm is Eu-
clidean.

When x, = 0, we can think of g as being localized in some finite region centered
at the origin, the extent of which is restricted by the infinite set of bounds Cy;. This
kind of localization is somewhat crude, but it is sufficient for many arguments where
one needs to know only that the region of localization is roughly finite, if arbitrarily
large. To avoid a possible point of confusion, note that the translated wave function
g? is still in D, and can be thought of either as localized when x, = b, in a region
centered at X = b, whose size is restricted by the same Cj; as before, or as localized
when x; = 0 in a region restricted by new bounds Cp ().

One side remark about Ruelle localilzation: it makes no essential distinction be-
tween Newton-Wigner [ 1 9] space-time variables and ordinary configuration variables.
The difference in p-space is a factor \/5, which is smooth, and leaves D invariant. The
effect is only to change the constants Cj. In our case, we can think of the configuration
variables x unambiguously as translation variables, writing

gx) = (ol T(x)lg), (2.4)



where @(p) = 1 in supp g.

Ruelle localization of free states with several particles can be discussed in an anal-
ogous way. To the support of each g € D(R3") we can associate a 3n (space-) + 1
(time-) dimensional velocity cone in the obvious way, outside of which g(z,x,, ..., x,,)
vanishes rapidly. In the spirit of our discussion, the regions and times of interaction are
essentially defined by the points in this velocity cone where two or more one-particle
variables take the same value. If all the velocities v; = p,/w; are disjoint (nonover-
lapping in the terminology of Hepp [18]) in supp g, i.e., v; # v; if i # j, the particles
are essentially together only at t = 0 and x = 0; they are converging from t = —oo or
diverging toward t = +c0. Our picture then is that the particles can interact only within
some roughly finite time interval about ¢t = 0 within a roughly finite region centered at
x = 0. If two of the particles can have the same velocity, they can be together always;
and we cannot say that the time interval of interaction is essentially bounded.

In the discussion below, it is convenient to assign a velocity cone to the total four-
momentum of the system. There should be no confusion if we use the same notation
for that as for the one-particle case, and write C(g) for the timelike cone generated
by V = P/Py, with P € suppp g being the total four-momentum corresponding to
momenta in supp g.

Now consider matrix elements of the form

T (b) = (fout|T(b)|gin), (2.5)

where f € D(R3), g € D(R?), #,n > 2, and the velocities are disjoint in supp f
and supp g. We think of the out particles as interacting essentially at # = 0 and x = 0,
while the in particles interact essentially at t = b and x = b. We choose the center of
momentum velocity cones to be the same for f and g, i.e., suppp f = suppp g, with
no loss of generality, because .S conserves P.

Parametrizing the translations by b = uA, where ||u|> = ué +ul=11>0,we
look at three cases:

I. u is outside the center of momentum velocity cone Cn(g) (now 7 is the closure
of an open neighborhood of suppp g);

II. uisinside C(g) and uy > 0;
II. u is inside C(g), uy < 0, and suppp g contains no normal thresholds.

In all three cases, as A becomes large compared to the sizes of the regions and
time intervals of interaction, which are “fixed” by f and g, the in and out regions can
only be connected by free, intermediate particles if they travel with a velocity u/uy.
They must all move along together; i.e., they must be at the normal threshold for the
multiparticle intermediate state.

In case I that is essentially impossible, because u lies outside the velocity cone
where the center of momentum, and hence any intermediate particle at a threshold,
essentially propagates. It becomes impossible in case II because the in region gets
retarded relative to the out region, so that any intermediate particles would have to
propagate backward in time. More directly, we would see out particles emerging before
the in particles had interacted. In the last case, intermediate particles could propagate
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forward in time, but there we have ruled out normal thresholds, preventing them from
propagating together as they must.?

These arguments ought to be only as good as the localization of f and g. The
formulation of macrocausality in cases I-III takes that into account. It says that 7 (uA)
decreases rapidly in A:

IT W) < Cy(1+ 7N, (2.6)

To complete the mathematical statement, we ought to say how the rate of decrease
depends on the direction u. Intuition need not be a reliable guide for such technical de-
tails; but to be able to prove anything, we should make sufficiently strong assumptions.
We require that the decrease be uniform in u, i.e., that the bounds C,; be independent
of u, when normal thresholds are excluded from suppp g; and if thresholds are allowed,
so only cases I and II apply, we require uniform decrease outside the backward veloc-
ity cone generated by some n D suppp g. The latter condition can be justified in the
Haag-Ruelle theory; both can be justified in perturbation theory.

