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Abstract

We consider matrix elements of the translation operator in any continuous, uni-
tary representation U (a, A) of the covering group iSL(2,C) of the Poincaré group
on a Hilbert space, between C∞ and analytic vectors of the restriction U (0, A)
of the representation to the homogeneous subgroup. By applying the Jost-Hepp
technique, we extend the directions of rapid decrease (assuming any vacuum is
excluded) to include not only spacelike ones, but all directions outside the center
of momentum velocity cone generated by the four-momentum support. When the
vectors are analytic vectors of U (0, A), and have only physical momentum sup-
port contained in V+ (again excluding any vacuum), we show that the decrease
is exponential for large, spacelike translations. Then the p-space measure corre-
sponding to the matrix element is analytic in a strip in the spatial components p of
the mass-momentum variables, analogous to the Jost-Hepp result that the measure
is C∞ in p, for C∞ vectors.
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1 Introduction

In the framework of Wightman field theory, the Jost-Hepp theorem [1, 2, 3] states that,
if  and � are vectors in the domainD0 of polynomials in the smeared field operators
acting on the vacuum 0, and if the four-momentum spectrum associated via the SNAG
theorem [4] with the unitary representation of space-time translations

T (a) = exp i P ⋅a = ∫ dE(p) eip⋅a

lies in the closed, future light-cone V+, and if the mass spectrum has a gap between
the vacuum and the rest, then the matrix elements ⟨ , T (a) � ⟩ converge rapidly to
the vacuum projection ⟨ ,  0 ⟩ ⟨ 0, � ⟩ for large, spacelike translations a2 → −∞.
That is, for any integerN , there is a finite bound CN such that

| ⟨ , T (a) � ⟩ − ⟨ ,  0 ⟩ ⟨ 0, � ⟩ | ≤ CN (1 + |a2|)−
N
2 , for a2 < 0 .

They made it clear in their beautiful discussion that aside from the spectrum con-
dition, the key ingredient was the invariance of the domain D0 under the action of theinfinitesimal generators P� andM�� of the unitary, continuous representationU (a, A),
a ∈ R4, A ∈ SL(2,C), of the inhomogeneous SL(2,C) group, iSL(2,C). The basic
role of the field operators was just to generate a domain D0 with this property. Such adomain is often called a Gårding domain [5].

Associated with any continuous, unitary representation U (a, A) on a Hilbert space
, there is a natural (essentially the largest) Gårding domain,1 the C∞ vectors of the
representation [5, 6]. The C∞ vectors are those vectors � for which the map (a, A)→
U (a, A)� is a C∞ map of the group manifold into, in the strong topology of. We
are saying nothing newwhen we say that the Jost-Hepp theorem can be freed from field
theory, that it applies in general to matrix elements of the translation operator between
C∞ vectors.

1It was Gårding’s domain [5] that first made it possible to operate freely with infinitesimal generators.
Nelson [6] emphasized that the natural, maximal extension of this property was to the C∞ vectors.
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We are also saying nothing new when we say that the physical spectrum condition
played no special role in their argument, except to pick out the spacelike directions of
translation as being natural to study. They pointed that out themselves.

We do think it worth mentioning that Jost and Hepp’s discussion can be extended to
nonspacelike directions, even in the case of a physical spectrum, as long as we keep the
translations outside the center of momentum velocity cone, to be described precisely
in a moment, generated by the support of the measure d⟨E⟩ ≡ ⟨ , dE(p) � ⟩, and
that for directions inside the velocity cone, lower bounds can be put on the approach
to the limit which are the same as the bounds occurring in Ruelle’s elegant lemma2 on
smooth solutions of the Klein-Gordon equation (or in its analog for massless particles).

In fact, Ruelle’s lemma becomes a special case of the Jost-Hepp theorem, when
generalized in this way, if we restrict ourselves to the discrete mass spectrum. Or to
turn it around, there is a generalization of Ruelle’s lemma to C∞ vectors of U (a, A),
or to C∞ vectors of the sub-representation U (0, A) of SL(2,C), having components in
the continuous mass spectrum, which gives the Jost-Hepp theorem when we restrict to
spacelike directions.

To help make the connection more precise, let us review Ruelle’s results. He con-
siders positive energy solutions of the Klein-Gordon equation,

'(x) = ∫
d3p
2!

e−ip̂⋅x f (p) ,

! = +
√

m2 + p2 , m2 > 0 ,

p̂ ≡ (!,p) ,

where f ∈ (R3), i.e., f is C∞ with compact support. (It is the smoothness, not the
support property, that is essential.) Then supp f generates a timelike cone of possible
classical orbits of free particles which pass through x = 0 when x0 = 0:

(supp f ) = {x ∶ x = p̂�, p ∈ suppf, −∞ < � <∞} .

