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1 Introduction
This is a LATEX version of a manuscript containing more systematic notes for some
lectures from a graduate course I gave in Fall, 1973. It provides a conceptual

∗© 1973 by David N. Williams. This document is made available under the Creative Com-
mons Attribution ShareAlike 4.0 International License. The January 6, 2024 version fixes minor
errata.
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description of Lorentz/Poincaré covariance for photons, from the point of view
of the Lorentz gauge class, and the radiation gauge within that class.

Our convention for the Lorentz metric is (+−−−), with four-vector indices,
𝜇, 𝜈,… , taking values 0, 1, 2, 3, and three-vector indices, 𝑖, 𝑗,… , taking values
1, 2, 3.

2 Lorentz gauge wave functions
Let L be the linear space of four-vector valued, Lebesgue-measureable func-
tions of 𝐤 ∈ R3, subject to the Lorentz condition,

𝑘⋅𝑓 (𝐤) = 𝜔𝑓 0− 𝐤⋅𝐟 = 0 , (2.1a)

𝑘 = (𝜔,𝐤), 𝜔 ≡ |𝐤| ≥ 0 , (2.1b)

and endowed with the pseudo inner product

(𝑓, 𝑓 ) = −∫
d3𝑘
2𝜔

𝑓 ⋅𝑓. (2.2)

The inner product is nonnegative, because the Lorentz condition implies that the
real and imaginary parts of the complex four-vector 𝑓 are lightlike or spacelike.
There are, however, nonzero vectors of zero pseudonorm, namely, those of the
form 𝑘𝜇ℎ, where h is a complex scalar function.

To check that all zero-length vectors have this form, it is convenient to intro-
duce a basis of four, independent four-vectors,

𝑘 , 𝑘̃ ≡ (𝜔,−𝐤) , 𝑒𝜆(𝑘), 𝜆 = 1, 2 , (2.3)

where the spacelike vectors 𝑒𝜆 are chosen so that

𝑘⋅𝑒𝜆 = 𝑘̃⋅𝑒𝜆 = 0 ⇐⇒ 𝐞𝜆 ⋅𝐤 = 0 ,

𝑒𝜆 ⋅𝑒𝜆′ = −𝛿𝜆𝜆′ ,

𝑒𝜆 =
(

0, 𝐞𝜆
)

.

(2.4)

Note that 𝑘 ⋅𝑘 = 𝑘̃ ⋅ 𝑘̃ = 0, and 𝑘 ⋅ 𝑘̃ = 2𝜔2. That we can always choose such a
basis follows by looking in the special Lorentz frame

𝑘 = (𝜔, 0, 0, 𝜔), 𝑘̃ = (𝜔, 0, 0,−𝜔). (2.5)
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Then we can choose, for example,

𝑒1 = (0, 1, 0, 0), 𝑒2 = (0, 0, 1, 0). (2.6)

Now any 𝑓 (𝐤) can be written

𝑓 𝜇(𝐤) = 𝑘𝜇𝑓∥(𝐤) + 𝑘̃𝜇𝑓∥̃(𝐤) +
∑

𝜆 𝑒
𝜇
𝜆 𝑓𝜆(𝐤). (2.7)

If 𝑓 ∈ L, then the Lorentz condition implies that 𝑓∥̃ = 0. If 𝑓 is a zero length
vector in L, then

0 = (𝑓, 𝑓 ) =
∑

𝜆 ∫
d3𝑘
2𝜔

|

|

𝑓𝜆(𝐤)||
2

⇐⇒ 𝑓𝜆(𝐤) = 0 ⇐⇒ 𝑓 = 𝑘𝑓∥ .
(2.8)

Moreover, the representation implies that any zero-length vector in L is orthog-
onal to all vectors in L:

(𝑓, 𝑓 ) = 0 ⇐⇒ (𝑓, 𝑔) = 0 for all 𝑔 ∈ L . (2.9)

The set  of zero-length vectors is called the radical of L.1 The space L
with its pseudo inner product is a pseudo Hilbert space, because it has a radical.
We define the physical Hilbert space  of one-photon states by “dividing out the
radical”:

 ≡ L∕ , (2.10)

i.e.,  is the set of equivalence classes {𝑓} of vectors 𝑓 in L whose difference
is proportional to 𝑘, with inner product

⟨

{𝑓}, {𝑓 ′}
⟩

=
(

𝑓, 𝑓 ′) . (2.11)

Any elements of the two equivalence classes may be used to evaluate the inner
product on the right-hand side. The radical  is itself an equivalence class in
L, which corresponds to the zero vector in . The inner product in  is not
just nonnegative; it is positive definite. The operations of additon and scalar

1A subspace of a linear space with nondefinite metric is called a radical if all vectors in
the subspace are orthogonal to all vectors in the space. Such subspaces are also called isotropic
subspaces, because all vectors in a radical necessarily have zero length.
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multiplication in  are well-defined by addition and scalar multiplication of any
representations from the equivalence classes.  is a true Hilbert space.