Although we think the principles of macrocausality just reviewed qualify as highly
reasonable properties of the .S matrix, a word of caution is in order. Aside from intro-
ducing practically unavoidable technical elements, we swindled slightly in our intuitive
discussion of case III. In fact, cases I-III are listed in what seems to be the order of de-
creasing intrinsic plausibility, i.e., the order of increasing restrictiveness. That agrees
with Chandler and Stapp’s classification, in which case II belongs to WAC and case 111
to SAC. Let’s discuss it a bit more.

Rapid decrease in case I is a posteriori about as plausible as it can be; we can
prove it just from the Poincaré invariance and boundedness of .5.* This follows from a
theorem of Jost and Hepp on matrix elements of the operator for spacelike translations
in Wightman field theory [15]. By partially imitating their proof, one can free it from
its field theory context to get the following.’

Let U (b, A) be a continuous, unitary representation of the covering group of 7, on
a Hilbert space H, with infinitesimal generators P, and M ,,. Let K be the set of C*
vectors of the representation; i.e., all polynomials in the infinitesimal generators are
defined on K. It follows that K is dense in H, because it contains all analytic vectors
of U [20]. The terminology comes from the fact that if w € K then U(b, A)y is a
C®, vector-valued function on the group manifold.® We assume that the spectrum of
the total four-momentum P lies in the closed, forward light cone; and to each yw € K
we assign its support in that spectrum, supp p . We define the corresponding velocity
cone C,(y) just as before, except for a technical restriction on the choice of 7, which
is automatically satisfied when suppp y is compact, so that we do not need to worry
about it for our application.

3This kind of argument owes a great deal to R. Norton’s discussion of the physical interpretation of
normal threshold singularities in [1].

4Even if .S is only a partial isometry and not unitary, it is of course bounded.

3 Although it does not, as far as we know, appear in the literature, some form of this generalization was
already known, and was applied, for example, by Hepp in [8]. The version here evolved from a collaboration
(unpublished) between J. Bros and the author.

The Gérding domain provides at least a dense supply of typical C*® vectors. See [21].



Theorem 2. Let ¢,y € K. Then
(| T ly) | < Cy(1+ 7N 2.7)

uniformly for all directions which are outside C, (y) (for any fixed ) in the sense that
Pyu # uyP for any P € 7.

Of course if P = 0 is in the support, no u satisfies the condition of the theorem. If
P = 0is not in the support, the support is bounded away from zero, since it’s closed by
definition. Because P has no spacelike vectors in its spectrum, we always have rapid
decrease for spacelike directions.

In case I, macrocausality is a corollary to this theorem:

Corollary 2. Let S be bounded, let U(b, A) be the Fock representation of P, for
spinless, massive particles, and let

[S,Ub,N]=0. (2.8)

Let f € D(RY), g € D(R3). Then {f| S T'(uA) |g) vanishes rapidly in A, uniformly
foru & C,(g).

To prove the corollary, we need only note:

(a) f and g are C* vectors, because if we use the explicit expressions for P, and
M, in the Fock representation we find that they leave Schwartz spaces of type
D invariant;

(b) any bounded operator which commutes with U (b, A) also commutes with P, and
M, (in the sense of Riesz and Sz.-Nagy [27]), and hence leaves K invariant.

Actually, we have proved a bit more than we demanded in case 1. The corollary
above makes no restriction that the velocities be disjoint.

In case II, we expect macrocausality to be more restrictive; and Chandler and Stapp
[4] have indeed obtained interesting results from WAC in general. The technical state-
ment appears not to be unreasonably restrictive because, as we mentioned in the In-
troduction, it can be proved in the Haag-Ruelle scattering theory. The essential in-
gredients in the method due to Hepp [8] are the spectrum condition (mass gap), and
quasilocality of the fields in the sense of Haag-Ruelle. Besides, Chandler and Stapp
have proved WAC in potential theory [4].

So far, axiomatic field theory has been unable to tell us anything about case III.
We cannot expect the result to follow just from locality and simple properties of the
momentum spectrum. It ought to depend on what intermediate states can occur, and
on the absence of physical region singularities except on Landau surfaces, which is
a relatively deep, nonlinear property of field theory, if it can be proved at all. The
theorem described in the Introduction tells us precisely what regularity properties are
needed for two-body scattering.

