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I. Introduction

The purpose of this paper is to clarify a few points concerning the proof of an impor-
tant theorem of H. P. Stapp [1,2] on holomorphic, Lorentz-covariant functions. Stapp’s
Theorem is a generalization to arbitrary domains, under somewhat weaker conditions,
of a result first proved by D. Hall and A. S. Wightman [3] (invariant functions), and
generalized by R. Jost [4] (covariant functions), for the “future tube”. It says essen-
tially that the analytic continuation of a holomorphic function of four-vectors, covari-
ant under the real, connected Lorentz group, is covariant under the complex, connected
Lorentz group.

In order to describe the theoremmore precisely, we must introduce some terminol-
ogy. Denote the connected part of the real, homogeneous Lorentz group by L↑

+, and
the proper, complex, homogeneous Lorentz group by +. Specifically, + is the set
of unimodular, complex, 4 × 4 matrices Λ satisfying

ΛGΛT = G =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎟

⎠

∗Presented at the Lorentz Group Symposium, Institute for Theoretical Physics, University of Colorado,
Summer, 1964. Published in Lectures in Theoretical Physics, vol. VIIa, University of Colorado Press, Boul-
der, 1965, pp. 173-189. Permission for internet publication granted by University Press of Colorado, April,
2003. Table of contents added, March, 2008.
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where ΛT means the transpose of Λ. We consider domains (connected, open sets)
consisting of points Z in the complex number space C4l , (or occasionally in the real
number space R4l) Z = (z1,… , zl), where each zi is a four-vector. For Λ ∈ +
we write ΛZ = (Λz1,… ,Λzl). We say that Z and Z′ = ΛZ, with Λ ∈ +, are
+-equivalent.

For an mth rank tensor f�1…�m , with �i = 0, 1, 2, 3, we use the short notation

Λ�1�1…Λ�m�m f
�1…�m = (Λf )�1…�m ,

most often without writing out the indices.

Definition 1. An L↑
+ (or +)-covariant function f on a set A ⊂ C4l is a tensor-valued

function on A satisfying the equation

f (Z) = Λ−1f (ΛZ)

whenever Z and ΛZ are in A and Λ is in L↑
+ (or +).

It is sufficient to discuss tensor-valued and not spinor-valued functions because of
the well-known fact that spinor-valued functions satisfying an equation like the above
must vanish.

We use without much explanation various well-known concepts from the theory of
holomorphic functions of several complex variables [5]. For exmple, a locally schlicht
domain over C4l (or over the complex mass shell) is a pair (S, �), where S is a Haus-
dorff space and � a local homeomorphism of S into C4l (or into the complex mass
shell). The term domain of regularity, denoted by R, is used (as by Stapp [1]) for
the “intersection” of the Riemann “domains of holomorphy” of the components of a
holomorphic, tensor-valued function. The domain of holomorphy is just the space of
equivalent function elements, a locally schlicht domain. A sheet is a schlicht subdo-
main of R not properly contained in any other schlicht subdomain of R. We use the
same symbol for f and its analytic continuation onto R.

For simplicity, we discuss domains in or over C4l , or more generally, Cnl , but all
results carry over quite easily to holomorphic functions on domains over the complex
mass shell [1, 6]. When we are discussing schlicht domains U ⊂ R, we make no
distinction between a point P ∈ U and its projection �(P ) = Z ∈ Cnl .

Stapp’s basic result is

Stapp’s Theorem. Let f be L↑
+-covariant on a schlicht domain D ⊂ R4l , and holo-

morphic at each point ofD. LetR be the domain of regularity of f , over C4l . ThenR
is a union of sheets (which may overlap), each of which maps onto itself under every
transformation in +, and on each of which f is +-covariant. If in additionD is such
that any two points related by a transformation in + are also related by a transforma-
tion in L↑

+, then every compact subset ofD is contained in a single +-invariant sheet,
on which f is +-covariant. (This condition is satisfied when D consists of physical
points on the mass shell.)

In other words, holomorphy and real covariance on a real domain, no matter how
small, imply complex covariance for the entire domain of regularity. There are varia-
tions to this theorem which are not of much concern to us here. For example, if D is
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replaced by a complex domain, and L↑
+ covariance on D by + covariance on D, one

still gets a true theorem [1].
For comparison, recall that in Hall and Wightman’s [3] Lemma 1, L↑

+ invariance
and holomorphy on the future tube imply+ invariance and the existence of an analytic
continuation onto the extended future tube.

The keystone of Stapp’s proof is a local property of + orbits. The + orbit cor-
responding to a point Z is the set of points

+Z = {Z′ :Z′ = ΛZ ,Λ ∈ +}.

We also use the notion of an + orbit in a locally schlicht domain, such as R. Then it
just means the set of points obtained from a given point by continuation of the corre-
sponding function element along the images of all possible paths in +, beginning at
the identity.

