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1 Introduction

My aim is to review the properties of the two-point function as I believe them to

be known to general field theorists. I do not know of any references where the

following remarks have been collected together, and conceivably some of what I

have to say about covariant propagators is new.

The wrinkle that I am going to discuss is how to define mathematically the

Feynman propagator, which, in the scalar case, is a sum of two products of dis-

tributions:

ΔF(x − y) = Θ(x0 − y0)⟨Ω, �(x)�(y) Ω⟩
+ Θ(y0 − x0)⟨Ω, �(y)�(x) Ω⟩.

(1.1)

I am going to consider two alternative definitions. The first is the regularized

T product, developed by K. Hepp. He showed how to define regularized time-

ordered, advanced, and retarded products for any number of field operators; and

he showed that on-shell scattering aplitudes do not depend on the choice of reg-

ularization. The second alternative is the invariant (or covariant, in the case

of spin) propagator, which necessarily contains an ambiguity analogous to the

choice of regularization in Hepp’s method, but which has no effect on the one-

particle poles in the propagator. The invariant propagator is due to O. Steinmann,

and preceded Hepp’s work.

First we recall a few definitions from Schwartz distribution theory; then we

discuss the spectral representation of the two-point function for scalar, Hermitian

fields and the two ways of defining propagators; and finally we show how to

modify the discussion to include spin and nonHermitian fields.

2 Preliminaries on tempered distributions

We are going to see that, although we do not assume it at the outset, we have

to deal only with distributions that are tempered. All orders of “integration” are

going to be specified in the sense of distributions. So let’s briefly review a few

concepts.

Tempered distributions are continuous, linear functionals on the Schwartz

spaces of test functons (Rn), or simply  , consisting of C∞, complex func-

tions on R
n that decrease at infinity, along with all derivatives, faster than any

inverse polynomial.1 A denumerably normal topology is introduced for  , the

1We call that rapid decrease.
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finer points of which do no concern us, but it’s good to be aware that there is a

notion of convergence whereby we can say that a sequence 'n → 0 in  . A tem-

pered distribution T maps a test function ' into a number, for which one often

uses the notations2

T (') =
⟨
T , '

⟩
= ∫ dx T (x)'(x). (2.1)

Continuity of T is equivalent to the statement

|T ('n)| → 0 (2.2)

whenever 'n → 0 in  .

The essential operations on distributions that we need are differentiation,

Fourier transformation, multiplication by a function, and Lorentz transformation.

Let’s recall how they are defined.

(i) Differentiation: Let Dm = ()∕)x1)
m1 …()∕)xn)

mn . Then DmT is de-

fined by symbolic integration by parts:

⟨
DmT , '

⟩
= (−1)|m|

⟨
T , Dm'

⟩
. (2.3)

This defines a tempered distribution because Dm' ∈  , and the Schwartz topol-

ogy is such that 'n → 0 implies Dm'n → 0.

(ii) Fourier transformation: Let

(')(x) = 1

(2�)
n

2 ∫ dk '(k) e−ik⋅x. (2.4)

We shall use the Minkowski metric in this definition in our applications. Then

the inverse Fourier transform is

(−1')(x) ≡ '̃(x) =
1

(2�)
n

2 ∫ dk '(k) eik⋅x. (2.5)

2Note that although distributions and test functions are complex, a real inner product notation

is used here, corresponding to the traditional treatment of linear functionals in the theory of

distributions.
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It is a familiar fact that  and −1 are continuous isomorphisms of  onto itself.

Therefore, the operation T defined by

⟨T , '⟩ =
⟨
T , '⟩ (2.6)

gives a tempered distribution, written symbolically

T (x) = 1

(2�)
n

2 ∫ dk T (k) e−ik⋅x. (2.7)

The definition prescribes the “order of integrations” in the expression on the right:

integrate first with a test function in x, then do the k “integration”.

(iii) Inhomogeneous Lorentz transformations: If'(x1,… , xl) ∈ (R4l),

we define

'(a,Λ)(x1,… , xl) = '[Λ−1(x1−a),… ,Λ−1(xl−a)] . (2.8)

For any inhomogeneous Lorentz transformation (a,Λ), this is a continuous iso-

morphism of (R4l). Then we define T (a,Λ) by the formula

⟨
T (a,Λ), '

⟩
=
⟨
T , '(a,Λ)−1

⟩
, (2.9)

and we write symbolically

T (a,Λ)(x1,… , xl) = T [Λ−1(x1−a),… ,Λ−1(xl−a)] . (2.10)

An invariant distribution is one that satisfies

T (a,Λ) = T . (2.11)