If we change a one-photon wave function from L by adding an element of
the radical , the corresponding state in the physical space  is unchanged.
This is a partial quantum-mechanical analog of the invariance of the classical
𝐄 and 𝐁 fields under a gauge transformation of the vector potential within the
Lorentz gauge class. The physical one-photon states are equivalence classes of
wave functions related by gauge transformations of the form

𝑓 𝜇(𝐤) → 𝑓 𝜇(𝐤) + 𝑘𝜇𝑔(𝐤). (2.12)

The rather abstract notion of a pseudo Hilbert space L is useful here be-
cause it simplifies the discussion of Lorentz invariance, which is a nontrivial
consideration for photons. In the next section we shall define the action of the
homogeneous Lorentz transformations by an ordinary, vector-field transforma-
tion law on L. The action on physical states is then defined by “passing to the
quotient”, . The way this works is the following. We say that a linear operator
𝑈 on L is pseudo unitary if

(i) 𝑈 and 𝑈−1 are defined on all of L.

(ii) (𝑈𝑓, 𝑈𝑔) = (𝑓, 𝑔) for all 𝑓, 𝑔 ∈ L.

It follows that 𝑈−1 is pseudo unitary, too. Note that 𝑈 (as well as 𝑈−1) leaves the
radical invariant:

𝑈 ⊂  , (2.13)

because if 𝑓 has zero length, so does 𝑈𝑓 . It follows that 𝑈 induces a unitary
operator on  via the formula

𝑈 {𝑓} = {𝑈𝑓} . (2.14)

Proof.

(i) First of all, the mapping {𝑓} → 𝑈 {𝑓} is well-defined because {𝑈𝑓} is
independent of the representation 𝑓 . That is,

{𝑓} =
{

𝑓 ′} ⇐⇒ 𝑓−𝑓 ′ ∈  ⇐⇒ 𝑈 (𝑓−𝑓 ′) ∈  , (2.15)

hence,

{𝑈𝑓} =
{

𝑈𝑓 + 𝑈 (𝑓 ′−𝑓 )
}

=
{

𝑈𝑓 ′} . (2.16)
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(ii) It is easy to check that the operations 𝑈 {𝑓} and 𝑈−1 {𝑓} are linear.

(iii) ⟨𝑈 {𝑓}, 𝑈 {𝑓}⟩ = (𝑈𝑓, 𝑈𝑓 ) = (𝑓, 𝑓 ) = ⟨{𝑓}, {𝑓}⟩; thus we have the
operator equations on :

𝑈 ∗𝑈 = 𝐼 , 𝑈 ∗ = 𝑈−1. (2.17)

To summarize, a pseudo-unitary operator on L induces a unitary operator
on .

One last, technical point, which we shall promptly ignore: if we have a family
of pseudo-unitary operators 𝑈 (𝜆) on L, labeled by some real parameter (or set
of parameters) 𝜆, which has matrix elements continuous in 𝜆, then the induced
unitary operators 𝑈 (𝜆) on  also have continuous matrix elements, because

⟨{𝑓}, 𝑈 (𝜆) {𝑔}⟩ = (𝑓, 𝑈 (𝜆)𝑔) . (2.18)

3 Representation of the Poincaré group
The homogeneous Lorentz group, L(4,R), has four connected pieces, which are
continuously connected to one of the four transformations in its discrete sub-
group, the identity, space inversion, time inversion, or total inversion. The iden-
tity component is the proper, orthochronous subgroup, traditionally called L↑

+.
The inhomogeneous Lorentz group is called the Poincaré group, and has four

connected components corresponding to those of the homogeneous group. Its
elements consist of pairs (𝑎,Λ), 𝑎 ∈ R4, Λ ∈ L(4,R), with the multiplication
law

(𝑎,Λ) (𝑎′,Λ′) = (𝑎 + Λ𝑎′,ΛΛ′). (3.1)

3.a Continuous transformations
We define the action of the identity component of the Poincaré group on L by

[𝑈 (𝑎,Λ)𝑓 ]𝜇 (𝐤) = 𝑒𝑖𝑘⋅𝑎Λ𝜇
𝜈 𝑓

𝜈(Λ−1𝐤), (3.2)

where Λ−1𝐤 is defined to be the three-vector part of Λ−1𝑘. This transformation
maps L onto itself because it preserves the Lorentz condition and the sign of
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the energy; it is also a representation of the group, and is pseudo unitary because
of the invariance of the measure element 𝑑3𝑝∕2𝜔 and the invariant contraction
𝑓 ⋅𝑓 in the pseudo inner product.