Definition 2. We say that a set A is +-connected in a set B ⊂ C4l if A ⊂ B and if
for any pair of +-equivalent points, Z and Z′ in A, there is an arc (the topological
image of a closed interval) Λ(t) ∈ +, for 0 ≤ t ≤ 1, with Λ(0) = I and Λ(1)Z = Z′,
such that Λ(t)Z ∈ B.

The property in question is

Local + Connectedness. The space C4l is said to be locally +-connected at a
point Z if for every neighborhood U of Z there is a neighborhood U0 of Z that is
+-connected in U .

The difficult part of the proof of Hall and Wightman’s Lemma 1 was just to show that
the future tube is +-connected in itself.

Stapp’s Lemma 4 says thatC4l is everywhere locally+-connected, but this state-
ment has recently turned out to be too strong. R. Jost has constructed an ingenious
counterexample. The counterexample applies only at certain pathological points; and
as Jost has pointed out [7], it has little practical effect on Stapp’s main result. How-
ever, as one of us (RS) will indicate in Section IV, it completely characterizes the
points where the property does not hold; and with Stapp’s rather elegant proof for the
“good” points (which are dense in C4l), it goes a long way towards bringing about a
definitive understanding of the local properties of + orbits.

With the pathological points taken into account, Stapp has proved the theorem for
the I+-saturated kernel [6] of the domain of regularity, R, plus any additional points
with Grammian,

G(Z) = det
(

zi ⋅ zj
)

,

of rank two. The I+-saturated kernel is defined as follows: LetP ∈ R′ ⊂ R, and let
the projection of P in C4l be Z = �(P ). The set of + invariants of the point Z is
the set of scalar and pseudoscalar invariants, zi ⋅ zj and

����� z
�
i1
z�i2 z

�
i3
z�i4 ,
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where ����� is the alternating symbol. Now R′ is said to be I+-saturated if, for every
P ∈ R′, there is a schlicht domain U containing P such that the image, �(U ∩ R′) ⊂
C4l , contains all points with the same + invariants as the point Z = �(P ). R′ is the
I+-saturated kernel ofR if it is the largest I+-saturated subset ofR. ThenR′ is a dense
subdomain of R [6]. Because it is characterized by invariants, it is to be regarded as
the physically interesting part of R.

Thus, Stapp has proved a substantial result, which gives all that one can in practice
demand.

By a different method, using a decomposition in “standard covariants” and a con-
tinuation in the Riemann domain over the variety of + invariants, K. Hepp [6] has
also proved a result similar to Stapp’s, for the I+-saturated kernel of R, starting out
from covariance under the complex group in some domain.1

But even though it is perhaps only of mathematical interest, there remains the ques-
tion: Is Stapp’s Theorem true for the entire domain of regularity? In this paper, the
first two authors present two proofs that it is. We do this by proving one of Stapp’s
lemmas (Lemma 8) on local + covariance:

Theorem A. Let f be L↑
+-covariant and holomorphic on a real domain D ⊂ R4l .

Let R be the Riemann domain of regularity of f , over C4l . Then for every P ∈ R
and every neighborhood U of P contained in R there is a neighborhood U0 of P , with
U0 ⊂ U , such that f is +-covariant on U0.

(Just as in Stapp’s Theorem, one can replace the real domainD by a complex domain,
and “L↑

+-covariant” by “+-covariant”, and still get a true result. And as already men-
tioned, everything goes through when C4l is replaced by the complex mass shell.)
Stapp’s only essential use of local + connectedness is in the proof of Theorem A; he
makes no further use of that property in deriving the invariant sheet structure of R.
Our proofs of Theorem A are independent of local + connectedness.

Section II introduces a few preliminary concepts, including some essential results
of Stapp. We give the discussion a quite general form, with conditions that suffice to
prove the theorem for a large class of connected, complex Lie groups of linear trans-
formations on spaces of any finite dimension. The group + in particular satisfies the
conditions. This of course inverts the order in which the proofs were originally devel-
oped, but it has the advantage of making clear the points where the specific structure
of the group enters.

Section III contains proofs of a generalized form of Theorem A, due to DW and
PM. The version given here is the result of some refinement, which made it possible
to collapse the two proofs into one, except for the final steps of each.

In Section IV, local + connectedness is discussed by RS. Although, as already
mentioned, Stapp’s proof is sufficient for the points where the property holds, a differ-
ent proof is given here, for the sake of completeness.

In the Conclusion, we remark on the extent to which our results are valid, or can
be expected to be valid, for the complex, classical groups of linear transformations.