(supp f ) is called the velocity cone generated by supp f because it is the set of points
of the form x = vx0, v ≡ p∕!, with p ∈ suppf .

To get uniform estimates on the decrease of ' it is convenient to consider the
enlarged cone (�) generated by a closed neighborhood � of the projection of the
momenta p̂ in supp f (along rays through the origin in p-space) on the unit, four-
dimensional sphere.
Lemma (Ruelle [9]). Parametrize x by x = u�, where u is on the unit sphere, ‖u‖2 =
u20+u2 = 1, and � ≥ 0. Let � be a fixed, closed neighborhood on the unit sphere of the
radial projection of supp f . Then there are finite bounds C and CN , for every integer
N , such that
(i) |'(u�)| ≤ C(1 + �)−3∕2, uniformly in u;

2A proof of this lemma was also given by H. Araki [7], for p-space wave functions in the Schwartz
space (R3) [8].
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(ii) |'(u�)| ≤ CN (1 + �)−N , uniformly for u ∉ �.
In particular, because supp f is compact, � can be chosen inside the light cone;

and the estimate (ii) holds for all spacelike directions. If supp f is not compact, for
example, if f is analytic on R3, � can be chosen to extend arbitrarily little outside the
light cone, and one still gets rapid decrease for spacelike directions, which need not be
uniform near the light cone.

We get an immediate connection with the Jost-Hepp theorem by noting that:
(a) p-space wave functions f ∈ (R3) are C∞ vectors of the irreducible represen-

tation [m, 0] of iSL(2,C);3
(b) '(u�) can be represented as the matrix element of the corresponding represen-

tation of the translation T (−u�) between C∞ vectors,
'(u�) = ⟨g, T (−u�)f ⟩

= ∫
d3p
2!

ḡ(p)f (p) e−ip̂⋅u�,

where g is any element of  that is unity on supp f .
It is well known that for Ruelle’s lemma to be valid it is not necessary to restrict f to

 [7]. In this discussion, the natural class for which Ruelle’s lemma holds corresponds
to the set of smooth measures (d3p∕2!)f (p) = ⟨ , dE(p) � ⟩, where  and � are
C∞ vectors of U (a, A), or of the subrepresentation U (0, A), having support for the
moment only at a discrete point m ≠ 0 in the mass spectrum. It follows at once from
the arguments of Jost and Hepp that, in the former case, f ∈ (R3). Jost [10] has given
an alternative proof of Ruelle’s lemma for f ∈  , using classical methods. It follows
from the arguments we give in this paper that in the latter case f ∈ DL1 (d3p∕2!),in a notation borrowed from L. Schwartz [8] (as are several others in this paper), the
space of C∞ functions which are L1, along with all derivatives, relative to the measure
d3p∕2!.4 In this case the solution of the Klein-Gordon equation in x-space, which is
still represented as a matrix element of the translation operator, need not be smooth;
but it has the same laws of decrease as in Ruelle’s lemma.

In this paper we discuss the behavior of matrix elements of the translation operator
outside the velocity cone. We have also considered the behavior inside the velocity
cone in an unpublished collaboration with Rudolph Seiler.

Thus, let U (a, A) be a unitary, weakly continuous representation of iSL(2,C) on a
Hilbert space . Let dE(p) be the spectral measure corresponding to the translations
T (a) = U (a, I). Until further notice, we put no restrictions on the spectrum of the
four-momentum operator P . There need be no mass gap, and the momenta may be
spacelike, lightlike, or timelike.

3There is an analogous statement for type [m,S] for any spin S. Cf. Ruelle [9].
4It is natural to ask which functions in DL1 (d3p∕2!) are generated by such measures. We do not

know the precise answer, but certainly all C∞ functions that are bounded at ∞, with all derivatives, by
!−2(ln!)−1−", for some " > 0, are included.
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For any ' ∈ , we define supp' to be the complement of the largest open set Δ
such that

E(Δ)' ≡ ∫Δ
dE(p)' = 0 .

Just as for solutions of the Klein-Gordon equation, we can associate a (center of
momentum) velocity cone with supp':

(supp') = {x ∶ x = p�, −∞ < � <∞, p ∈ supp'} .

And as before, we consider the velocity cone (�) generated by a closed neighbor-
hood � on the unit sphere of the radial projection of supp'. If 0 ∈ supp', we fol-
low the convention that the projection is the whole unit sphere, so (�) is the whole,
four-dimensional space. By that device, the reader will shortly see that an effective,
four-momentum gap condition enters; but there need be no mass gap. Since we are dis-
cussing matrix elements of energy-momentum conserving operators, it is convenient
to assign a velocity cone to the support of the measure ⟨ , dE(p) � ⟩ rather than to
one of the vectors  and �. Of course, supp d⟨E⟩ = supp ∩ supp�.