The representation is continuous in the group parameters, and therefore in-
duces a unitary, continuous representation on the physical space .

3.b Discrete transformations
The action of the discrete transformations is:

space inversion: (P𝑓 )𝜇(𝐤) = 𝜂P 𝑓𝜇(−𝐤), |

|

𝜂P
|

|

= 1 , (3.3a)

time inversion: (T𝑓 )𝜇(𝐤) = 𝜂T 𝑓𝜇(−𝐤), |

|

𝜂T
|

|

= 1 , (3.3b)

total inversion: (Y𝑓 )𝜇(𝐤) = 𝜂Y 𝑓 𝜇(𝐤), |

|

𝜂Y
|

|

= 1 , (3.3c)

charge conjugation: (C𝑓 )𝜇(𝐤) = 𝜂C 𝑓
𝜇(𝐤), |

|

𝜂C
|

|

= 1 . (3.3d)

The constant phase factors 𝜂P, 𝜂T, and 𝜂C are arbitrary,2 while 𝜂Y = 𝜂P 𝜂T because
Y = PT is required for representation of the discrete symmetry subgroup. Note
that P and C are pseudo unitary, and that T and Y are pseudo antiunitary. Charge
conjugation is trivial, because the photon is its own antiparticle.

3.c Infinitesimal generators
We have built in zero mass and positive energy for the photon from the beginning.
This is expressed by the action of the four-momentum operator 𝑃 𝜇, which is the
infinitesimal generator of the translations:

𝑈 (𝑎, 𝐼) ≡ 𝑇 (𝑎) = exp 𝑖𝑃 ⋅𝑎,

(𝑃 𝜈𝑓 )𝜇(𝐤) = 𝑘𝜈 𝑓 𝜇(𝐤), 𝑘0 = 𝜔 ≥ 0 .
(3.4)

The mass-squared operator has only the discrete eigenvalue zero in its spectrum:

𝑀2 ≡ 𝑃 ⋅𝑃 = 0 . (3.5)

The operator 𝑃 𝜇 is pseudo Hermitean, i.e.,

(𝑃 𝜇𝑓, 𝑓 ) = (𝑓, 𝑃 𝜇𝑓 ) . (3.6)
2And unobservable for one-particle states.
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The infinitesimal generators of the three-dimensional rotations are defined in
terms of the parametrization for rotations in L↑

+:

𝑅(𝜃, 𝐞) = exp−𝑖𝜃𝐞⋅𝐒 , 𝐞⋅𝐞 = 1 ,

(𝐒𝑖)𝜇𝜈 = −𝑖 𝜖0𝑖𝜇𝜈 , 𝑖 = 1, 2, 3 ,
(3.7)

where 𝜖0123 = −1. In other words,

𝐒 =
(

0 0
0 𝐒3×3

)

, (3.8)

where
(

𝐒3×3
𝑖

)

𝑗𝑘 = −𝑖 𝜖𝑖𝑗𝑘 . (3.9)

The rotation operator on L is

𝑈 (0, 𝑅) ≡ 𝑈 (𝑅) = exp−𝑖𝜃𝐞⋅𝐉 . (3.10)

By the standard technique, we find the generators 𝐉 by looking at infinitesimal
rotations:

𝐉 = 𝐋 + 𝐒 ,

𝐋 = −𝑖𝐤 × 𝜕
𝜕𝐤

.
(3.11)

The orbital and spin parts 𝐋 and 𝐒 commute, because 𝐋 acts only on the momen-
tum argument of a vector 𝑓 while 𝐒 acts only on the four-vector index:

(𝐒𝑓 )𝜇(𝐤) = 𝐒𝜇
𝜈 𝑓

𝜈(𝐤) . (3.12)

The boosts are parametrized in L↑
+ by the rapidity 𝜆 along a direction 𝐧, 𝐧⋅𝐧 =

1,

𝐿(𝜆,𝐧) = exp 𝑖𝜆𝐧⋅𝐊S ,

(𝐊S
𝑗 )

𝜇
𝜈 = −𝑖 (𝑔𝜇0 𝑔𝜈𝑗 − 𝑔𝜇𝑗 𝑔𝜈

0),
(3.13)
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or in matrix notation:

𝐊S
1 = −𝑖

⎛

⎜

⎜

⎜

⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎠

, 𝐊S
2 = −𝑖

⎛

⎜

⎜

⎜

⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎠

,

𝐊S
3 = −𝑖

⎛

⎜

⎜

⎜

⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟

⎟

⎟

⎠

.