1A. O. Barut has given a plausibility argument, based on ideas similar to those of Hepp. See Strong
Interactions and High Energy Physics, Oliver and Boyd, Ltd., Edinburgh, 1964, R. G. Moorhouse, ed.,
pp. 94-95.
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We want to emphasize that the relation of this paper to Stapp’s work is that of clar-
ifying some points that are sticky, but which have little practical effect on the outcome.
In the sense that our proofs provide a simple, unified treatment for the whole domain of
regularity, they are an improvement. This improvement naturally relies heavily on ear-
lier results and methods of Stapp, and it certainly does not detract from the importance
of his original work.

It is a pleasure to acknowledge our indebtedness to Professor Jost for permission
to describe his counterexample, the study of which led to our proofs, as well as for
his encouragement and suggestions, which either directly or indirectly got us onto the
right track. Wewish to thank Dr. K. Hepp for useful conversations, and one of us (DW)
wishes to thank Professor M. Fierz for his hospitality during that author’s stay at the
ETH.

II. Basic Ingredients for the Proof

Let Z = (z1,… , zl) ∈ Cnl , where each zi is an n-vector from Cn. We introduce the
usual topology in Cnl , along with some nonsingular unitary metric that generates it.

Let G(n, C) denote a connected, complex [8] Lie group of linear transformations
of the spaceCn, and let G(n, R) denote a connected, real Lie group of linear tranforma-
tions of the real space Rn. Every G(n, R) is a subgroup of a particular G(n, C) which
is its analytic complexification. This means that there is an analytic parameterization
of a neighborhood of the identity in G(n, C) that also parameterizes a neighborhood of
the identity in G(n, R), when restricted to real values [8].

For any Λ in G(n, C) or G(n, R), write ΛZ = (Λz1,… ,Λzl). By obvious analogy
with the definitions for L↑

+ and + in Section I, we define the G(n, C) orbit of a point
Z, the G(n, C) equivalence of two points ofCnl , and the G(n, R) or G(n, C) covariance
of tensor-valued functions of Z.

The first requirement for our proof is a kind ofweak G(n, C) covariance, a property
that is both described in and guaranteed by the lemma below. This result is already
implicit in certain of Stapp’s lemmas, although a small additional argument, supplied
in the Appendix, is needed.

Lemma A. Let f be G(n, C)-covariant and holomorphic on a domain D ⊂ Cnl , and
let R be the Riemann domain of regularity, over Cnl . Alternatively, let f be only
G(n, R)-covariant and holomorphic on a real domain D ⊂ Rnl , and let G(n, C) be the
analytic complexification of G(n, R).

Then f is weakly G(n, C)-covariant on R. That is:

(i) For every P ∈ R and every arc, Λ(t) ∈ G(n, C), with 0 ≤ t ≤ 1 and Λ(0) = I , it
follows that Λ(t)P ∈ R and that

Λ(t)f (P ) = f [Λ(t)P ] ;

(ii) Let U be a domain, with compact closure contained in a schlicht subdomain U ′
of R, that is, U ⊂⊂ U ′ ⊂ R. For Λ ∈ G(n, C), define ΛU by means of some arc
Λ(t) ∈ G(n, C), with 0 ≤ t ≤ 1, Λ(0) = I , and Λ(1) = Λ. Then ΛU is a schlicht
subdomain of R.
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K. Hepp has pointed out [7] that, for +, part (i) of this lemma is also a consequence
of Stapp’s Theorem for the I+-saturated kernel of R (or even for the domain of points
of R whose Grammian has maximum rank), by continuity arguments. The proof in
the Appendix gives (i) and (ii) simultaneously.

Note that although Lemma A says that f is G(n, C)-covariant along paths Λ(t)P ,
it does not say that f is G(n, C)-covariant for G(n, C)-equivalent points, P and P ′, of
a small, schlicht neighborhood. It is true that there is a path Λ(t)P that connects P to
a point of R that at least lies over P ′, but a priori it may lie on a different sheet. If
something like the local+ connectedness property holds, then the G(n, C) covariance
of f for P and P ′, and hence the generalization of Theorem A, is immediate from
LemmaA. The point of our discussion is that the same conclusion holds without “local
G(n, C) connectedness”.

We do, however, require that the group G(n, C) have two other properties, the first
of which amounts to a weak form of local G(n, C) connectedness.

Condition I. Let Z ∈ Cnd , with d ≤ n, and let z1,… , zd be linearly independent,
i.e., DimZ = d. Then for every neighborhood of the identity,  (I) ⊂ G(n, C), there
is a neighborhood U (Z) ⊂ Cnd such that, if Z′ and Z′′ are G(n, C)-equivalent in U ,
then there is a Λ ∈ (I) satisfying Z′′ = ΛZ.

For +, this nontrivial condition is Stapp’s Lemma 2.
Secondly, we need a property of the little group, G(n, C :Z), of a point Z ∈ Cnl .