We can already understand that result, if we push our intuitive discussion a bit
further in case I1I. Earlier we said that, as the in region of interaction gets advanced in
time relative to the out region, it becomes impossible for the transition to go because
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not all of the intermediate particles can arrive at the out region within a sufficiently
bounded time interval, if normal thresholds are excluded. For this argument to be
valid, the intermediate particles must be sufficiently well localized on their classical
orbits. In other words, their wave function (whatever that means) ought to be smooth in
p-space (it automatically has compact support). Thus it is plausible that rapid decrease
should hold only if the .S matrix sufficiently preserves the smoothness of the in state.

To conclude our interpretive review, we mention the intuitive relation between the
timelike cluster properties II and III and spacelike cluster laws where the in or out
particles are individually translated. A mathematical equivalence was pointed out in
the Introduction, for two-particle reactions, which we look at to get the idea. Define
G(a;,a,) as in Eq. (1.7). If the two-particle threshold is excluded from the support,
the velocities are automatically disjoint. Parametrize the translations by

a,=JAe, i=12, 1>0; le;|? + ey> = 1. (2.9)

A special case of aresult of K. Hepp [60] shows that, in the Haag-Ruelle theory, G(4e, Ae,)
decreases rapidly in A for all directions (e, e,) where e; — e, does not point along a
relative velocity v —v, in supp g. Thus, if e; —e, points along some v; — v, in supp g,
and if supp g is small enough not to contain (—p, —p,), we get rapid decrrease for
G(—Aeq, —1e,), but not for G(+4e, +1e,).

These two situations correspond, respectively, to cases II and III. For simplicity,
sete, = 0 = v,; and consider G(—Ae|, 0). According to Fig. 1, the region where the in
particles interact gets effectively delayed, as in case II. Either for timelike translations,
as in I1, or for the relative spatial translation here, rapid decrease is true in field theory.

For the other direction, of course, the interaction of the in particles gets effectively
advanced, as in Fig. 2, corresponding to case III. Rapid decrease has been proved
in field theory neither for G(+4e;, +4e,) nor for case I1I. The obstacles to proof are
presumably the same, and we should not hope for rapid decrease unless all thresholds
are excluded from the support.

t t
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'l
’ —)\el )\el
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Figure 1. Case II: WAC Figure 2. Case Ill: SAC
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3 Angular Momentum Expansion

To prove our theorem for two-body scattering, we use some properties of the partial
wave expansion, which we now describe.

First, we need the angular momentum expansion for two-particle wave functions.
It is convenient to express p; and p, in terms of Garding-Wightman variables, which
for equal masses take the form

pL—p
P=pi+p:  Q="5 = g=;3Vs—dm. (3.1)
Then P-Q = 0; Q% = —1. We parametrize Q by its center of momentum values, using

the boost A(P) from the center of momentum to P: Q = A(P)e; e = (0,e); e-e = 1.
With these variables, the measure becomes

&p; &p, _q
2w 2w, 2\/§

where d€2(e) is the usual measure on the unit sphere, d(cos 8)d¢ in spherical coordi-
nates. As long as we are above the two-particle threshold, so that g > 0, the change of
variables p;, p, < P, e is smooth, i.e., a function g(P, e) is C* on R* x (unit sphere)
if and only if it is smooth in p;, p,. The changes of variable F, < s < 4/s are also
smooth, as we are in the physical region, where s > 4m? > 0.

The Clebsch-Gordan coefficient for reducing the product representation |p1, py)
of the Poincaré group to irreducible components |P, J, A), where J =0,1,2,...; A =
—J,—J+1,...,J, and where we choose the canonical convention for the projection A
of total angular momentum in the center of momentum frame, is [ I

d*P dQe), (3.2)

N

H
(P.J.4|p1.py) =2 <s — ) 8P —py = p) Y] (®) (3.3)
The normalization is (P, J, A|P',J', A') = WP — P61 6,,, and YAJ is the
standard spherical harmonic.
It can be shown by more or less standard methods, using this explicit expression,
that if (p;, p; |g) € D, where D, is defined in the Introduction, with the two-particle
threshold excluded from A, then the projections onto eigenspaces of J,

gl(P)=(P,J,Alg), (3.4)
are in D(R*), with support in A, and that all partial derivatives