(3.14)

The superscript “S” indicates “spin part”.
The infinitesimal generators of the boosts on L are defined by

𝑈 (0, 𝐿) ≡ 𝑈 (𝐿) = exp 𝑖𝜆𝐧⋅𝐊 . (3.15)

By the same standard technique as for the rotations, one finds

𝐊 = 𝐊L +𝐊S ,

𝐊L = 𝑖𝜔 𝜕
𝜕𝐤

.
(3.16)

Again, the orbital and spin parts commute.
Because the finite transformations 𝑈 (𝑎,Λ) preserve L, and the Lorentz con-

dition in particular, it follows that the infinitesimal transformations, and hence the
infinitesimal generators 𝑃 , 𝐉, and𝐊, do, too. That is easy to verify directly, for 𝑃 .
To check explicitly for 𝐉 and 𝐊 involves a small calculation, because the orbital
and spin parts do not separately preserve L; only the sum does. A straightfor-
ward application of the definitions gives

𝑘⋅(𝐋𝑓 ) = −
[

𝐋, 𝑘𝜇
]

𝑓 𝜇 = [𝐋, 𝐤 ]⋅𝐟

= −𝑖𝐤×𝐟 , (3.17a)

𝑘⋅(𝐒𝑗𝑓 ) = −𝑖 𝑘𝜇 𝜖0𝑗
𝜇
𝜈 𝑓

𝜈

= 𝑖 (𝐤 × 𝐟 )𝑗 ; (3.17b)
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so 𝑘⋅(𝐉𝑓 ) = 0. Similarly

𝑘⋅(𝐊L𝑓 ) = −𝑖
[

𝜔𝜕
𝜕𝐤

, 𝑘
]

⋅𝑓

= −𝑖𝐤𝑓 0 + 𝑖 𝜔𝐟 , (3.18a)

𝑘⋅(𝐊S𝑓 ) = 𝑖𝐤 𝑓 0 − 𝑖 𝜔 𝐟 ; (3.18b)

so that 𝑘⋅(𝐊𝑓 ) = 0.
Thus the infinitesimal generators 𝐉 and 𝐊 are pseudo Hermitean, just as 𝑃 is.
We saw earlier that pseudo-unitary operators on L induce unitary operators

on . As a matter of fact the analogous statement is true for pseudo-antiunitary
operators. It is also true that pseudo-Hermitean operators on L induce Her-
mitean operators on , by the following argument. If a linear operator 𝐴 is
pseudo Hermitean,

(𝐴𝑓, 𝑔) = (𝑓, 𝐴𝑔) , (3.19)

then it preserves the radical,

𝑓 ∈  ⇐⇒ (𝐴𝑓, 𝐴𝑓 ) =
(

𝑓, 𝐴2𝑓
)

= 0 , (3.20)

because 𝑓 is orthogonal to all of L, which means that 𝐴𝑓 ∈ . Our earlier
argument that pseudo-unitary transformations induce linear transformations on
 depended only on the fact that pseudo-unitary operators preserve the radical.
Thus 𝐴 induces a linear transformation on , which is Hermitean because

⟨𝐴 {𝑓}, {𝑔}⟩ = (𝐴𝑓, 𝑔) = (𝑓, 𝐴𝑔) = ⟨{𝑓}, 𝐴 {𝑔}⟩ . (3.21)

It follows that the infinitesimal generators of the Poincaré group induce ob-
servables on the physical space .

4 Helicity
Photons are known to have spin one, with only two independent states of po-
larization. We have built that property in, too; but it takes some work to dig it
out.
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4.a Observables
The helicity operator on L is

𝐏̂⋅𝐒 ≡ 𝐏
|𝐏|

⋅ 𝐒 = 𝐏̂⋅𝐉 = 𝐉⋅𝐏̂. (4.1)

We have used the fact that 𝐏 ⋅𝐋 = 𝐋 ⋅𝐏 = 0. Although we saw earlier that 𝐒
does not preserve the Lorentz condition, the helicity operator does, because 𝐏
and 𝐉 do. It should also be clear that the helicity is pseudo Hermitean, and hence
induces a physical observable.

