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Abstract

This is a ETEX version of slides for two lectures I gave for a bag
lunch journal club. The first summarizes the lore on the precession
of Mercury in special relativity, including my own calculations, in
the nature of extended homework. The second summarizes Feyn-
man’s calculation, which illustrated his groundbreaking approach
to general relativity as a flat-space gauge theory in his Lectures on
Gravitation.

*January 21, 2009: Aside from the addition of the abstract in September, 2007, this IATEX
version has only cosmetic changes from the original, handwritten slides.
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Lecture 1

Special Relativity

1 Introduction

context

e Any perturbation which doesn’t turn the Kepler Hamiltonian into
a harmonic oscillator will cause Kepler ellipses to precess.

e There’s nothing wrong with the theory we’re about to discuss, it’s
just not right!

o Feynman'’s Lectures on Gravitation!

criteria

e covariance under special relativity
e Newtonian limit

e coupling to energy (E6tvs, binding energy, temperature)

early attempts

e Einstein

IRichard P. Feynman, Fernando B. Morinigo, William G. Wagner, Feynman Lectures
on Gravitation, (Westview Press, Boulder, Colorado, 2003), Brian Hatfield, ed. This is
an augmented version of the typewritten notes available at the time of this lecture.



e Sommerfeld

e others?

2 Gravitational potential

2.a Notation
x = (ct,r) = x¥

x(t) = (ct,r(t)) = y(7)
Y= (1 — 52>_ B = %

Nl—

dx® = cdt dy® = qcdr
_dr _dy
V=g uzg—fy(c,v)
a:%
- dt

2.b Gravitational sources

scalar

p: ofr —r( /éx—
vector
H=—=utS[r—r(t /éx—
duj' =0

tensor
m
KW = —utu” 5[r — r(t
Y

9, KM = %a“é[r —r(1)]

KUU’ — pCZ

|mutu’cdr



2.c Potentials

(x%) 6(x-x)

4G
Ot = 5 KMV
S
O¢ = —4nGp = —AHCT—ZGK‘TU
1
OGret = _é(x) Gret = T 0
XO
y(1)
\ Tret(x)
|
2.d Sun
XO
y(1)

y(1) = (ct,0)
u(t) = (c,0)
Ryet = (7’;1’)
(Rt)ret =cr m=M
GM
uv _ u0 ,v0
¢ 88
GM
po— 2 5u0
= —"=g
GM
(P - _ "



3 Lagrangian

3.a Interaction

1 GMm
_ 3, — _ =
Us—/4’Pd Y=o
Uy = [ gl e = S50
c r
K GMm
— p Y 8y = —
UT /(P CZ d’x p
Y KVV 3
Note: Usz/g 4>C—2dx
3.b Lagrangian
2
L= —% -u (Note: v = v of Mercury)

4 Calculation

4.a Expansion

We refer everthing to vector, because Uy is velocity independent and
gives a simple force:

d—m v——GMmr
dt "= r3
Let
U:—GMmzx('y):—B A = GMm
r r
a(y) = a(l)+ (y —1)a’(1) +
=1+ (r—-1)x+ - a(l)=1 A1) =y
L Px
=1+ 58+



A T
,  mv>  mot A mo? &= XQZO_X
L=—-mc"+—+—5+—4+—3C+ - mrc r
2 8¢ r 2
GM ,
’ mo*t  mv? o= -5 = grav. radius
= —mc +LKQP+W+T€+”' )
2's
o
720(52)
4.b Perturbing force )
mt\ 1 /AN Celer orbit
= (to order v?/c?) 5 ) = 5\ )onheplerorbl
Ar
ma:—r—3—|—f
Ar (x—=1 , 10 Ar-vv
=-S(2—=p- 220
f r3<2 p rx)+r3cz(+x)

4.c Runge-Lenz vector

Ar

r

_pXL
 om

R

Ar

mo X (rxv)— .

R=fx(rxv)+vx(rxf)

_ RxR

Q= R2 x L

compute () over a Kepler orbit

4.d Other ways to compute

(i) Hamiltonian with P.B.’s. Be careful to reexpress R in terms of rela-

tivistic p.

(ii) Action-angle variables and Hamilton-Jacobi theory.

(iii) Perturbation of the orbit equation (cleanest).