The Jost-Hepp theorem gets extended in the following way:
Theorem A. Let and� be C∞ vectors ofU (0, A). Let (�) be any fixed enlargement
of the velocity cone (supp d⟨E⟩), of the sort just described.
(i) Let ‖u‖ = 1 and � ≥ 0. Then for each integerN ,

| ⟨ , T (u�) � ⟩ | ≤ CN (1 + �)−N ,

for u ∉ (�). The finite bounds depend on �,  , and �, but not on u.5

(ii) Let the support be physical, excluding any vacuum; supp d⟨E⟩ ⊂ V+ − {0}. Let
M2 = p ⋅p and !M =

√

M2 + p2. Then the measure d⟨E⟩ is smooth in the
coordinates p in the variables (M2,p). That is, if

⟨ , dE(p) � ⟩ =(p) d4p = ̂(M2,p) dM2 d3p
2!M

and if ℎ(M2) is any dE(p)-measureable, essentially bounded function, then

̂ℎ(p) ≡ ∫
dM2

2!M
ℎ(M2)̂(M2,p)

is C∞ in p.
Three remarks:

5In reference [11], we have used part (i) of Theorem A, stated for C∞ vectors of U (a, A) in the physical
spectrum, to prove a simple, macroscopic causality property of any Poincaré invariant S matrix.
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(a) An effective four-momentum gap condition enters in part (i), because if 0 ∈
supp d⟨E⟩, then the complement of (�) is empty. If 0 ∉ supp d⟨E⟩, then there is a
neighborhood of 0 outside supp d⟨E⟩, since the support is closed, by definition. There
need be no mass gap, but any mass zero vectors must correspond to “hard photons”.6

(b) The effect of choosing  and � to be C∞ vectors of the full representation
U (a, A) is to make the matrix element, in addition to its decrease properties, a C∞
function of the translation four-vector a[1]. Smoothness is a trivial consequence of the
definition of C∞ vectors, and would also hold if only one of  and �were a C∞ vector
of the representation of the translation subgroup, T (a). The effect on the measure d⟨E⟩
is to make it not only bounded, but rapidly decreasing in p.

(c) Note that the change of variables p ↔ (M2,p) in part (ii) of Theorem A is
regular, because p = 0 is excluded from the support, so that p0 = !M ≠ 0, due to the
physical spectrum conditon.

In the case of the physical spectrum, we could prove part (i) of Theorem A, at
least if  and � were taken to be C∞ vectors of the full representation U (a, A), by
applying Ruelle’s style of argument in the proof of part (ii) of his lemma to Jost and
Hepp’s results on the regularity of the measure7 ̂(M2,p)∕2!M in p. An analogous
argument should work for nonphysical spectra. We prefer to emphasize the functional
calculus a bit more, and push the Jost-Hepp technique as far as we can. The proof of
Theorem A is given in Sec. 3, starting from the basic properties of C∞ vectors and
functions of momentum listed in Sec. 2. We also mention in Sec. 3 that the regularity
statements analogous to part (ii) of TheoremA can bemade about d⟨E⟩ for nonphysical
spectra, by choosing appropriate variables. This is a trivial generalization of a remark
of Jost and Hepp [1].

In Sec. 4, we assume that  and � are analytic vectors [6] of U (0, A), i.e., the
maps A → U (0, A)� and A → U (0, A) are analytic from the real analytic manifold
SL(2,C) into  in the strong topology of . We also put on the physical spectrum
condition that the momentum support be in V+. (As far as the argument is concerned,
the support could have a piece in the backward cone as well.) Then rapid decrease of
the matrix element of the translation operator outside the velocity cone gets sharpened
to exponential decrease, which leads at once to the statement that the measure d⟨E⟩ is
analytic in p in the variables (M2,p).

Then it follows that the velocity cone fills the interior of the light cone, unless the
measure is identically zero, or unless the spectrum has only a discrete, mass zero part.
If the support has any part with p⋅p > 0, only spacelike vectors can be outside the cone
(�). Any discrete, p ⋅p = 0 part could be separated out, and the additional timelike
directions outside its velocity cone treated specially; but we do not do that, because a
corollary to Theorem B below permits us to forget about it. It is convenient to use a
Minkowski normalization for the directions, so we give them a different label v, with
v⋅v = −1. We assert the following:8

6We abuse the term photon by applying it to any massless particle, whatever its spin.
7The same word measure is used in this paper for d⟨E⟩, for its density  or ̂∕2!M , and for the

linear functional they define.
8An abbreviated version of the proof of this theorem was published in reference [12].
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Theorem B. Let and� be analytic vectors ofU (0, A), and let supp d⟨E⟩ ⊂ V+−{0}.Parametrize T (a) by a = v�, v⋅v = −1, 0 ≤ � < ∞. Let (�) be an enlargement of
the light cone and its interior generated by a closed neighborhood of the intersection
of V+ with the unit, Euclidean four-sphere. Then
(i) There are finite, positive numbers C and R such that

| ⟨ , T (v�) � ⟩ | ≤ C exp−�(R − ") ,

uniformly for v ∉ (�) and any " > 0.
(ii) The measure ̂∕2!M is analytic in p in the strip ‖ Imp‖ < R.
(iii) If  and � are “sufficiently analytic”, the maximum R is controlled by

Emin ≡ inf
supp d⟨E⟩ p

0.