The important fact that we want to understand is that the physical helicity
is a Poincaré invariant. There is a subtlety here; namely, the helicity does not
commute with the Lorentz transformations on L.

It does commute with the translations, because𝐏 and 𝐒 do; and it is manifestly
a rotation invariant; but it does not commute with the boosts. We can see that for
infinitesimal boosts after a little computation to get the commutator with 𝐊:

[

𝐊, 𝐏̂⋅𝐒
]

= 𝑖
(

𝐒 − 𝐏̂𝐏̂⋅𝐒 + 𝐏̂×𝐊S
)

. (4.2)

The r.h.s. is not zero onL. A tedious but straightforward calculation of its action
yields:

[

𝐊, 𝐏̂⋅𝐒
]

𝑓 𝜇 = −𝑖 𝑘
𝜇

𝜔
𝐤̂×𝐟 . (4.3)

Although the commutator is not zero, it does map any vector in L into the
radical, as we see on the r.h.s. It follows that the physical commutator induced
by the above is indeed zero on the physical space .

Note that multiple commutators of 𝐧⋅𝐊 with 𝐏̂⋅𝐒, which one would need to
compute the formal power series expansion of 𝑈 (𝐿) 𝐏̂⋅𝐒𝑈 (𝐿)−1, also project into
the radical, because a multiple commutator

(ad𝐧⋅𝐊)𝓁 𝐏̂⋅𝐒 (4.4)

can be written as a sum of monomials of the form

(𝐧⋅𝐊)𝑚
[

𝐧⋅𝐊, 𝐏̂⋅𝐒
]

(𝐧⋅𝐊)𝑛, 𝑚+𝑛 = 𝓁−1 . (4.5)

When the commutator acts, we are left in the radical; and we stay there when
(𝐧⋅𝐊)𝑚 acts, because 𝐧⋅𝐊 is pseudo Hermitean and preserves the radical. Thus
the conjugated helicity operator has an action of the form

[

𝑈 (𝐿) 𝐏̂⋅𝐒𝑈 (𝐿)−1𝑓
]𝜇 =

(

𝐏̂⋅𝐒 𝑓
)𝜇 + 𝑘𝜇 𝑔 . (4.6)
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where 𝑔 can be computed, but does not interest us now.
For the boosts on the physical space, this just confirms what we already know

from the fact that helicity commutes with the physical 𝐊: the physical helicity is
a Lorentz invariant, in fact a Poincaré invariant.

The discrete transformations pose no problem. A straightforward computa-
tion gives the expected results:

P 𝐏̂⋅𝐒P−1 = −𝐏̂⋅𝐒 , (4.7a)

T 𝐏̂⋅𝐒T−1 = 𝐏̂⋅𝐒 , (4.7b)

Y 𝐏̂⋅𝐒Y−1 = −𝐏̂⋅𝐒 , (4.7c)

C 𝐏̂⋅𝐒C−1 = 𝐏̂⋅𝐒 . (4.7d)

For future reference, we note the action of the helicity operator:

𝐏̂⋅𝐒 𝑓 =
(

0, 𝑖 𝐤̂×𝐟
)

. (4.8)

4.b States
Now that we know helicity to be a Poincaré invariant,3 we expect the physical
space  to split into a direct sum of representation spaces for the Poincaré group,
labeled by the eigenvalues of helicity. Our aim is to study the splitting of L into
helicity eigenspaces, which induces the invariant splitting of .

To find the helicity eigenstates, we use the identity
(

𝐏̂⋅𝐒
)3 = 𝐏̂⋅𝐒 , (4.9)

which is easy to check, and which is a property of the spin-one representation of
𝐒. The quantity

𝐸tr ≡
(

𝐏̂⋅𝐒
)2 (4.10)

is therefore a projection operator. It plays a special role in the theory of photons;
it is just the projection operator for transverse polarization, or the projection op-
erator for the radiation gauge:

𝐸tr 𝑓 =
(

0, 𝐟 − 𝐤̂ 𝐤̂⋅𝐟
)

,
(

𝐸tr
)2 = 𝐸tr . (4.11)

3When we say “Poincaré”, we always mean the restricted Poincaré group, without inversions,
unless we say otherwise.
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The identity in Eq. (4.9) can also be written

𝐸tr 𝐏̂⋅𝐒 = 𝐏̂⋅𝐒𝐸tr = 𝐏̂⋅𝐒 . (4.12)