We define

G(n, C :Z) = {Λ ∈ G(n, C) :ΛZ = Z} .

Condition II. For every Z ∈ Cnl , the little group G(n, C :Z) is connected.

The proof that Condition II holds for + is straightforward, by an enumeration of
cases. In those cases where DimZ = RankG(Z), +(Z) is isomorphic and topo-
logically equivalent to one of the complex, proper, orthogonal groups, O+(n, C), for
n = 1, 2, 3, 4, which are connected. The remaining few cases are easily parameterized,
giving the result by inspection.

If we now take Conditions I and II for granted, the remaining parts of the proofs
are quite simple. We reserve for the Conclusion a discussion of the extent to which
these conditions hold, or can be expected to hold, for classical, complex groups other
than +.

III. Proof of the General Theorem

We shall prove the following:

Theorem B. Let f be a holomorphic, tensor-valued function, with Riemann domain
of regularity R over Cnl . Let f be G(n, C)-covariant on some schlicht subdomain of
R; or let f be only G(n, R)-covariant on some schlicht subset ofR that is a domain over
Rnl , and let G(n, C) be the analytic complexification of G(n, R). Let G(n, C) satisfy
Conditions I and II.
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Then for every P ∈ R and every neighborhoodU (P ) ⊂ R, there is a neighborhood
U0(Z) ⊂ U (Z) such that f is G(n, C)-covariant on U0(Z).

As we have seen, + satisfies the conditions, so that Theorem A in Section I is a
special case of Theorem B.

Proof.

1. Note that the conditions of Lemma A are satisfied. Thus f is weakly G(n, C) co-
variant on R.

2. To simplify the proof [9], we first make a linear transformation of the space R,
depending only on the fixed point P , by means of an l × l, nonsingular matrix A,
acting on the indices i = 1,… ,l that label the vectors corresponding to points of
R. It is clear that any such transformation is holomorphic and topological, and that
it preserves the relation of G(n, C) equivalence, as well as G(n, C) orbits, so that the
argument is not affected. The fact that R is not schlicht causes no trouble; just carry
out the transformation on each function element.

Choose A as follows: Let DimP = d. Let A be such that

qi =
l
∑

j=1
PjAji i = 1,… , d ,

0 =
l
∑

j=1
PjAji i = d + 1,… ,l ,

where the qi are a set of linearly independent n-vectors.
Now consider the space Cnl as a Cartesian product, Cnd ×Cn(l−d), with the usual

product topology, and write the points Z ∈ Cnl as ordered pairs

Z = (�, �) , � = (�1,… , �d) ∈ Cnd ,

� = (�1,… , �l−d) ∈ Cn(l−d).

Thus, if we choose A as above, we need only consider neighborhoods of a fixed point
of the form

� = (�, 0),

which we can take to be schlicht, Cartesian product domains of the form

U (�) = V (�) ×W (0),

where V (�) ⊂ Cnd andW (0) ⊂ Cn(l−d).
The next step is essentially to reduce the whole problem to a consideration of neigh-

borhoodsW (0) of 0 ∈ Cn(l−d).
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3. Let U (�) ⊂ R be a schlicht neighborhood of � = (�, 0). Choose a neighborhood
U1(�) = V1(�) × W1(0) ⊂⊂ U (�), with W1(0) convex. Then choose a connected,
open neighborhood of the identity,  (I) ⊂ G(n, C), such that ΛU1(�) ⊂ U (�) for all
Λ ∈  (I). Finally, choose a neighborhood V0(�) ⊂ V1(�) such that V0(�) satisfies
Condition I for  (I).

We shall prove the G(n, C) covariance of f on the domain U0(�) = V0(�)×W1(0).
Let � = (�, �) and � ′′ = (�′′, �′′) be G(n, C)-equivalent points of U0(�). It follows

from Condition I that there is a Λ1 ∈  (I) with � = Λ1�′′, and from the connected-
ness of  (I) that there is an arc Λ1(t), with 0 ≤ t ≤ 1, Λ1(0) = I , and Λ1(1) = Λ1,
such that Λ1(t)�′′ ∈ U1(�).

Let � ′ = Λ1� ′′ = (�, �′) ∈ U1(�). Then the weak G(n, C) covariance of f implies
that

f (� ′′) = Λ−11 f (�
′),

and thus we need only consider G(n, C)-equivalent points � and � ′ in U1(�) with

� = (�, �), � ′ = (�, �′).

In other words, we need in effect only consider G(n, C : �)-equivalent points � and
�′ inW1(0), where G(n, C : �) is the little group of � and � ∈ V1(�).

4. Both of the proofs that followmake use of the following construction. Let � = (�, �)
and � ′ = (�, �′) be G(n, C)-equivalent points of U1(�), with � ′ = Λ� . Consider sets of
points parameterized by a complex number �:

� (�) = (�, ��), � ′(�) = (�, ��′).