Remarks:
(a) Aside from a slight refinement in the definition of the derivative on functions

of momentum, the technique of proof is just to estimate the Jost-Hepp derivative in
more detail.

(b) In Wightman field theories with a mass gap, we know from the work of Araki,
Hepp, and Ruelle [13] that the matrix elements of the spacelike translations betweeen
states generated from the vacuum by polynomials in the fields having compact support
in x-space approach the matrix element of the vacuum projection operator exponen-
tially, with the rate controlled by the smallest mass in the theory. Fourier transfor-
mation gives analyticity of the corresponding p-space measure in the variables p, just
as in part (ii) of Theorem B. Are such vectors analytic vectors of the representation
U (0, A) appearing in the theory? We have not investigated what sort of converse to
Theorem B holds.

(c) The corollary below says that analytic vectors with an energy gap must also
have a mass gap. I.e., if there is no mass gap, there is no energy gap. We have already
mentioned that C∞ vectors may have an energy gap without a mass gap. Thus, “hard
photon” vectors may be C∞ vectors, but not analytic vectors.
Corollary. If 0 ∉ supp ⟨ , dE(p) � ⟩, and if there is an open set of p on the light cone
(p⋅p = 0) and in the support, either  or � is not an analytic vector of U (0, A).
Proof. If p = 0, and thus a neighborhood of p = 0, is excluded from the support, then
̂ℎ(p) = 0when ℎ has support only nearM2 = 0 and p is sufficiently small. Buf if  
and � are analytic vectors, Theorem B says that ̂ℎ(p) is analytic, and hence vanisheseverywhere. That contradicts the hypothesis that the support contains arbitrarily small
masses.
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Acknowledgments. Thiswork began during an unpublished collaborationwith J. Bros,
when we had occasion to study Jost and Hepp’s elegant paper, and when we realized
that K. Hepp [14] had alreadymade some use of its result for C∞ vectors ofU (a, A) not
generally in the field theory domainD0. C∞ vectors ofU (a, A) have been studied from
a more general viewpoiont than I take here in independent work of John E. Roberts, to
whom I am grateful for private communication of some of his results. Among other
things, he has applied Jost and Hepp’s regularity theorem corresponding to part (ii)
of theorem A in this paper, to discuss the behavior of the matrix element for timelike
translations. Rudolph Seiler and I have done essentially the same thing in an unpub-
lished sequel to this paper.

Several authors have studied matrix elements of the translation operator in general
representations of iSL(2,C) without investigating the approach to the limit. Borchers
[15] shows that they decrease to zero, for any direction of translation and any vectors
in , if any vacuum is excluded. H. Araki [16] asserts that the p-space measures
corresponding to the one-dimensional translation subgroups T (u�), with u fixed and
nonzero, have no singular part in their Lebesgue decomposition. D. Maison [17] has
rediscovered the latter assertion and given a proof.

Finally, because most of the results of this and the following paper lie quite close to
the surface of Jost and Hepp’s, plus Ruelle’s work, we think it well to emphasize that
what we offer is basically a remark on what the range of validity of their theorems is. I
regard the essential contributions of this paper to be the boundedness of the derivative
on functions of the momentum along all directions outside the velocity cone, resulting
from Eq. (3.3), and Lemma 2, which leads at once to the estimate (4.18) of the Jost-
Hepp derivative between analytic vectors, and to Theorem B.

2 C∞ Vectors and Functions of Momentum

For the origins of the notion of C∞ vectors of a strongly continuous representation of
a Lie group by bounded operators on a Banach or Hilbert space, we refer to the works
of Gårding [5] and Nelson [6], and to the references cited by Nelson. Here we just list
some more or less well-known facts that we take as a starting point.

First, we discuss C∞ vectors for a representation U (0, A) of SL(2,C) induced by a
unitary continuous representationU (a, A) of iSL(2,C) on a Hilbert space. (We need
a representation including translations because we want to consider functions of the
momentum operators.) Then we mention how the restrictions on the rules of operation
get relaxed when we consider the smaller set of C∞ vectors of U (a, A).

2.a C∞ Vectors of U (0, A)
Let the set of C∞ vectors ofU (0, A) in, as defined in the introduction, be denoted by
0. For any open set  ∈ R4, we let0() be the set of C∞ vectors with momentum
support contained in . Thus 0 = 0(R4).What we want are a few “algebraic” properties. The zeroth property below is never
needed explicitly, but we mention it to indicate that there are enough C∞ vectors in
to make them interesting.
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(0) 0 is dense in. For example, the original Gårding domain is already a dense
subdomain of C∞ vectors [5], and so is the set of analytic vectors of U (a, A) [6].