(iv) Multiplication by a function: Letf (x) be a C∞ function that is bounded,

with all derivatives, by polynomials. The space of these functions is called

M(R
n). Define fT by

⟨
fT , '

⟩
=
⟨
T , f'

⟩
. (2.12)

It is worth pointing out that for any fixed tempered distribution, this defini-

tion can be extended to a much larger class of functions. An extreme example

occcurs when T is a test function. Then f can be any locally integrable, almost
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everywhere polynomially bounded function. More generally, any tempered dis-

tribution has a representation as a finite sum

T =
∑

n

n ℎn , (2.13)

where n is a polynomial in derivatives, and ℎn is a locally integrable, polyno-

mial bounded function.3 Thus, it is not hard to see that fT defines a tempered

distribution whenever Dmf is locally integrable and polynomial bounded for all

derivatives that appear on f in the integration by parts that moves the derivatives

off of the functions ℎn.

We are especially interested in the case where f is a Heaviside function. Sup-

pose T (x) is a distribution of one variable, and let Θ(x) be the locally integrable,

almost everywhere defined and bounded function

Θ(x) =

{
1 , x > 0 ,

0 , x < 0 .
(2.14)

Of course Θ(x) defines a tempered distribution, too.

We call Θ(x)T (x) the primitive product of Θ and T when it is defined in the

sense described above, and we want to know some conditions on T so that the

primitive product is defined. From what we said above, the condition is that T
be a locally integrable function at the origin.

An equivalent criterion for the primitive product to exist is that the weak

limit of regularized products should exist. Let’s explain what that means. First,

we say that the weak limit of a sequence of tempered distributions exists when

lim
⟨
Tn, '

⟩
exists for all test functions. It is a famous theorem that the weak limit

defines a tempered distribution whenever it exists.4 Next, any distribution can be

regularized by taking its convolution with a function in the Schwartz space  of

C∞ functions with compact support. The regularized distribution

T�(x) = ∫ dy T (y)�(x−y) (2.15)

is a function from M. It is customary to restrict the regularizing functions � to

be real, nonnegative, and normalized,

∫ dx �(x) = 1 . (2.16)

3There is also such a representation with a single, continuous ℎ. The derivative polynomial is

then generally of higher order.
4A fact that one would like to think has made M. J. Lighthill a lot of money.
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In our application, we also require � to be even, �(x) = �(−x). If a sequence of

�’s converges weakly to the � function, the corresponding sequence of regular-

ized distributions T� converges weakly to T .

We define the regularized product of Θ and T to be Θ�T , which is okay

because Θ� belongs to M. The following theorem is probably known, so we do

not give the proof. In any case, we assert that we can prove it.

Theorem. Let a sequence of Θ�’s converge weakly to Θ. Then the sequence of

regularized products Θ�T converges weakly if and only if T is locally integrable

at the origin. When the limit exists, it is equal to the primitive product:

limΘ�T = ΘT . (2.17)

I believe, but have not carefully checked, that the analogous theorem holds

for the primitive product fT in general.

3 The two-point function

Here we review the spectral representation (UKL representation) for the twofold

vacuum expectation value of a Hermitian, spinless field,

Δ+(x−y) = ⟨Ω, �(x)�(y) Ω⟩. (3.1)

We assume the Wightman axioms, except we do not need local commutativity.

We do not demand that the field be tempered. The crucial assumptions are:

(i) Lorentz invariance (proper, orthochronous transformations).

(ii) Translation invariance.

(iii) Existence of an invariant vacuum.

(iv) Energy-momentum spectrum in the forward light cone, V+.

(v) The field is an operator-valued distribution.

(vi) Positive, Hilbert space metric.
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At first, we know only that Δ+ is a Lorentz invariant distribution depending

only on x−y. However, positivity of the metric in Hilbert space and Hermiticity

of � imply that

∬ dx dy Δ+(x−y)'(x)'(y) ≥ 0 (3.2)

for any ' ∈ . That is just the definition of a distribution of positive type, and a

theorem of L. Schwartz (generalization of Bochner’s theorem) says that therefore:

(i) Δ+ (x) is a tempered distribution.

(ii) The Fourier transform ofΔ+(x) is a positive, tempered measure (continuous

linear functional on continuous functions of rapid decrease).

By standard field theory techniques, the measure

�(p) =
1

(2�)2 ∫ dx eip ⋅xΔ+(x) (3.3)

can be written in terms of the spectral resolution of the unitary translation oper-

ators

U (a) = eiP ⋅a = ∫ dE(p) eip⋅a, (3.4)

�(p) = (2�)2⟨Ω, �(0)dE(p)
dp

�(0) Ω⟩. (3.5)

Indeed, we could have used this formula to show that �(p) is a measure in the first

place, and we are going to use that fact in the next chapter.