These points have the following properties:

(i) For some neighborhood of the real segment 0 ≤ t ≤ 1, the convexity of W1(0)
implies that � (�) ∈ U1(�) and � ′(�) ∈ U1(�).

(ii) � (0) = � ′(0) = Λ� (0); � (1) = � ; � ′(1) = � ′.
(iii) For all �, Λ� (�) = � ′(�).

Finally, note that because G(n, C : �) is connected (Condition II), there is an arc
Λ(t) ∈ G(n, C : �), with 0 ≤ t ≤ 1, Λ(0) = I , and Λ(1) = Λ.

5. From this point, the proof will be completed in two different ways.

(i) Use the weak G(n, C) covariance of f (part (ii) of Lemma A) and the arcΛ(t) ∈
G(n, C : �) above to define the schlicht subdomain ofR,ΛU1(�). ThenΛU1(�) contains
a schlicht subdomain N that lies over a subdomain of U1(�) containing the arc � ′(�),
0 ≤ � ≤ 1, because of (iii) above. But the point � (0) = � ′(0) satisfies Λ(t)� (0) = � (0),
because Λ(t) ∈ G(n, C : �). Thus � ′(0) is common to N and U1(�), and it therefore
follows that N ⊂ U1(�). (To put it another way, the continuation from the common
point � ′(0) along � ′(�) is unique.) The theorem is now immediate from weak G(n, C)
covariance, i.e., covariance along the orbit Λ(t)� . (DW)
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(ii) Consider the induced functions

'(�) = f (�, ��) = f [� (�)];
'′(�) = f [� ′(�)].

From the definitions of � (�) and � ′(�), and the property (i) in §4, ' and '′ are analytic
functions of � for some neighborhood of the segment 0 ≤ � ≤ 1.

Now consider the points

� (t, �) = Λ(t)� (�),

with Λ(t) defined as above. Because Λ(t) is continuous on the compact set 0 ≤ t ≤ 1,
it is bounded; and thus, because Λ(t) is a linear transformation in G(n, C : �), there is a
number �1, 0 < �1 ≤ 1, such that

�(t, �) ∈ U1(�) for 0 ≤ t ≤ 1 and � < �1.

From the weak G(n, C) covariance of f , i.e., covariance along � (t, �) for � < �1,
and from the analyticity of ' and '′ for 0 ≤ � ≤ 1, it follows that

'′(1) = Λ'(1), or f (� ′) = Λf (� ). □ (PM)

IV. Local + Connectedness

Although we have seen in the preceding sections that Stapp’s Theorem depends only
on a weak form of + connectedness, embodied in Condition I, it may be important
in other applications to know the local geometrical properties of + orbits in more
detail. The lemma below characterizes those points Z ∈ C4l at which C4l is locally
+-connected, that is, such that any neighborhood U ′ of Z contains a neighborhood
U of Z that is +-connected in U ′. Here we are more interested in the points where
the property does not hold; but for completeness, we discuss all points.

First, it may help to recall that the following relation exists between the dimension,
DimZ, of the space ⟨Z⟩ = ⟨z1,… , zl⟩ spanned by the four-vectors zi of Z, and the
rank of the Grammian, G(Z):

DimZ RankG(Z)
4 4
3 3, 2
2 2, 1, 0
1 1, 0
0 0

Lemma B (local + connectedness). The space C4l is locally +-connected at Z if
and only if Z satisfies one of the following conditions:

DimZ = 4, 3, or 0;
DimZ = RankG(Z) = 1 or 2.
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Note that Lemma B implies that C4l is locally +-connected for a dense subdo-
main of points, for example, if l ≥ 4, the set of points Z with DimZ = 4, and if
l < 4, the set of points with DimZ = l = RankG(Z).

In the proof, we use the following notation: Let U and V be orthogonal subspaces
of C4 with respect to the Lorentz metric. Then we write U ⟂ V for the orthogonal
sum of U and V if and only if U ∩ V contains only the zero vector.

IfC4 can be decomposed as the orthogonal sum,C4 = U ⟂ V , and ifU is invariant
under the transformation Σ ∈ +, we use the notation Σ = Σ1 +Σ2, where Σ1 = Σ∕U
and Σ2 = Σ∕V are, respectively, the transformations that are Σ on the spaces U and V
and zero on the spaces V and U .

For neighborhoods of radius ", we write

U (Z0, ") =
{

Z ∈ C4l : ‖Z −Z0‖ < "
}

,

where ‖Z‖ is some norm corresponding to a unitary metric in C4l .
We use the convention that the first d vectors of Z are linearly independent, i.e.,

Dim ⟨z1,… , zd⟩ = d.

Proof.