5 Results

Ocr
() = 1 +20) (Qv) = (1+2x) —
_wrg 1 2 a = semimajor axis
(Qv) = D41 _e2 W= T e = eccentricity

Mercury: Qgr = 42.98” /cent
Qexp = (41.4+0.9)”/cent  [out of (5,599.74 £ 0.41)” /cent]

5.a Basic types
vector: a(y)=1 a'(y)=0 x=0

Qy =7.16"/cent = %QGR

1
scalar: «(y) = —
(7) )

‘QS = —7.16"/cent = —QV‘

tensor: a(y)=7 A(y)=1 x=+1

Qr =3Qy = 3 Qcr

5.b Combined types

The combination
WY = a g+ (1 a)g'g

has the right Newtonian limit, and produces the precession:




a

QI =

symmetric, traceless tensor: a2 —1 = 1 a=
P 13
Ost = 24— Ocr = 33 Qcr
. a
spin 2 tensor: a—1= 5 a=2
0, = % QOcr = %QGR QFeynman ~ %QGR
7
exact tensor: 42 —-1—-6 a:Z 1—a=—1

Qcr = § Or —

=

Qs = 7 (O — 3 Qs)

6 Feynman’s approach

Up to now gy has been used for the flat space metric. From now on we
use 177,y for the flat space metric and g, for the metric with gravity. The
raising and lowering of indices is defined with 7" and 7, .

6.a Gauge condition

The field h*¥ is required to obey the gauge condition:
9" =0 Rt = ' — Iyt h=h,

This is chosen to make BV TH = 0 as a consequence of the field equation,
which makes spin 2:

O = _% D THY
C2
Note that T# = TH. Thus:
_ G _
O = O and 9 =0 = 9, T =0
c

For sure the solution for h*¥ with TH" = K*' does not obey the gauge
condition.



6.b Invariant Lagrangian

S = —%/mx'-x’dzx—/mhwx'”x”’doc

!/ dx iy ”
X = an x = “time parameter
2
Suv = Nuv + _Zh],n/
o om M o M 1y
——Ex-x _C_zhﬂ‘/x X ——ng/x X

The equations of motion become

guwx" = —[po, p]xFx" [0, 1] = 3 [Bgpu + pgon — Augpo]
= % (guv x#x") =0 = can choose

ds \2
g],n/ x/yx/v = (a) — C2

Then s/c = a = “proper time”, but including the gravitational field.




Lecture 2

General Relativity

1 Summary of Lecture 1

1Y M
{j” } :/(5[x—y(r)] { Mut }cdr
K Mutu"

¢ P
O< ¢t » = —4nG< j*/c
(Pyv K]M//CZ

GMm 1
Us = d? = —
5 /4’P X r
i 13 GMm
Uy = Bz = —
o= fored ==
Kyv 3 GMm
LITZ/(PW Czdx:— p
mc?
L= o — U  expanded to order
2
2 VT 1o _ GM
Pr=amy n=

@
- dr

u-u = C2

u

T = proper time

= 7 ’'Schwarzschild




_(UT’O 1 _1 o 7
QV_E;l—eZ_EQGR_]w /cent wzz—ﬂ

T
Qs =-0O
5 v T = .2409 sidereal yrs
Qr =3Qy = 5 Ocr

a =579 x 10’ km
Qgpin2 = IQgr +«— 2 <<PW - %’7””4’) ro = 1.4766 km
e = .2056

=207 - Og

2 Feynman’s approach

This lecture follows Feynman’s conventions

V8mG

C

Suv = Muv + 2Ahyy A=

1)

instead of gy = 1y + 2hyy/ cZand A = GMm, except that Feynman puts
¢ = 1. Indices are still raised and lowered with the flat space metric, and
the bar operation is still

W= i — L h=n, R = B )
2.a Lagrangian

1 _ _ —

2.b Field equation
h]/n/,cfg - (Eycr,gv + Eva,ay> =-A Tyv (4)

Then 9, T* = 0 is automatic if #"" obeys the gauge condition. In these
units, 1 = O(A).

10



2.c Matter equations

For a point mass:

T = mc/é[x — x(a)] (o) 2M (o) dex
©)

. dx . . . :
X = @ dim a = time, x-X unconstrained
d4
Smatter + Smt / ﬁmatter / Ahyv T — c
=—§/m3‘c-xdzx—)\m/hwx”x”doc (6)
= / IL da
E&M example
L=- m XX — gx A (unconstrained) (7a)
~ mit = gFW %, (7b)

Then x-% = 0, because F is antisymmetric, = %X = const, = a o proper
time.