This expression and the spectrum condition make it clear that the support of

� is in the forward light cone; and since � is also Lorentz invariant, we can write

�(p) = Θ(p0) �̂(p
2) , (3.6)

giving us finally the UKL representation

Δ+(x) =
1

(2�)2 ∫ dm2 d3p

2!m
Θ(m2) �̂(m2) e−ip̂⋅x,

=
1

(2�)2 ∫
∞

0

dm2 �̂(m2) Δ+(x, m
2) ,

(3.7)
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where !m =
√
m2+p2, p̂ = (!, p), and Δ+(x, m

2) is the two-point function for a

free field of mass m.

Again, this formula is to be understood as meaning: integrate first with a test

function '(x) in  , then integrate the result over d3p, then over dm2:

∫ dx Δ+(x)'(x) = ∫ dm2∫
d3p

2!m
Θ(m2) �̂(m2) '̃(−p̂) . (3.8)

Temperedness of the measure means that for some integer N , the following

integral is well defined:

∫
∞

0

dm2 �̂(m2)

(1+m2)N
< ∞ . (3.9)

We emphasize that the UKL representation is always well defined as a tempered

distribution in x space, and as a tempered distribution in p space, no matter how

large the inverse power (1+m2)−N needed to make the integral over the spectral

measure converge.

4 The Feynman propagator

We want to give a meaning to the Feynman propagator

ΔF(x) = Θ(x0) Δ+(x) + Θ(−x0) Δ+(−x) . (4.1)

In general, the primitive product Θ(x0)Δ+(x) does not exist; but under certain

conditions on the spectral measure �, it does. When the primitive product does

not exist, we are going to provide two alternatives.

4.a Regularized propagator

The first, due to K. Hepp [], is just to use the regularized propagator

Δ
�

F
(x) = Θ� (x0) Δ+(x) + Θ� (−x0) Δ+(−x) . (4.2)

In most applications, the result should be independent of regularization. We have

the representation

Θ�(x0)Δ+(x) =
i

(2�)3 ∫
∞

0

dm2 ∫ dp e−ip ⋅x

√
2� �̃(p0−!m)

2!m(p0 − !m + i")
, (4.3)
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Δ
�

F
(x) =

i

(2�)3 ∫
∞

0

dm2 �̂(m2)∫ dp e−ip ⋅x

√
2�

2!m

×

[
�̃(p0−!m)(p0+!m) + �̃(−p0−!m)(!m−p0)

p2 − m2 + i"

] (4.4)

Because � is normalized to give
√
2� �̃(0) = 1, the residues of any one-particle

poles in the propagator are independent of � .

In p space the order of integration in the above formulas is prescribed as

follows: smear first in p0, then in p, and integrate the result over the measure

�̂. It is not too hard to verify that the effect of the regularization �̃ is to give a

rapidly decreasing function of m2, after the p0 and p integrations. It is intuitively

reasonable, and can be shown, that the condition for the limit as
√
2� �̃ → 1 to

exist, and hence for the primitive propagator to exist, is that the result of smearing

the distribution

1

2!m
⋅

1

p0 − !m + i"

with a test function in p0 and p be integrable with the measure �̂. We show in the

Appendix that the condition one gets by counting powers of m2 is correct, and

that we have the result:

Theorem. The primitive propagator defined by

ΔF(x) = lim
�→�

Δ
�

F
(x) (4.5)

exists if and only if

∫
∞

0

dm2 �̂(m
2)

1 + m2
< ∞ . (4.6)

In that case we have the invariant spectral representation

ΔF(x) =
i

(2�)3 ∫
∞

0

dm2 �̂(m2)∫ dp e−ip ⋅x
1

p2 − m2 + i"

=
1

(2�)2 ∫
∞

0

dm2 �̂(m2) ΔF(x, m
2) .

(4.7)

9



4.b Sharp propagator

In case the primitive propagator does not exist, an alternative to Hepp’s regular-

ization is to answer the general question: if the product Θ(x0) Δ+(x) could be

sharply defined, what minimum properties ought the sharp propagator to have?

It seems natural to demand the following:

(i) ΔF should be an invariant, tempered distribution;

(ii) ΔF(x) =

{
Δ+(x) for x0 > 0,

Δ+(−x) for x0 < 0.
(4.8)

We do not further specify what happens at the singular point, x0 = 0, where the

primitive propagator may be undefined.

We are going to see that this problem has solutions, and we are going to find

them all. The problem was first posed and solved in this way by O. Steinmann.