1. DimZ = 3 or 4 Local + connectedness follows directly from Condition I in Sec-
tion II, which is satisfied by + (Stapp’s Lemma 2).

2. DimZ = 0 We use a variation on Jost’s normal form for a complex Lorentz trans-
formation [10]. For every Λ ∈ + there is a decomposition:

Λ = U1Ñ(�1, �2)U2,

where U1 and U2 are unitary elements of + and

Ñ(�1, �2) = TN(�1, �2)T −1; T ∗ = T ;

T =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 i

⎞

⎟

⎟

⎟

⎠

; N(�1, �2) =
(

M(�1) 0
0 M(�2)

)

;

M(�) =
(

cosh� −i sinh�
i sinh� cosh�

)

.

It is enough to consider points K and K ′ in U (Z, ") ⊂ U ′(Z) of the form K ′ =
Ñ(�1, �2)K . Then K and K ′ are connected by the path

K(t) = Ñ(�1t, �2t)K, 0 ≤ t ≤ 1.

Because

‖K(0)‖ < ", ‖K(1)‖ < ", d2

dt2
‖K(t)‖ ≥ 0,

it follows that K(t) ∈ U (Z, ") for 0 ≤ t ≤ 1.
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3. DimZ = 2

(i) RankG(Z) = 2 We choose U (Z, ") ⊂ U ′(Z) such that for all K ∈ U (Z, ")
we have RankG(K) ≥ 2.

According to Condition I of Section II, it is enough to prove the statement for K
and K ′ in U (Z, ") with k1 = k′1, k2 = k

′
2, and K

′ = ΛK . Then Λ is in the little group
of (k1, k2), +(k1, k2), and has the decomposition

Λ = Λ∕ ⟨k1, k2⟩ + Λ∕ ⟨k1, k2⟩
⟂

where C4 = ⟨k1, k2⟩ ⟂ ⟨k1, k2⟩
⟂. Let

K⟂ = (0, 0, k⟂3 ,… , k⟂l ) and K ′⟂ = (0, 0, k′⟂3 ,… , k′⟂l )

where k⟂i and k′⟂i are the parts of ki and k′i in ⟨k1, k2⟩
⟂. Then ‖K⟂

‖ < const× " and
‖K ′⟂

‖ < const × ", so that the problem is effectively reduced to the case DimZ = 0
in 2l dimensions.

(ii) RankG(Z) = 1 For this case, Jost has given a counterexample to local +
connectedness. Consider the spaceC12 of three four-vectors. Suppose the four-vectors
are represented in a basis e0,… , e3, with components e�i = �

�
i . Now go over to a new

basis

f0 =
1
√

2
(e0 + e1), f2 = ie2,

f1 =
1
√

2
(e0 − e1), f3 = ie3.

Let x = (x0, x1, x2, x3) ∈ C4 be a four-vector expressed in the new basis. Then the
invariant form becomes

2x0x1 + (x2)2 + (x3)2.

Consider points of the form

Z =

⎛

⎜

⎜

⎜

⎝

0 1 0
0 0 0
0 0 0
1 0 0

⎞

⎟

⎟

⎟

⎠

, K =

⎛

⎜

⎜

⎜

⎝

0 1 0
0 0 �
0 0 �
1 0 0

⎞

⎟

⎟

⎟

⎠

, K ′ =

⎛

⎜

⎜

⎜

⎝

0 1 0
0 0 �
0 0 −�
1 0 0

⎞

⎟

⎟

⎟

⎠

,

where each column is a four-vector.
Assume that C12 is locally +-connected at Z. Then there is a U (Z, ") that is

+-connected in U ′(Z). Choose |�|, |�| < "∕2. By assumption there is a pathK(t) =
Λ(t)K , 0 ≤ t ≤ 1, from K to K ′ in U ′(Z). It is easy to show that this path can
be brought back into the little group of the vectors (z1, z2) by a continuous set of
transformations Σ(t) ∈ + near the identity, i.e.,

‖Σ(t) − I‖ < B", 0 ≤ t ≤ 1; Σ(t)Λ(t)(z1, z2) = (z1, z2)

11



where B is a positive, finite number. Thus, letting Λ1(t) = Σ(t)Λ(t), the path K1(t) =
Λ1(t)K stays within a bounded distance of Z, and

Λ1(t) = I∕ ⟨z1⟩ ⊕ Γ(t)∕ ⟨z1⟩
⟂

where Γ(t)∕ ⟨z1⟩
⟂ is in the little group of the vector (1, 0, 0) in the three-dimensional

space ⟨z1⟩
⟂.

One can easily write down this little group explicitly in terms of a single complex
parameter � [10]:

Γ(�)∕ ⟨z1⟩
⟂ =

⎛

⎜

⎜

⎝

1 − 12�
2 −�

0 1 0
0 � 1

⎞

⎟

⎟

⎠

.