(1) 0 is invariant under U (0, A):
U (0, A)0 ⊂ 0 . (2.1)

(2) 0 is invariant under the action of the six infinitesimal generators M�� of
U (0, A). That is, 0 is in the domain of all the self-adjoint operatorsM�� , and

M�� 0 ⊂ 0 . (2.2)
(3) Let Dn ≡ ()∕)p0)n0…()∕)p3)n3 be a differential monomial of order |n| =

n0 + n1 + n2 + n3, and let H be the set of C∞ functions f on R4 such that (1 +
‖p‖)|n|Dnf is uniformly bounded, for each n. If f ∈ H, the corresponding function
of the momentum operators

f (P ) ≡ ∫ dE(p) f (P ) (2.3)
also has 0 in its domain, and leaves 0 invariant:

f (P )0 ⊂ 0 . (2.4a)
Similarly, letH() be the set of C∞ functions defined on the open set, such that

all derivatives satisfy the “homogeneous boundedness” condition above, uniformly on
.9 Then if f ∈ H(),

f (P )0() ⊂ 0() . (2.4b)
(4) Lorentz transformations act as follows: let Λ be the homogeneous transforma-

tion corresponding to the element A ∈ SL(2,C), and let Λ be the image of the set 
under Λ. Then

U (0, A)0() = 0(Λ−1) . (2.5a)
If f ∈ H(), then Λf (P ) ≡ f (Λ−1p) ∈ H(Λ), and on0()we have the operatoridentities

U (0, A) Λ
−1
f (P )U (0, A)−1 = U (0, A) f (ΛP )U (0, A)−1 = f (P ) , (2.5b)
[

M�� , f (P )
]

= i
[

P�
)f
)p�

(P ) − P�
)f
)p�

(P )
]

. (2.5c)
The last identity is well-defined because

M�� 0() ⊂ 0() . (2.5d)
Properties (3) and (4) are not hard to prove from (1) and (2), plus the standard

functional calculus for self-adjoint operators. From property (3) it is straightforward
to prove property:

(0′) 0() is dense in () ≡ E().
9The notation here is not exactly in the style of L. Schwartz. These functions need not have support

contained in , and need not be defined outside .
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2.b C∞ Vectors of U (a,A)
Let  be the set of C∞ vectors of U (a, A), and let () be the subset of vectors in
 that have support contained in . Of course, () is contained in 0(). The set
() differs from 0() primarily in being invariant under polynomials in P , and in
being translation invariant:

P�() ⊂ () , (2.6a)
T (a)() ⊂ () . (2.6b)

All the properties (0)–(4) above are valid for the domains (). In addition, the
class of functions of momentum for which properties (3) and (4) are valid extends to
M(), the set of C∞ functions defined on  which are bounded at infinity, with all
derivatives, by polynomials.

2.c Invariant Functions of Momentum
The smoothness restriction on the classes of functions of momentum considered in
Secs. 2.a and 2.b can be removed to the following extent.

Let ℎ(M2) be any function that is measureable with respect to dE(p). When the
operator ℎ(P ⋅P ) acts on C∞ vectors of U (a, A), let ℎ be essentially bounded by a
polynomial, and when it acts on C∞ vectors of U (0, A), let it be essentially bounded
by a constant.
(i) Then () resp. 0() is in the domain of ℎ(P ⋅P ) and

ℎ() ⊂ () resp. ℎ0() ⊂ 0() . (2.7)
(ii) On () resp. 0(),

[

M�� , ℎ(P ⋅P )
]

=
[

P�, ℎ(P ⋅P )
]

= 0 . (2.8)
These statements remain true if ℎ is replaced by any bounded operator S that com-

mutes with U (a, A). The proofs are straightforward applications of the calculus of
self-adjoint operators.

3 Matrix Elements between C∞ Vectors of U (0, A)

To prove Theorem A, let’s develop the method of Jost and Hepp a bit. Following them,
we first consider matrix elements of more general functions of P than exp i�u⋅P . Let
�(p) be any uniformly bounded, continuous function onR4; we write � ∈ (R4). The
linear space (R4) is equipped with the norm

‖�‖ = sup
R4

|�| .