First, let’s assume a solution exists, and ask how unique it is. Let ΔF and Δ′
F

be two solutions. Then

�(x) ≡ ΔF(x) − Δ′
F
(x) (4.9)

is an invariant distribution, with support contained in the spacelike hyperplane

x0 = 0. Since �(x) is invariant, its support is invariant, too; and the only invariant

subset of x0 = 0 is the point x = 0. There is a theorem of L. Schwartz which says

that a distribution with support only at a point is a finite sum of derivatives of �
functions. It can be shown that an invariant sum of derivatives of � functions is

a sum of invariant derivatives of � functions, so

�(x) = (□) �(x) , (4.10)

where  is some polynomial.

Clearly, then, the sharp propagator can be defined in p-space only up to poly-

nomimals in p2.
Now let’s find the spectral representation of all such propagators (and inci-

dentally prove their existence). We have already seen that the primitive product

ΘΔ+ is defined if and only if ∫ dm2 �̂(m2)∕(1 + m2) < ∞. Given the two-point

function Δ+, and its spectral measure �̂, we can define a new spectral measure

�̂M ≡ �̂(m2)

(1 + m2)M
. (4.11)
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More generally, we can define

�̂Q ≡ �̂(m2)

Q(m2)
, (4.12)

where Q is any polynomial having no zeros in the support of �. Now if we put

ΔQ
+
(x) =

1

(2�)2 ∫ dm2 d3p

2!m

Θ(m2) �̂(m2)

Q(m2)
e−ip̂⋅x, (4.13)

we get the distribution identity

Q(−□) ΔQ
+
(x) = Δ+(x) . (4.14)

It is always possible to choose the degree of Q large enough so that

∫ dm2 �̂(m2)

(1 + m2)Q(m2)
< ∞ , (4.15)

because �̂ is tempered. For any such Q, the primitive product ΘΔQ
+ exists, and

we may define a sharp, invariant propagator by writing

ΔF(x) = Q(−□)
[
Θ(x0) Δ

Q
+
(x) + Θ(−x0) Δ

Q
+
(−x)

]

=
i

(2�)3 ∫
∞

0

dm2 ∫ dp e−ip ⋅x �̂(m2)
Q(p2)

Q(m2)

1

p2 − m2 + i"

=
1

(2�)2 ∫
∞

0

dm2 �̂(m
2)

Q(m2)
Q(−□) ΔF(x, m

2) . (4.16)

It is straightforward to check that any two such representations, with Q’s of

sufficiently high degree, indeed differ by a polynomial in p2. It is less trivial, but

still true, that any polynomial R(p2) can be written

R(p2) =
i

(2�)3 ∫ dm2 �̂(m2)

[
Q(p2)

Q(m2)
−
Q′(p2)

Q′(m2)

]
1

p2 − m2
, (4.17)

where Q and Q′ may be chosen to have any degree greater than a fixed N large

enough to make the integrals converge, and where both Q and Q′ are bounded

away from zero for p2 ≥ 0. We show that in an appendix.
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In other words, the representation (4.16) gives all solutions for the invariant

propagator.

Note that, just as for Hepp’s regularization, any of these propagators has the

same poles and residues at any elementary particle masses appearing as � func-

tions in �̂.

Note also that, if we put no further restriction on what we want the sharp

propagator to mean, there is no avoiding the polynomial ambiguity; it is present

even if the primitive propagator exists. Naturally, one favors representations with

the simplest polynomials Q of smallest degree, which picks out the primitive

propagator, when it exists.

For the free field of mass � ≥ 0, corresponding to the measure

�̂ = (2�)2 �(m2 − �2) , (4.18)

the primitive propagator certainly exists, because �̂ has compact support. Never-

theless, the general propagator for the spinless free field contains the polynomial

ambiguity:

Δ̃F(p, �
2) =

i

2�

Q(p2)

Q(�2)

1

p2 − m2 + i"
, (4.19)

where Q is any polynomial as long as Q(�2) ≠ 0.

5 Covariant propagators

If we let the field operators transform according to some nontrivial, finite–dimen-

sional representation of SL(2, C), that is, give them a spin content, and if we allow

them to be non-Hermitean, the treatment we gave above still goes through with

straightforward modifications; but there are two technical points that need some

attention.

First, if we allow non-Hermitean fields, or if we want to discuss the two-point

function for two different fields, we no longer have distributions of positive type

in x-space; and we need a further argument to be sure that we have tempered

measures in p-space.