Correspondingly, let K1(�) parameterize the orbit of K with respect to this group.
Then the distance between K1(�) and K expressed in the standard unitary norm be-
comes

‖K1(�) −K‖ =
(

|�|2
|

|

|

|

��
2
+ �

|

|

|

|

2
+ |��|2

)

1
2
.

We are interested in the minimum over all paths �(t), leading from K to K ′, of the
maximum of this distance for each path. By geometrical arguments, one finds that this
isM > |�2∕2�|. By a suitable choice of the ratio �∕�, we can makeM as big as we
like, for any fixed ", and therefore we get a contradiction with the hypothesis of +
connectedness.
(iii) RankG(Z) = 0 We make use of the above mentioned basis f0,… , f3, and

consider again the spaceC12. The counterexample can be generalized in the following
way: Let

Z =

⎛

⎜

⎜

⎜

⎝

1
0

0
0

0
0

0
0

1
√

2

(

1
i

)

0
0

⎞

⎟

⎟

⎟

⎠

, K =

⎛

⎜

⎜

⎜

⎝

1
0

0
0

0
�

0
0

1
√

2

(

1 + �
i

)

�x
�y

⎞

⎟

⎟

⎟

⎠

,

K ′ =

⎛

⎜

⎜

⎜

⎝

1
0

0
0

0
�

0
0

1
√

2

(

1 + �
i

)

−�x
−�y

⎞

⎟

⎟

⎟

⎠

;

x = −i
√

(1 + �2) − 1
, y =

1 + �
√

(1 + �2) − 1
.

Assume that local + connectedness holds at Z, so that there is a U (Z, ") that is
+-connected in U ′(Z). Choose |�|, |�|, |�| < "∕4.
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By assumption there is a path K(t) = Λ(t)K from K to K ′ in U ′(Z), and as in (ii)
there is another path from K to K ′,

K1(t) = Σ(t)Λ(t)K = Λ1(t)K1

that stays within a bounded distance of Z, with the property Λ1(t)∕ ⟨k2⟩ = I . If we
choose for ⟨k2⟩

⟂ the new basis (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, x, y), then it becomes clear
that the problem is reduced to (ii).

4. DimZ = 1

(i) RankG(Z) = 1 The method is the same as in §3.(i). By using Condition I, the
problem can be reduced to the case of §2 in 3l dimensions, and + connectedness is
proved.

(ii) RankG(Z) = 0 The counterexample can be generalized as follows: Choose a
basis so that the invariant form for a four-vector x = (x0, x1, x2, x3) ∈ C4 is 2x0x1 +
(x2)2 + (x3)2. Consider the space C8 of two four-vectors, and define

Z =

⎛

⎜

⎜

⎜

⎝

1 0
0 0
0 0
0 0

⎞

⎟

⎟

⎟

⎠

, K =

⎛

⎜

⎜

⎜

⎝

1 0
0 �
0 �
0 0

⎞

⎟

⎟

⎟

⎠

, K ′ =

⎛

⎜

⎜

⎜

⎝

1 0
0 �
0 −�
0 0

⎞

⎟

⎟

⎟

⎠

, K ′ = ΛK.

Assume local + connectedness at Z, and choose U (Z, ") to be +-connected in
U ′(Z). Choose |�|, |�| < "∕2, and � = 0. Then there is a path K(t) = Λ(t)K in
U ′(Z). Because of Condition I, we can take this path to be of the form

K(t) =

⎛

⎜

⎜

⎜

⎝

1 �(t)
0 �
0 �′(t)
0 �′′(t)

⎞

⎟

⎟

⎟

⎠

= T [r(t), s(t), p(t)]K,

T (r, s, p) =

⎛

⎜

⎜

⎜

⎝

1 −rs −rp −s∕p
0 1 0 0
0 s p 0
0 r 0 1∕p

⎞

⎟

⎟

⎟

⎠

∈ +(Z1).

Since �(t), �′(t), �′′(t) are continuous functions of t, there is a continuous path
connecting K and K ′, in or very near to U ′(Z), of the following form

K1(t) =

⎛

⎜

⎜

⎜

⎝

1 �(t)
0 �
0 �(t)
0 0

⎞

⎟

⎟

⎟

⎠

, �(t) =
√

�′(t)2 + �′′(t)2.

A little calculation now shows, at least when � ≠ 0, that this is a continuous path
in the little group of the vectors (1, 0, 0, 0) and (0, 0, 0, 1), connecting K and K ′, so
that we are reduced to the counterexample of §3.(ii). □ (RS)
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V. Conclusion

By applying certain of Stapp’s other results, including a weak, but nontrivial, local
property of + orbits, we have shown that Stapp’s Theorem is valid for the entire do-
main of regularity; and by assuming the generalization of that property for the complex
group of linear transformations, G(n, C), (Condition I) along with the connectedness
of the little groups (Condition II), we have proved local G(n, C) covariance for the an-
alytic continuation of a real-covariant or complex-covariant, tensor-valued function.
It follows from the arguments used by Stapp for + that the domain of regularity is a
union of G(n, C)-invariant sheets, on each of which the function is G(n, C)-covariant.