In general, we use the notation ‖x‖ for whatever norm belongs to the space of which
x is a member. Thus for � ∈ (R4), we define ‖�‖ as above. For � ∈ , ‖�‖2 =
⟨�, � ⟩. For p ∈ R4, the norm is Euclidean.
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For any vectors  and � ∈ ,

(�) ≡ ⟨ , �(P ) � ⟩ = ∫ d⟨E(p)⟩ �(p) (3.1)

is a bounded measure, i.e., a bounded linear functional on (R4):
|(�)| ≤ ‖ ‖⋅‖�‖⋅‖�‖ . (3.2)

Now let  and � belong to 0. If we were to put on the physical spectrum condi-
tion supp ⊂ V+, and if we were to restrict the direction of translation u to be space-like, we could follow Jost and Hepp’s argument very closely to show that∕2!M is
smooth in p, and that the matrix element of T (u�) decreases rapidly in �. The fact that
we are talking here about C∞ vectors of U (0, A) rather than U (a, A) would cause no
trouble.

To discuss an unrestricted spectrum, and to include all directions u outside the
velocity cone, we proceed as follows. Consider those � ∈ (R4) of the form � =
�(u ⋅p) ≡ �u(p), where ‖u‖ = 1, and where � ∈ (R) as a function of its argument
u⋅p, i.e., � is a C∞ function on R that is uniformly bounded, with all its derivatives.
It follows that �u ∈ (R4). Of course, we have in mind that, for fixed �, exp i�u⋅p is
such a function; but let’s leave that aside for now.

As a notation for the Euclidean dot product, we define p̃� = p�. Then p⋅p̃ = ‖p‖2

and p⋅ũ = p0u0 + p⋅u. Now let  be a neighborhood of supp d⟨E⟩, whose closure 
excludes the origin and projects radially into the interior of � on the unit sphere. Such
a neighborhood  always exists. On0(), the operator �(u⋅P ) ≡ �u(P ) satisfies theidentity

P̃ � ũ�

G(u, P )
[

M�� , �(u⋅P )
]

=
[

M�� , �(u⋅P )
] P̃ � ũ�

G(u, P )
= i� ′(u⋅P ) ,

(3.3)

where G(u, P ) ≡ p⋅p̃ − (p⋅ũ)2 and � ′(t) = d�∕dt.
Why is this identity well defined? First, note that the function
Q��(u, p) ≡ p� ũ�∕G(u, p)

is uniformly bounded in u and p, for u on the unit sphere outside � and p inside .
The same is true of (1 + ‖p‖)|n|DnQ�� . Thus, Q�� is in H(), and the operators
Q��(u, P ) are uniformly bounded, for u outside �, on the Hilbert space (). So, in
fact, are their n-fold commutators withM��’s.The matrix element of the n-th derivative of � satisfies the identity

(� (n)u ) = ⟨ , � (n)(u⋅P ) � ⟩

= (−i)n ⟨ ,
[

M�n�n , [… ,
[

M�1�1 , �(u⋅P )
]

Q�1�1
]

…
]

Q�n�n � ⟩ .

(3.4)
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By applying the commutation relations and properties of 0() described in Sec. 2,
we can write the matrix element as a finite sum (in the manner of Jost and Hepp)

(� (n)u ) =
∑

j,k

⟨

 j , �(u⋅P ) �k ⟩ , (3.5)

where  j and �k have the form (Q��)(M��) Φ, where Φ is either � or  ,  is a
monomial in M’s, and  is a monomial in Q’s and their commutators with M’s. It
follows from our previous remark that is a bounded operator function of P on(),
with bound uniform in u outside �. We conclude that

|(� (n)u )| ≤ Cn ‖�u‖ <∞ , (3.6)
where Cn is independent of u, outside �. Of course, ‖�u‖ is independent of u for all u.

Part (i) of Theorem A follows by choosing �(u⋅p) = exp i�u⋅p, so that �n�(u⋅p) =
(−1)n� (n)(u⋅p).

To prove part (ii), note that the estimate in (3.6) is unchanged if we multiply �
by any bounded, dE(p)-measureable function ℎ(M2), because the operator ℎ(P ⋅P )
preserves domains and commutes with everything in sight:

|(ℎ� (n)u )| ≤ Cn ‖ℎ‖⋅‖�u‖ . (3.7)
In case has support in the physical sprectrum minus any vacuum, all spacelike,

and in particular, all purely spatial directions are outside the velocity cone. If we let
� be a function of p, we can calculate the matrix elements of its partial derivatives
along different spatial directions by formulas quite similar to those above. Letting
̂ℎ(�) =(ℎ�), and

Dn̂ℎ(�) ≡ (−1)n̂ℎ(Dn�) , (3.8)
where n = (n1, n2, n3), we get

|Dn̂ℎ(�)| ≤ Cn1n2n3‖ℎ‖⋅‖�‖ <∞ , (3.9)

which implies that ̂ℎ(p) is C∞, by a theorem of L. Schwartz.10
We could arrive at the same conclusion by Fourier transformation, after noting that

⟨ , ℎ(P ⋅P ) exp(iu⋅P�) � ⟩ decreases rapidly, uniformly when u ∉ �, by applying the
argument following (3.6) to the estimate (3.7).