After that is settled, we have to deal with covariant, rather than invariant,

measures; and it is customary to decompose the covariant measure into a finite

sum over “kinematical-singularity free”, standard covariant polynomials. We

then want to be sure that the coefficients of these polynomials are invariant mea-

sures in m2, and not something more singular. This problem has been solved for
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covariant, analytic functions of one four-vector by K. Hepp and H. Araki, and

there is some lore on the problem for distributions, but I am not aware that it

is written down.5 At any rate, the present problem is such a small strain on the

present state of the art that we may consider it an exercise, which I shall work out

below, with the understanding that I am probably not the first to do so.

5.a Reduction to tempered measures

Before worrying about covariance, let’s check that we have tempered measures

in p-space. Suppose we have translation invariant fields  ∗(x) and �(x), which

may be particular components of some spinors or vectors, and which are not

necessarily Hermitean, tempered, or spacelike commutative or anticommutative.

We already mentioned in Chapter 3 that we can use the spectral resolution of the

translation operator (insertion of a complete set of momentum states) to show

that the two-point function is the Fourier transform of a measure:

⟨Ω,  ∗(x)�(y) Ω⟩ = ∫ dp e−ip ⋅(x−y) ⟨Ω,  ∗(0)
dE(p)

dp
�(0) Ω⟩. (5.1)

It remains to show that it is tempered.

Consider the smeared fields, e.g.,

�(f ) = ∫ dx �(x) f (x) , (5.2)

for f ∈ . From the Schwartz inequality, we get

|⟨Ω,  (f )∗ �(g) Ω⟩|2 ≤ |⟨Ω,  (f )∗  (f ) Ω⟩| ⋅ |⟨Ω, �(g)∗ �(g) Ω⟩| . (5.3)

The two-point functions on the r.h.s. are tempered, by the same positivity argu-

ment as before, so we learn that

⟨Ω,  (f )∗ �(gn) Ω⟩ ←→ 0 ,

⟨Ω,  (fn)∗ �(g) Ω⟩ ←→ 0 ,
(5.4)

for any sequences {gn} and {fn} of functions in  that converge to zero in the

topology induced in  by  .

5For example, I know that W. Schneider had some results on covariant distributions of one four-

vector early in 1964, which may very well have included the one we need here.

13



By a standard completion argument ( is dense in , and is a metric space),

we conclude that ⟨Ω,  (x)∗ �(y) Ω⟩ extends to a tempered distribution separately

in x and y, and by the théorème nucléaire, to a tempered distribution in x and y

together.

We are therefore assured that

�(p) =
1

(2�)2 ∫ dp eip ⋅x ⟨Ω,  ∗(x)�(0) Ω⟩ (5.5)

is a tempered measure, generally complex if  ≠ �. The spectrum condition still

implies that its support is for p ∈ V+.

5.b Irreducible spinor fields without discrete zero mass

We restrict ourselves for now to covariant fields with a spinor index correspond-

ing to irreducible representations of the type (S, 0), labeled, e.g., �(x)�, � =

S, S−1,…−S, or of the type (0, S) labeled �(x)�̇. The transformation laws are

U (A)�(x)� U (A)−1 = DS(A)�
� �(Λx)� ,

U (A)�(x)�̇ U (A)−1 = DS(A∗)�̇ �̇ �(Λx)
�̇ ,

(5.6)

where A ∈ SL(2, C), Λ = Λ(A) ∈ L↑

+
, U (A) is the unitary representation of

SL(2, C) on the Hilbert space appearing in the Wightman axioms, and DS(A) is

a (2S+1)-dimensional representation of SL(2, C). Spinor indices are raised and

lowered by operating with the symbols DS("),

" = i�2 =

(
0 1

−1 0

)
. (5.7)

For the massive free field,�� or��̇ could be half the components of a Streater-

Wightman-Ruelle-Joos-(Stora-Williams, unpublished)-Weinberg, 2(2S+1)-com-

ponent field.

The changes that have to be made when the fields carry any finite-dimensional

representation of SL(2, C), satisfying perhaps some subsidiary condition, are not

serious for the two-point function, and we are going to explain them later.

For now, the spectral measures are basically of the types,

� = Θ(p0) �(p)��̇ , (5.8a)
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corresponding to ⟨Ω,  ∗(x)� �(y)�̇ Ω⟩, and

� = Θ(p0) �(p)�� , (5.8b)

corresponding to ⟨Ω,  ∗(x)� �(y)� Ω⟩, plus the two complex conjugate types.

The measure � is mainifestly covariant, and as in the invariant case, it is conve-

nient to write it in terms of the variables (m2, p̂):

dpΘ(p0) �(p) = dm2 d3p

2!m
Θ(m2) �(m2, p̂) . (5.9)

Then Θ(m2) �(m2, p̂) is still a tempered, covariant measure in the new variables,

because the transformation p ↔ (m2, p̂) preserves continuous functions of rapid

decrease with support in V+.6

Before going further, we want to separate out from � any discrete piece it

might have at m2 = 0; i.e., we remove any �(m2) singularity. That part cor-

responds to the two-point function for free, massless fields; and it deserves to

be treated separately because of the interplay between manifest covariance and

gauge invariance. We do allow the spectrum to go all the way down to m2 = 0,

but from now on we assume that the light cone has �-measure zero.