We have also seen how Jost’s counterexample clarifies the local properties of +
orbits.

We want finally to comment on the application of these results to the connected,
classical, complex groups of linear transformations, defined by their action on Cn:
GL(n, C), the general linear groups; SL(n, C), the special linear groups (unimodu-
lar matrices); O+(n, C), the proper, orthogonal groups; and Sp(n, C), the symplectic
groups.

All of these groups have an analytic parameterization of a neighborhood of the
identity [8], so that Lemma A, or weak G(n, C) covariance, applies. Conditions I and
II are easy to show for GL(n, C) and SL(n, C), and we have verified them as well for
O+(n, C), so that Stapp’s theorem, in the form just stated, holds for these cases. We
expect the conditions to be valid for Sp(n, C) as well, and Stapp’s Theorem to hold for
any of the classical, connected, complex groups of linear transformations of Cn.

These and related questions are being considered in detail by R. Seiler.
As for the local + connectedness property, Stapp’s proof suffices as well for

O+(n, C) and points Z ∈ Cnl satisfying

DimZ = RankG(Z), or n−1.

Jost’s counterexample certainly generalizes to a large class of cases, but we have not
done an exhaustive study.

Appendix: Proof of Lemma A

As a starting point, we take Stapp’s Lemma 7:

Lemma. Let f satisfy the conditions of Lemma A. Let P ∈ R and let Λ(t) be any arc
in G(n, C), with 0 ≤ t ≤ 1, Λ(0) = I , such that Λ(t)P ∈ R for all t. Then

Λ(t)f (P ) = f [Λ(t)P ].

We have stated this lemma in a slightly more general form than given by Stapp, because
R need not be schlicht, and the group need not be +. However, Stapp’s proof still
suffices. The lemma is almost Lemma A, but we must still show that Λ(t)P ∈ R for
any choice of Λ(t).

First, we give a corollary to the lemma above:
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Corollary. Let f satisfy the conditons of Lemma A. Let U and U ′ be schlicht sub-
domains of R with U ⊂⊂ U ′. Then there is a neighborhood of the identity,  (I) ⊂
G(n, C), such that, if P and P ′ ∈ R, and P ′ = ΛP with Λ ∈  (I), then Λf (P ) =
f (ΛP ).

The corollary follows from the lemma by choosing  (I) to be connected, and small
enough so that ΛU ⊂ U ′ for all Λ ∈ (I).

Now to prove Lemma A, let P0 ∈ R and let U and U ′ be schlicht neighborhoods
of P0 with U ⊂⊂ U ′ ⊂ R. Let  (I) ⊂ G(n, C) be the neighborhood of the identity
corresponding to U in the corollary above. Let Λ(t) ∈ G(n, C), 0 ≤ t ≤ 1, Λ(0) = I ,
be any arc. For fixed t define the new function

f t[Λ(t)P ] = Λ(t)f (P ).

Then f t is holomorphic in the schlicht domain Ut = Λ(t)U . We want to show that
f t=1 is the analytic continuation of f from U to Ut.

Divide the interval 0 ≤ t ≤ 1 into small subintervals, by setting

tn =
n
L
, n = 0, 1,… , L.

Choose the integer L large enough so that

(i) Λ−1(tn+1)Λ(tn) ∈ 0(I) ⊂  (I), where 0(I) is a neighborhood of the iden-
tity to be chosen below; this can be done becauseΛ(t) andΛ−1(t) are continuous,
and hence uniformly continuous on 0 ≤ t ≤ 1.

(ii) Un+1 ∩ Un is nonempty, where Un ≡ Utn . This can be done by choosing 0(I)
small enough.

Now consider f n(P ) and f n+1(P ), where f n ≡ f tn , with P ∈ Un ∩ Un+1. From
the definition,

f n(P ) = Λnf (Λ−1n P ),

f n+1(P ) = Λn+1f (Λ−1n+1P ),

with Λ−1n P and Λ−1n+1P ∈ U . But

Λ−1n+1P = Λ
−1
n+1Λn(Λ

−1
n P ).

Thus from (i) and the corollary above, it follows that f n+1(P ) = f n(P ), and that f n+1
is the unique analytic continuation of f n. This proves Lemma A, part (i), and part (ii)
as well, because Ut was chosen to be schlicht.

The above method of proof is of course familiar from the work of Hall and Wight-
man [3].
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