Equation of motion In our case

oh oh),
B — 27 ™ Bt al A =2 axﬂ 2 —2Ahyy 2 =0 8)
Define
Qv = Huv + 2Ahyy )

and the usual Christoffel symbol with three downs

0%uc 9  OSuv
(v, o] = (axv + 0B axg) (10)

11



Then the equation of motion

gu ¥’ = —[vA, p] ¥ i (11)
implies the constraint
% (giw xt xv) =0 = Suv Y = c? (const) (12)

Now a is not proper time, but depends on the gravitational field.
Feynman says the bending of light is correct, and the precession of Mer-
cury is

Qr = § Qcr (13)

3 Perturbed equation of motion

_GMmr

ma =
r3

+ fpert = fNewt + fpert (14)

3.a Old (proper time formalism)

fPert frewt (M1 —1 2 o f v
= w —hy 2 ) =S Newt T T 14y 1
m m ( 2 p ! r) m c c( ) (15
5
h=-1, 0,
! 3
S Vv Tsym—traceless

3.b New (gravitational time formalism)

Foert _ friewt (2 -2") S xem v 16)
m m r m cc

I have not checked the bending of light, which I found to be impos-
sible in the proper time formalism. I have verified the precession result
by my own methods (ordinary time, expansion of equations of motion,
classical secular perturbation theory).

At this point, the gravitational field equation is the same as before (for
spin 2), linear. But the particle moves effectively in a curved metric (x #
proper time).

12



4 What's wrong?

For matter
gu & = —[vA, p] i3 (17)
T = /(5[x —x(a)]mxt(a) %V (a) cda (18)

implies that T"" obeys

Suv TVA,/\ = guv(x) /(5[x —x(a)] m ¥ (&) cda

(19)
= —[vA, u] /(5[x — x(a)] m 2¥ (a) ¥M(a) cda
(note the shuffle between x and x(«)), i.e.,
M T ) = —=[VA, p] T = 2Ahy, TV 4 (20)

# 0! This is exact. T for a mass point obeys this equation of motion in
the exact theory. We’re going to change only the field equation.

The field equation is inconsistent with this because it follows from it
that 9, T = 0. We didn’t get into trouble in our previous calculation

because we had two different T#"’s, T, and T&Zrcury, and 9, Thn = 0

because the sun is at rest, while we never wrote a field equation with

VV
TM ercury as a source.

5 Feynman’s strategy

Add a term to Lgray such that

(i) The field equation becomes
My, o’ — (E‘MU’,UV + Ew,%) =—A (TV " X’“’) (all indices flat)  (21)

Then the equation is forced:

™ v+ x" =0 (flat) (22)

13



Here TH" is stil the matter tensor, and x"" is interpreted as the gravita-
tional (self-energy) contribution.

So far the solution for the functional form of the extra Lagrangian
could be zero.

(ii) The matter equation (17) constrains the extra piece of the Lagrangian
through (20). Putting that into the above gives

Huv X' 0 = [VA, u] T 4 271y, TV ) (23)

Since [ .., .] is linear in Ak and thus [O(A?)], the leading order on the r.h.s.
is

Mwx" 2 =[vA, u] T + O(A%) (24)

(Replace TV)‘, A by — XW‘, 1)

I guess the idea now is to replace TV on the r.h.s. by the lowest order
field equation. (Yep!) Feynman claims the result for x is the variation of
a function F> = A x (trilinear in h).! He claims the precession is now
correct as far as observations go. He does not say whether () = Qgr
exactly (presumably it is not), and I haven’t checked this.

6 Theory correct to all orders

This procedure could be iterated, but the algebra is already horrendous at
the level of the first correction. Feynman “guesses” a solution of the exact
problem. Choose Lgray such that the resulting field equation enforces

automatically:?

T )\ =—[vA, u] T (25)

This is of course the vanishing of the covariant divergence from a flat
space viewpoint.

ntially containing 18 forms with 18 constants. Feynman, op. cit., p. 75.
2Do not change Lint + Lmatter- Leave them the same as (22) and (23).

14



6.a Lagrangian

The claim is that G.R. is a solution. After the definitions

g gur =o'y (26)
{FTV} =9 pv, ol 27)

waz&Lh+{5}&h}_ﬁ;h_{&}ﬁ$} -

the result is

1
»Cgrav = o2 g Ryv \/ detg/\p R;u/ = RT]M/T (29)

where presumably integration by parts is assumed to remove second
derivatives.

6.b Field equation

With the same matter tensor TH*V as before

N (RW —lgm R) — \2TH (30)
=
gu Ty = —[vA, u] T (31)

6.c Matter equations

gu ' = —[vA, u]x¥ it (32)
=
guv &' & = c? (33)

15
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