The following dicussion shows in passing the basic fact that � vanishes unless

the fields � and  have the same spins, S = S ′.

Fubini’s theorem on iterated integration permits us to consider �(m2, p̂) as a

covariant measure in p̂, on the mass shell, for any fixed m2 in the support of �.

We may neglect the point m2 = 0, because it now has measure zero. We could

apply the Jost-Hepp theorem to conclude that � is a covariant, C∞ function of p

for almost every fixed m2, but we can also see this directly. It is well known that

every SL(2, C)-covariant function of p̂with nonzero mass and the transformation

law of � is proportional to

DS(") , for ��� , (5.10a)

DS(p̂⋅�) , for ���̇ , (5.10b)

where p̂⋅� = !mI + p̂⋅���, and ��� is the Pauli three-vector. We can prove the same

thing for measures (or even distributions), on the mass shell.

For example, for ���̇ we get from covariance:

�(p̂) = DS
(√

p⋅�∕m
)
�(m, 0, 0, 0)DS

(√
p⋅�∕m

)
, (5.11)

6One of Gårding’s isomorphisms.
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where DS
(√

p⋅�∕m
)

is the SL(2, C) representation of the boost from (m, 0, 0, 0)

to p̂. This expression is well-defined because DS
(√

p⋅�∕m
)

is in M(p) for fixed

m ≠ 0. Rotation invariance then implies that �(m, 0, 0, 0) is proportional to ���̇ ,
and we can write

�̂(m2, p̂)��̇ = �̂(m2)DS(p̂⋅�)��̇ . (5.12)

A similar argument gives

�̂(m2, p̂)�� = �̂(m2)DS(")�� . (5.13)

We have been careful in these expressions to make the coefficient of �̂ a poly-

nomial in p̂, because we wanted to arrange that �̂ be a measure in m2 even near

m2 = 0. To check that �̂ is a tempered measure, it is sufficient to find continuous,

rapidly decreasing functions f (p̂)�̇� and g(p̂)�� such that the integrals

f̂ (m2) ≡ ∫
d3p

2!m
Tr

[
DS(p̂⋅�) f (p̂)

]

ĝ(m2) ≡ ∫
d3p

2!m
Tr

[
DS(") g(p̂)

]
(5.14)

are continuous functions of m2, uniformly bounded away from zero; for then

�(m2, p̂)�̇� = ℎ(m2)
f (p̂)�̇�

f̂ (m2)

and

�(m2, p̂)�� = ℎ(m2)
g(p̂)��

ĝ(m2)

are continuous and rapidly decreasing whenever ℎ(m2) is continuous and rapidly

decreasing; and

∫
∞

0

dm2 �̂(m2)ℎ(m2) = ∫ dm2 d3p

2!m
Tr(��) (5.15)

defines �̂ as a tempered measure.
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Examples of functions f and g that do the job are

g�� = 2!mG(p)DS("−1)��,

f �̇� = 2!m F (p) �
�̇�,

(5.16)

where G and F are any continuous, nonzero, rapidly decreasing, positive func-

tions. Then we get

∫
d3p

2!m
Tr

[
DS(") g

]
= (2S+1)∫ d3p G(p)

= const > 0 ; (5.17a)

∫
d3p

2!m
Tr

[
DS(p̂⋅�) f

]
= (2S+1)∫ d3p (!m)

2S F (p)

≥ (2S+1)∫ d3p |p|2S F (p)

= const > 0 . (5.17b)

Therefore, we have proved the UKL representation for the two-point function:

S+(x − y) = ⟨Ω,  ∗(x)�(y) Ω⟩ , (5.18a)

S+(x) =
1

(2�)2 ∫
∞

0

dm2 �̂(m2)∫
d3p

2!m
e−ip̂⋅x (p̂)

=
(i))

(2�)2 ∫
∞

0

dm2 �̂(m2) Δ+(x, m
2) ,

(5.18b)

where �̂ is a tempered measure (with no �(m2) piece, by hypothesis), and  is the

appropriate standard covariant polynomial

(p̂) =

{
DS(p̂⋅�) for S+��̇ ,

DS(") for S+�� .
(5.19)