The projection operators for helicity ±1 are

𝐸± = 1
2

(

𝐸tr ± 𝐏̂⋅𝐒
)

, (4.13)

as one readily verifies that

𝐏̂⋅𝐒𝐸± = ±𝐸± , 𝐸±𝐸± = 𝐸± , 𝐸±𝐸∓ = 0 ,

𝐸± 𝑓 ≡ 𝑓± = 1
2

(

0, 𝐟 − 𝐤̂ 𝐤̂⋅𝐟 ± 𝑖 𝐤̂×𝐟
)

.
(4.14)

The helicity eigenstates take on a familiar form if we recognize that, since
𝐤⋅𝐟± = 0, 𝑓± must be linear combinations of the two, purely spatial basis vectors
𝑒𝜆 introduced in Section 2. Suppose we chose 𝐞1, 𝐞2, and 𝐤̂ to form a right-handed,
orthonormal set. Then it is easy to check that 𝑓± have the form

𝑓 𝜇
± = 𝑒𝜇± 𝑔± , 𝑒± ≡

𝑒1 ± 𝑖 𝑒2
√

2
. (4.15)

If we were discussing the classical, free electromagnetic field, these would be the
polarization vectors for left and right circular polarization.

The above form is independent of the choice of 𝐞1 and 𝐞2, because a rotation
about 𝐤̂ just multiplies 𝐞± by phase factors:

exp(−𝑖 𝜃 𝐏̂⋅𝐒) 𝑒± = 𝑒∓𝑖𝜃 𝑒± . (4.16)

So far, we have pulled out two pieces of L, the helicity ±1 subspaces

L,±1 = 𝐸±L . (4.17)

But not every vector in L is a linear combination of these. If we go back to the
action of the helicity operator in Eq. (4.8), it is easy to see that the radical consists
of zero-helicity eigenvectors, because then 𝐟 is proportional to 𝐤. We also note
that all zero-helicity vectors belong to the radical, for

𝐏̂⋅𝐒 𝑓 = 0 ⇐⇒ 𝐤×𝐟 = 0 ⇐⇒ 𝐟 = 𝐤 𝑔 , (4.18)
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and the Lorentz condition then implies that 𝑓 0 = 𝜔𝑔.
That takes care of the rest of L, because we saw in Section 2 that all vec-

tors in L could be expanded in terms of 𝑘 and the two 𝑒𝜆. The zero-helicity
projection operator is therefore

𝐸0 = 𝐼 − 𝐸+ − 𝐸− ,

𝐸0 𝑓 =
𝑘 𝑘̃⋅𝑓
2𝜔2

.
(4.19)

We have thus arrived at a decomposition of L into three pieces:

L = L,0 ⊕L,+1 ⊕L,−1 . (4.20)

The pieces are guaranteed to be orthogonal, because the standard argument that
gives the orthogonality of eigenstates of a Hermitean operator belonging to dif-
ferent eigenvalues works just as well for pseudo-Hermitean operators.

The zero-helicity space, since it is the radical, goes away in the physical space
. The decomposition of L induces an orthogonal splitting of  into two
pieces:

 = +1 ⊕−1 . (4.21)

The action of the Poincaré group on each helicity eigenspace can be shown to
be irreducible, so we have found that the physical photon representation is a di-
rect sum of two irreducible representations, one for each physical value of the
helicity. This property persists for zero-mass particles with any discrete spin 𝑆;
the irreducible representations are labeled by helicity, which can have only two
values, ±𝑆.

We claimed in Eq. (4.7a) that helicity anticommutes with space inversion. It
follows that P interchanges the two ±1 helicity spaces. That should be clear by
inspection of the helicity eigenstates in Eq. (4.14); the relative sign of the vector
and axial vector parts of 𝑓± is changed under space inversion. Time inversion
commutes with helicity, and so does not mix the two spaces. The relative sign
of the vector and axial vector parts of 𝑓± does not change sign under T because,
although 𝐤 → −𝐤, the factor 𝑖 in the axial part anticommutes with an antiunitary
operator.
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5 Realization of the physical space
Although the abstract formulation for the physical space  is quite adequate
for practical problems involving photons, it is pedagogically valuable to have a
concrete realization. We do this in two ways. In the first, we choose to work
in one of the more popular and useful gauges, the radiation gauge. The second
makes helicity explicit.