Either of these remarks on the regularity of ̂ℎ(p) under physical spectrum con-
ditions is essentially contained in Jost and Hepp’s paper, the only difference being that
we have used another operator form of the derivative, and that we have refined their
argument to permit zero masses and C∞ vectors of U (0, A), not just those of U (a, A).

It is clear that analogous statements can be made for unphysical spectra. For ex-
ample, the measure d⟨E⟩ is smooth in any three components of p when the remaining
component is nonvanishing, if variables are chosenwhere the nonvanishing component
is replaced byM2.

10See [8], Théorème III, Vol. I, p. 54.
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4 Matrix Elements between Analytic Vectors of U (0, A) in the
Physical Spectrum

In Theorem B, the vectors  and � are analytic vectors ofU (0, A), and the intersection
of their momentum supports lies in V+ and excludes a neighborhood of p = 0. Since
the spacelike direction v, with v⋅v = −1, is always taken outside (�), it is uniformly
bounded away from the light cone; and its Euclidean norm varies in a compact set,
depending only on �, which does not include zero. These restrictions on p and vmake
it somewhat easier to compute the operator form of the derivative with respect to v⋅p,
which is an advantage because, in order to prove Theorem B, we need more detailed
estimates than those just given.

First, we choose a positive timelike four-vector n, satisfying n ⋅n = 1 and n ⋅v =
0, which is to be a continuous function of v. Such an n has the property that n ⋅ p
is uniformly bounded away from zero, for p ∈ supp d⟨E⟩ and v ∉ (�). That is
straightforward to verify, for example, if we choose n� = Λ(v)�0, where Λ−1(v) is therotation-free, proper, orthochronous Lorentz transformation from v to a purely spatial
vector.

Now we define
Dv =

n�v�

n⋅P
M�� ≡

n�v�

Ω
M�� . (4.1)

Just as before, we choose a neighborhood  which includes supp d⟨E⟩, excludes a
neighborhood of p = 0, and whose closure projects into the interior of �. Then on
0(), which of course contains the analytic vectors  and �, we have the identity

[

Dv, �(v⋅P )
]

= −i � ′(v⋅P ) . (4.2)
Again, we choose � ∈ (R). This is the same form of the derivative used by Jost and
Hepp in the C∞ case, except that we have included all spacelike and not just the purely
spatial directions. They extended their estimates from spatial to spacelike directions
by an invariance argument. No doubt we could do the same thing in the analytic case,
but there may be a slight economy in treating all spacelike directions at once.
Lemma 1. Dv is analytically dominated byN ≡ n�v�M�� = ΩDv. If � is an analytic
vector for U (0, A) with supp� ⊂ V+ − {0}, the series

∞
∑

n=0

1
n!

‖Dn
v�‖ s

n (4.3)

has a uniform radius of convergence for v outside (�).
Proof. The terminology is that of E. Nelson [6]. According to Nelson (and using his
notation) the series

(I): ∑

n

1
n!

‖(
∑

�<�
|M��|)n�‖ sn
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has a nonzero radius of convergence, RI. The terms of the series

(II): ∑

n

1
n!

‖Nn�‖ sn

are bounded by (CII)n times the terms of the series (I) where
CII = max�,�

sup
v

|n�v�| < ∞ .

Thus, the radius of convergence of (II) is at least RII = RI∕CII, uniformly in v. From
now on, let us suppress the label v on Dv. To show that N analytically dominates D
means to show that

‖D�‖ ≤ C ‖N�‖

and
‖(adD)nN�‖ ≤ Cn ‖N�‖ ,

where �(s) ≡ ∑∞
n=1(Cn∕n!)s

n has a positive radius of convergence. We have already
mentioned that Ω−1 ≡ (n⋅p)−1 is a uniformly bounded function of p and v on supp�
and outside (�). Thus

‖D�‖ ≤ ‖Ω−1‖⋅‖N�‖ , (4.4)
leaving the multiple commutators to be evaluated.

To compute the iterated commutator (adD)nN , we look for a recursion. The first
two commutators are

[D, N ] = −i
�
Ω
N, � ≡ v⋅p

n⋅p
, (4.5)

[D, [D, N ] ] =
�2 − 1
Ω2

N. (4.6)
Note that −1 ≤ � ≤ 1. For n ≥ 2, we make the Ansatz:

(adD)nN = −in(n − 2)!
ℎn−2(�)
Ωn

N ,

the form of which is easily verified by induction. By applying the rules
[

D, 1
Ωn

]

= i
n�
Ωn+1

, (4.7)

[D, f (�) ] = i
�2 − 1
Ω

df
d� , (4.8)

the latter of which is certainly justified when f and its derivatives are bounded, we
find the recursion:

(�2 − 1) dd� ℎn−1 + n� ℎn−1 − n ℎn = 0 .