We argue later that this representation is valid for fields that carry any repre-

sentation of SL(2, C) having irreducible spin content (for example, a symmetric,

traceless, divergenceless tensor), at least if the subsidiary conditions are local, by

just putting the correct standard covariant for  .
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5.c Irreducible propagators

Before we can discuss the T product, we have to know how ⟨Ω,  ∗(x)�(y) Ω⟩
is related to ⟨Ω, �(y) ∗(x) Ω⟩. We proceed by invoking causal commutation or

anticommutation rules for the first time, and writing a UKL representation for

each of the two-point functions. It is then “straightforward” to show that their

measures have to be the same, up to a sign, and we get

⟨Ω,  ∗(x)� �(y)�̇ Ω⟩ = (−1)2S S+(y − x)�� , (5.20a)

⟨Ω, �(y)�̇  ∗(x)� Ω⟩ = S+(y − x)��̇ . (5.20b)

Having said that, we are ready to adapt the theory of invariant propagators to

the covariant case. The first remark is that the condition for the existence of the

primitive propagator can obviously get modified when DS(p̂⋅�) is present. But

even then, the propagator for fermions is better behaved than the individual terms

ΘS+ in its definition:

ŜF(x) ≡ Θ(x0)S+(x) + �Θ(−x0)S+(−x) ,

� =

{
1 for ŜF�� ,

(−1)2S for ŜF��̇ .

(5.21)

To see that in general, we supply an inverse polynomialQ(m2)−1 in the measure �̂

to get a well-defined primitive propagator, and a derivativeQ(−□), to get finally

the representation

ŜF =
i

(2�)3 ∫
∞

0

dm2 ∫ dp
Q(p2)

Q(m2)

�̂(m2)

p2 − m2 + i"
e−ip ⋅x

×
1

2!m

[
(p0+!m)(p̂) − (p0−!m)(−̃̂p)

]
,

(5.22)

where ̃̂p ≡ (!,−p).
If  = DS("), the condition for the existence of this representation is the

same as before. If  = DS(p̂ ⋅�), the condition for existence for bosons is the

same for ŜF and ΘS+:

∫
∞

0

dm2 �̂(m2)m2S

Q(m2) (1+m2)
< ∞; (bosons) (5.23)
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while for fermions, the existence condition for ΘS+ is the same as that above;

but for ŜF it is

∫
∞

0

dm2 �̂(m2)m2S−1

Q(m2) (1+m2)
< ∞ . (fermions) (5.24)

These estimates can be seen intuitively by counting the leading powers of !m in

Eq. (5.22), and they can be justified rigorously.

It is important to note that (p̂) is restricted to the mass shell. If (p̂) has a

nontrivial p dependence, as in the case  = DS(p̂⋅�), S > 1

2
, we have the well-

known (Schwinger) phenomenon that ŜF is not covariant. It is easy to check that

ŜF is covariant when S =
1

2
.

To get a covariant propagator in all cases, we should have asked the same

question as in the invariant case: What are the covariant distributions SF(x) that

are equal to S+(x) for x0 > 0 and S+(−x) for x0 < 0? We certainly get a solution

to this problem when we replace ŜF by

SF(x) =
i

(2�)3 ∫
∞

0

dm2 �̂(m
2)

Q(m2) ∫ d4p
Q(p2)(p)

p2 − m2 + i"
e−ip ⋅x

= (i)) ΔF(x) ,

(5.25)

where ΔF is the invariant propagator corresponding to �̂, because thenSF is equal

to

S+(x) = (i)) Δ+(x) (5.26)

when x0 > 0, since ΔF = Δ+, with a similar statement for S+(−x) and x0 < 0.

Moreover, we can see that all the ambiguity in SF is contained in ΔF, i.e., in

the choice of the polynomial Q, by the following argument:

(i) A simple extension of our earlier reasoning shows that the ambiguity in

x-space is a covariant derivative of �(x) having the same transformation law as

Δ+.

(ii) This yields a covariant polynomial in p-space, which must have the form

R(p2)(p), whereR is a polynomial, by the Hepp-Araki result for covariant poly-

nomials in one four-vector.
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(iii) We stated before that any polynomial R(p2) can be written in the form of

Eq. (4.17), which shows that R(p2)(p) can be written as the difference of two

propagators of the form (5.25).

Let us call the covariant propagator corresponding toQ ≡ 1 the fundamental

propagator, when it exists. We distinguish it from the primitive covariant propa-

gator, obtained by replacing both (!, p) and (−!, p) by (p) in the primitive

(noncovariant) propagator, because the conditions for the existence of the funda-

mental propagator and the primitive propagator are not the same.