5.a Radiation gauge realization
Picking a gauge amounts to picking a representative 𝑓 from each equivalence
class {𝑓}. We get the radiation gauge if we choose that representative which
obeys the transversality condition:

𝑓 0 = 0 , 𝐤⋅𝐟 = 0 , (5.1)

or in four-vector notation,

𝑘⋅𝑓 = 𝑘̃⋅𝑓 = 0 . (5.2)

Note that there is indeed precisely one transverse member of each class, be-
cause every 𝑓 ∈ L has the expansion

𝑓 𝜇 = 𝑘𝜇 𝑔∥ +
∑

𝜆 𝑒
𝜇
𝜆 𝑔𝜆 ; (5.3)

and the transverse member of the class {𝑓} is just

𝐸tr 𝑓 =
∑

𝜆 𝑒𝜆 𝑔𝜆 . (5.4)

The vectors 𝑒𝜆 describe the transverse polarization states of the photon, and we
could just as well use helicity polarization vectors 𝑒±.

We now have a one-to-one, linear, norm-preserving correspondence between
the elements {𝑓} of the physical space  and the members 𝑓tr of the subspace
of L:

tr = 𝐸tr L = L,+1 ⊕L,−1 (5.5)

The correspondence is {𝑓} ↔ 𝐸tr𝑓 . The space tr is the realization of the
physical space  in the radiation gauge.
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To compute the action of the Poincaré group in the radiation gauge, we define

𝑈tr(𝑎,Λ) = 𝐸tr 𝑈 (𝑎,Λ)𝐸tr . (5.6)

These operators act entirely within tr, and they are carried over by the corre-
spondence between tr and  into the physical representation of the Poincaré
group. In fact, the matrix elements of 𝑈tr in tr are equal to the matrix elements
of 𝑈 in :

(

𝑓, 𝑈tr(𝑎,Λ) 𝑔
)

=
(

𝐸tr 𝑓, 𝑈 (𝑎,Λ)𝐸tr 𝑔
)

= ⟨{𝑓}, 𝑈 (𝑎,Λ) {𝑔}⟩ . (5.7)

In particular, it follows from this formula and the fact that the physical𝑈 (𝑎,Λ) are
a representation of the group that the operators 𝑈tr(𝑎,Λ) obey the multiplication
law of the Poincaré group, a fact which seems less obvious when we recall that
the projection operator 𝐸tr does not commute with 𝑈 (𝑎,Λ) in L, because boosts
can mix in some zero helicity.

The group multiplication law can be derived by the following direct argu-
ment.4 First, note that

𝐸tr 𝑈 (𝑎,Λ)𝐸tr = 𝐸tr 𝑈 (𝑎,Λ) , (5.8)

because for any 𝑓 in L we have 𝑓 = 𝑘𝑔0 + 𝑓tr; and since 𝑈 (𝑎,Λ) preserves the
radical,

𝐸tr 𝑈 (𝑎,Λ) 𝑘𝑔0 = 0 , (5.9)

Therefore

𝐸tr 𝑈 (𝑎,Λ)𝐸tr 𝑈 (𝑎′,Λ′)𝐸tr = 𝐸tr 𝑈 (𝑎,Λ)𝑈 (𝑎′,Λ′)

= 𝐸tr 𝑈 (𝑎 + Λ𝑎′,ΛΛ′)

= 𝐸tr 𝑈 (𝑎 + Λ𝑎′,ΛΛ′)𝐸tr .

(5.10)

We can describe the effects of the three factors in 𝑈tr as follows. First, 𝐸tr
acts on a state 𝑓 to select the radiation gauge. Then 𝑈 (𝑎,Λ) corresponds to a
conventional transformation law for a four-vector field. At this point, we are still
in the Lorentz gauge class, i.e., still in L, but no longer generally in the radiation

4This remark was contributed by Prof. Andreas Blass from the mathematics department, who
audited the course.
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gauge. The final factor 𝐸tr is a gauge transformation that restores the radiation
gauge. Equation (5.8) shows that the result is the same, even when the radiation
gauge is not selected first.

The action of 𝑈tr can be written explicitly with the help of the gauge trans-
formation formula

𝐸tr 𝑓
𝜇 = (𝐼 − 𝐸0) 𝑓 𝜇 = 𝑓 𝜇 −

𝑘𝜇 𝑘̃⋅𝑓
2𝜔2

. (5.11)

Then, whether 𝑓 is in tr or L we get

𝑈tr(𝑎,Λ) 𝑓 (𝐤) = 𝑒𝑖𝑘⋅𝑎
[

Λ 𝑓 (Λ−1𝐤) − 𝑘 𝑘̃⋅Λ𝑓 (Λ−1𝐤)
2𝜔2

]

. (5.12)

This transformation law is of course not as simple as that of a four-vector field,
and it looks even more awkward if we write it as a three-vector transformation
law relating the nonvanishing components of 𝑓 and 𝑈tr𝑓 .