9% 073
AP0 P’

D’ gl(P) = g/ (P) (3.5)

"Terms with odd J are of course missing when the spinless particles are identical and parity is con-
served.
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vanish rapidly in J, uniformly in P. In fact, if we define seminorms (using the Schwartz
notation for summation over £)

L N
paLm(@® =Y, Y, sup |[(J+1)' D g](P)|, (3.6)
£=0n=0 74P

we get a topological isomorphism between the Schwartz space D, and the space of
sequences of C*® functions g/{ (P), all having support in A, and with all derivatives
decreasing rapidly in J. The expansion

8(p1p2) =2 <S >4 D gl (P)Y] () (3.7)
J.A

N
—4m2

converges uniformly, and rapidly in J'; and the same is true of the term by term deriva-
tives with respect to P and e.®
Assuming that S is unitary and 7, invariant, the action of S is

(8,8)](P)=9,(s)g](P), (3.8)

where the improper eigenvalue 9, (s) of .S, is a Lebesgue measureable function of s,”
with |9;(s)] < 1. To see that rapid decrease of F(r) = (f|.S expiMr |g) for all
f,g € D, implies that 9, (s) is C* for s in the image of A, just choose f and g to be
eigenstates of J, of the form

1
g/ (p1.py) =2 <$) ; g](P)Y] (e). (3.9)
Then

<fJ| S M7

g = /d4P V9 (s) ij(p)gj(p). (3.10)
A

Making the C*® change of variables P < (\/E, P), we choose the sum of products of

wave functions to have the form ¢(s) y(P) P,/ \/E, where ¢ and y are smooth; and we
do the P integration, bringing the integral to the form

C /d(\/E) eV 9 ,(5) p(s) . (3.11)

Rapid decrease in 7 implies that 9;(s) is C* in 4/s, and hence in s, from standard
theorems on Fourier transforms. That holds for all smooth ¢ with support in the image
of A, so 9,(s) is smooth there, too.

8We have not found these particular results in the literature, although they are of a type which is familiar
in the theory of distributions and nuclear spaces. Analogous statements about rapid convergence of the
Legendre series for analytic functions are well known among physicists. The proof for nonequal masses and
spins, taking threshold behavior into account, too, will be presented in another paper. Rapid convergence
for Gaussian wave packets has been discussed by S. MacDowell, R. Roskies, and B. Schroer in [24].

9 A. Martin in [16] attributes this general result to R. Stora (unpublished).
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In the next section, we investigate

h(p1.p2) = (52 8)(Py. P2)

1
=2 (L> > 9,(5) 8] (P) Y] (@),
J,A

s—4m?

(3.12)

and show that if F(z) decreases rapidly, 4 is smooth. We can already say that A is
continuous, because 9;(s) is continuous and uniformly bounded in s and J, and thus
does not affect the rapid, uniform convergence of the series for g. In fact, if we choose
(s,P,e) as variables, the same argument tells us that 4 is C* in (P, e), because the
expansion still converges uniformly and rapidly, as long as 9; is not differentiated. If
we knew that the derivatives of 9; were bounded by polynomimals in J, uniformly
in s, we could argue in a similar way to show that 4 is C*, period. We do not know
a direct way to get that information about J;, so we proceed by another method in
Section 4.

4 Proof of Theorem 1

The proof that rapid decrease of F(z) implies smoothness of 2 = S, g involves some
rather technical steps, not all very interesting. We have tried to give only enough details
to get the ideas across. The proof for the smoothness of S; f is the same, so at least
we can forget about that.

The method is based on the following lemma (Ruelle'?): Let x € R and y € R/,
and let f(x,y) be Lebesgue square integrable in R*Y, ie., f € L,(R**). Let all
partial derivatives with respect to x, and separately, all derivatives with respect to y,
be square integrable:

D f(x,») ELyR™M),  Dj f(x,y) € LyR™).

Then f is C*, i.e., all mixed derivatives exist, too, and all derivatives are continuous.

To apply the lemma, we choose variables s, P, e, and separate them into two
classes, s and P, e. We use the same symbol as before for / in terms of these variables,
h(s,P,e); and we remember that we showed from the angular momentum expansion
in the last section that all derivatives of 4 with respect to P, e are continuous. They
certainly have compact support, so they are L,.