13



This is one of the recursions satisfied by the Legendre polynomials, Pn(�), but thestarting function is

ℎ0 = �2 − 1 =
2
3
(P2 − P0) .

The recursion is linear, so we conclude that

ℎn−2 =
2
3
(Pn − Pn−2) , n ≥ 2 ,

(adD)nN = −2
3
in(n − 2)!

Pn(�) − Pn−2(�)
Ωn

N ,

‖(adD)nN�‖ ≤ 4
3
(n − 2)!

‖

‖

‖

‖

1
Ωn

‖

‖

‖

‖

⋅‖N�‖ ,

(4.9)

where we have used the fact that |Pn(�)| ≤ 1 for −1 ≤ � ≤ 1. Finally, since
‖

‖

‖

‖

1
Ωn

‖

‖

‖

‖

≤ sup
p,v

|(n⋅p)−n| ≡ �−n,

we have bounds Cn = 4
3 (n − 2)!�

−n, and the series for �(s) certainly converges if
|s∕�| ≤ 1.

According to Nelson, the radius of convergence of (4.3) is nonzero if �(s) has a
nonzero radius of convergence, and is in fact determined by �(s). Thus, we get a radius
of convergence that is uniform in v.

We use this lemma to get an estimate on
(−1)nDn(�) ≡ [(−1)n� (n)] =[(adD)n�] . (4.10)

More explicitly, we have to estimate

⟨ , (adD)n� � ⟩ =
n
∑

r=0

(

n
r

)

⟨D∗n−r , � Dr� ⟩ (−1)r . (4.11)

Lemma 1 tells us that  and � are analytic vectors forD, so we know how to estimate
‖Dn ‖ and ‖Dn�‖ in terms of the uniform (in v) radii of convergence R and R�,respectively. For example,

‖Dn�‖ ≤ C� n!Rn� . (4.12)
To get an overall estimate, we must discuss the adjoint of D,

D∗ = N Ω−1 = D + i
�
Ω
, (4.13)

and the binomial expansion for D∗n.
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Lemma 2. With the usual support conditions,

⟨ , (adD)n� � ⟩ =
n
∑

r=0

n−r
∑

l=0

(

n
rl

)

l! (−i)l(−1)r

×
⟨

Dn−r−l ,
Pl(�)
Ωl

� Dr�
⟩

,

(4.14)

where Pl is a Legendre polynomial, and ( nrl
) is a multinomial coefficient.

Proof. From the Ansatz

(D + g1)n =
n
∑

r=0

(

n
r

)

grD
n−r, (4.15)

with g0 = 1 and g1 = i�∕Ω, it is easy to verify the recursion [6]
gn+1 =

[

D, gn
]

+ g1 gn , (4.16)
which does not even depend on the fact that we chose g1 so that D∗ = D + g1. It isalso easy to verify that the solution is

gn = in n!
Pn(�)
Ωn

, (4.17)

and that proves the lemma, by elementary calculation.
Estimating ‖Pl∕Ωl‖ in Lemma 2 uniformly in v by �−l , and putting in the esti-

mate (4.12) for the analytic vector � and the analogous one for  , we get
| ⟨ , (adD)n� � ⟩ |

≤ C�C ‖�‖
n
∑

r=0

n−r
∑

l=0

(

n
rl

)

l! (n − r − l)! r!

×
(

1
R 

)n−r−l ( 1
R�

)r( 1
�

)l

,

≤ C�C ‖�‖
(n + 2

2

)

! 1
Rn

, R ≡ min [R , R�, �] > 0 .

(4.18)

The estimate (4.18) is the essential result of this discussion.
It leads immediately to the exponential decrease of the matrix element of T (�v).

To see that, put
�(v⋅P ) = exp i�v⋅P exp �(R − ") , (4.19)
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where " is any number between 0 and R, and 0 ≤ � < ∞; and substitute the power
series expansion for exp �(R − "):

|

|

|

e�(R−") ⟨ , ei�v⋅P � ⟩||
|

≤
∞
∑

n=0

(R − ")n

n!
| ⟨ , (adD)n ei�v⋅P � ⟩ | ,

≤
C C�
2

∞
∑

n=0

(R − "
R

)n (n + 2)!
n!

≡ C(") < ∞ .

(4.20)

The bound C(") is uniform in v, as long as v is outside the cone (�).
Just as in the C∞ case, and for the same reason, all estimates are preserved if we

multiply� by a dE(p)-measureable, essentially bounded functionℎ(M2), up to a factor
‖ℎ‖ in certain bounds. The estimate above becomes

| ⟨ , ℎ(P ⋅P ) exp i�v⋅P � ⟩ | ≤ ‖ℎ‖C(") e−�(R−"). (4.21)
It is immediate from this estimate that ̂ℎ(p) is analytic in the strip ‖ Imp‖ < R,

by Fourier transformation.
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