As we defined them earlier, space and time inversion already preserve the
radiation gauge, and so do not require a special discussion.

The complication in the Poincaré transformations can be thrown into a phase
factor if we choose helicity polarization vectors 𝑒±(𝐤). The invariance of the
helicity eigenspaces says that

𝑈tr(𝑎,Λ) 𝑓±(𝐤) = 𝑒±(𝐤) 𝑔(𝑎,Λ)± (𝐤), (5.13)

while the definition of the transformation law says

𝑈tr(𝑎,Λ) 𝑓±(𝐤) = 𝑒𝑖𝑘⋅𝑎 𝐸tr Λ𝑒±(Λ−1𝐤) 𝑔±(Λ−1𝐤). (5.14)

Now the norms are5

(

𝑓±, 𝑓±
)

= ∫
d3𝑘
2𝜔

|

|

𝑔±(𝐤)||
2 (5.15)

=
(

𝑈tr(𝑎,Λ) 𝑓±, 𝑈tr(𝑎,Λ) 𝑓±
)

(5.16)

= ∫
d3𝑘
2𝜔

|

|

|

𝑔(𝑎,Λ)± (𝐤)||
|

2
(5.17)

= ∫
d3𝑘
2𝜔

|

|

|

𝑔±(Λ−1𝐤)||
|

2
, (5.18)

5Note that 𝑒±(𝐤)⋅𝑒±(𝐤) = −1.
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where the last line follows because

𝐸tr Λ𝑒±(Λ−1𝐤) = Λ𝑒±(Λ−1𝐤) −
𝑘 𝑘̃⋅Λ𝑒±(Λ−1𝐤)

2𝜔2
; (5.19)

and so,

𝐸tr Λ𝑒±(Λ−1𝐤) ⋅ 𝐸tr Λ𝑒±(Λ−1𝐤)

= Λ𝑒±(Λ−1𝐤) ⋅ Λ𝑒±(Λ−1𝐤) = −1 .
(5.20)

Since the three integrals are equal for all 𝑔±, and since 𝐸tr Λ𝑒±(Λ−1𝐤) must be
proportional to 𝑒±(𝐤), we conclude that

𝐸tr Λ𝑒±(Λ−1𝐤) = 𝑒𝑖𝜙±(𝐤,Λ) 𝑒±(𝐤), (5.21)

and

𝑔(𝑎,Λ)± (𝐤) = 𝑒𝑖𝑘⋅𝑎 𝑒𝑖𝜙±(𝐤,Λ) 𝑔±(Λ−1𝐤), (5.22)

where the phase 𝜙±(𝐤,Λ) can be computed, once we establish a phase convention
for the definition of 𝑒±(𝐤). We shall not bother with that here; we just mention
that the general representation theory of the Poincaré group provides a natural
way to do it.

5.b Helicity realization
We have already recognized that the physical space splits into two, Poincaré in-
variant, helicity eigenspaces. By choosing a helicity basis for the radiation gauge
wave functions, we get a second realization of the physical space as

hel = L2
(

d3𝑘
2𝜔

)

⊗ C2 = L2
(

d3𝑘
2𝜔

)

⊕ L2
(

d3𝑘
2𝜔

)

, (5.23a)

i.e.,

hel =
{

𝑔𝜎(𝐤)∶ 𝜎 = ±, ⟨𝑔, 𝑔⟩ =
∑

𝜎 ∫
d3𝑘
2𝜔

|

|

𝑔𝜎||
2 < ∞

}

. (5.23b)

The one-to-one correspondence between tr and hel is defined by

𝑓 = 𝑒+ 𝑔+ + 𝑒− 𝑔− , 𝑔± = 𝑒± ⋅𝑓 , (5.24a)

(𝑓, 𝑓 ) =
∑

𝜎 ∫
d3𝑘
2𝜔

|

|

𝑔𝜎||
2 . (5.24b)
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The representation of the Poincaré group on hel is given by
[

𝑈hel(𝑎,Λ) 𝑔
]

±(𝐤) = 𝑒𝑖𝑘⋅𝑎 𝑒𝑖𝜙±(𝐤,Λ) 𝑔±(Λ−1𝐤) . (5.25)
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