What remains is essentially to show that 0"h/ds" is L,. Actually, we define a
new function H = h P,/ \/E and show that it is smooth, from which we can easily
recover the smoothness of 4. Clearly the derivatives of H with respect to P and e are
continuous with compact support, because those of s are. We need several steps to
show that 0" H /ds" is L, for all n, and hence that H is smooth.

10We don’t know whether this is a classical result. We brought up the question in a private conversation
with D. Ruelle (1964), who provided a two or three line proof. The reader might enjoy reproducing it.
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1. We begin with a weaker statement, that 0" H /ds" is defined for fixed s as a Schwartz
distribution in the variables P, e. In fact, it follows directly from our hypothesis that
it is a (weakly) continuous family of such distributions, as s varies. Let (P, e) be a
smooth test function, with compact support, and define

(Hy, @) = /d3P dQ H(s,P,e) p(P,e). (4.1)

As a function of s, the integral (HS, (p) is continuous, because the integrand is con-
tinuous, with compact suppport. Now choose a function y(s) € D(R) which is unity
in the support of H. From the way we defined H, including the Jacobian for the trans-
formation from P, to 4/s, the hypothesis of the theorem says that

/ d(v/s) &™V° (Hy, @) w(s) = / d(v/s) e7V5 (Hy, ¢) 4.2)

decreases rapidly; hence (HS, (p) is C*, either as a function of 4/s or as a function of
s, because it is the Fourier transform of a function of rapid decrease.

A standard result of distribution theory'! tells us that 0" (Hy, ¢) /ds" defines a
continuous linear function on the test functions ¢, which is what we claimed.

2. Because H is continuous with compact support, and C* in the variables P and e,
H,(P,e) = H(s,P,e)is a test function in those variables for fixed s. Moreover, if T is
any distribution in P, e with compact support, then (T, H S) is a continuous function
of s. The reader can easily verify that by representing T as a finite sum of derivatives
of continuous functions, and integrating by parts.

3. Putting these two steps together, we can treat G"E/ ds" as a weakly continuous
family of distributions,'” and H| as a weakly continuous family of test functions. In
other words, the quantities

" (T
957 (7, 1)

are separately continuous in s and s’. These parameters vary in a finite dimensional

vector spce, so by the theorem on hypocontinuité'> we have not only separate but joint
continuity.

4. From the symmetry (ﬁs H S/> = ( s Es), it follows that

an JE—
= (H,. 1)

UL, Schwartz [14], vol. I, Théoréme XIII, p. 74.
12The arguments in steps 1 and 2 are invariant under distribution of complex conjugates.
131 Schwartz [14], vol. I, Théoréme XI, p. 73.
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is also jointly continuous in s and s’. In other words (ﬁs H S,> is separately C* in s

and s, the derivatives being jointly continuous with compact support, and hence L.
Ruelle’s lemma therefore tells us that

(ES, H) e DRY). (4.3)

5. Hence

0"H, o"H nogn —
S’_S =a—a—<HS,Hs’>
ds™ das" ds" gs'"

is in D(R), and the iterated integral

n
/ds /d3P dQ’a H sp.e
as"

is finite.

4.4

=S

2

6. That completes the proof that 0" H /ds” is L, in all variables, and hence that H is
C®, except for a technical point. Does the existence of the iterated integral above im-
ply the existence of the multiple integral, so that we really have square integrability in
all variables together? The rigorous answer in this case is “yes,” but we refer elsewhere
for the proof [17]. It requires a further look at the angular momentum expansion and
its convergence almost everywhere, and an application of standard theorems on inte-
gration.

5 Conclusion

To summarize the situation, if we remember that macrocausality follows in case I from
P, invariance and unitarity, the basic theorem of this paper asserts that macrocausality
in cases II and I11 is equivalent to permanence of smoothness under .S, for two-particle
reactions. We argued that some such regularity property is also essential for the intu-
itive justification of macrocausality in case III. Even that much smoothness, which is
considerably less than that suggested by perturbation theory, is sufficiently strong to
have resisted proof in field theory; and it has been suggested [ | 6] that field theory may
not have enough dynamical content, without further postulates, to permit the proof of
one of its consequences, smoothness of the two-body partial waves in the elastic re-
gion. One could thus legitimately question whether rapid decrease is “common sense,”
at least in case III, although surely few would disagree that smoothness (or even an-
alyticity) between thresholds is a reasonable property for the two-particle scattering
amplitude to have.
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