Theorem. The fundamental propagator

SF(x) =
i

(2�)3 ∫
∞

0

dm2 �̂(m2)∫ d4p
(p) e−ip ⋅x

p2 − m2 + i"

=
1

(2�)2 ∫
∞

0

dm2 �̂(m2)(i)) ΔF(x, m
2)

(5.27)

exists if and only if

∫
∞

0

dm2 �̂(m
2)

1 + m2
< ∞ . (5.28)

In other words, the condition for the existence of the fundamental propagator

is spin independent.

The fundamental propagator is equal to the primitive covariant propagator if

both exist, i.e., if �̂ decreases fast enough, but the fundamental propagator may

exist even if the primitive propagator does not.

5.d Free field propagators

Let’s restrict these results to massive free fields where �̂ = (2�)2 �(p2 − �2),

� ≠ 0. The fundamental and primitive propagators exist for any spin, and the

covariant propagator in p-space is

S̃F(p, �
2) =

i

2�
⋅
Q(p2)

Q(�2)
⋅

(p)

p2 − �2 + i"
, (5.29)

where Q is any polynomial with Q(�2) ≠ 0. The fundamental propagator, with

Q ≡ 1, has the “best” p-space behavior at infinity.
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5.e Contact terms

The noncovariance of ŜF has been labeled an “infamous difficulty”7 in the lit-

erature, and it has long been recognized that the thing to do is to add to ŜF the

noncovariant “contact” terms one gets from the commutator

[(i)), Θ(x0)
]

to get a covariant propagator. There occasionally appears to be some uncertainty

about this question, so perhaps it is worth a remark.

The procedure indicated by the commutator above is perfectly unambigous in

the language developed so far. The main thing we want to point out is that the op-

erations of multiplying the distributions ()0)
sΔQ

+ by the distributions ()0)
r �(x0)

that arise from the Leibniz rule are well defined, if and only if Q is chosen to

make Θ(i)) ΔQ
+ well defined, i.e., if and only if �̂∕Q decreases fast enough.

That can be justified rigorously,8 but we only sketch an argument. The ex-

istence of Θ ()0)
nΔQ

+ means that ()0)
nΔQ

+ is locally integrable at x0 = 0. Hence

()0)
rΔQ

+ is locally continuous at x0 = 0 for any r < n; and we are free to form the

products [()0)
r�(x0)] Δ

Q
+ .

In particular, these operations are always allowed when we deal with the

primitive propagators for a free field of nonzero mass and any spin.

5.f Generalization to any finite dimensional representation

If the fields carry any finite dimensional representations of SL(2, C), we can im-

mediately do a covariant reduction to irreducible representations by applying the

equivalent of Clebsch-Gordan coefficients. The important point is that this re-

duction involves an invertible transformation by numerical matrices, whose only

effect is to give us a multiplicity of fields and two-point functions, each of which

can be discussed separately, and all of which obey the axioms we have assumed.

Thus, it is “trivial” to reduce the problem to one where each field carries

an irreducible representation of SL(2, C) of type (S1, S2), which is a little more

general than the types (S, 0) or (0, S) considered so far.

The two-point function S+ of a pair of such fields has a covariant measure

��′�̇′ ,��̇ = Θ(p0) �(m
2, p̂)�′�̇′,��̇ , (5.30)

7A Schwingerism?
8I think. It needs checking.
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where all the spins S1, S2, S
′
1
, S ′

2
may be different. It can be reduced further

by applying Clebsch-Gordan coefficients separately to the dotted and undotted

indices, giving us finally a direct sum of covariant measures ���̇ carrying irre-

ducible representations of SL(2, C), to which we may apply the theory already

developed.

From what we said before, the only nonvanishing irreducible components of

� are those of type (S, S). This language about the “irreducible components of

�” can be confusing, because the label S is the spin of the elementary particles

described by � only in special cases. For example, the measure

�̂�� = �̂(m2)DS(")�� (5.31)

that we discussed before corresponds to states in the Hilbert space of angular

momentum S; but it has a single irreducible component of type (0, 0), in the

language above. We are using this language mainly as a device to convince the

reader that everything goes through for any finite dimensional representation.

If the original fields are subject to subsidiary conditions involving only co-

variant polyonomials in derivatives, such as divergence, or Bargmann-Wigner,

or Rarita-Schwinger conditions, or if there are symmetry and trace conditions on

the indices, that produces relations among the irreducible measures in the two-

point function, whose coefficients are polynomials; but it is not a source of any

particular trouble.

To carry the discussion over to propagators, all that has to be checked is

whether causal commutativity or anticommutativity still produces (5.20b) for the

two-point functions of fields in opposite order. That is straightforward to verify;9

and from then on, everything is the same as before.

In principle, the conditions for existence of the propagators may be different

for each irreducible two-point function; but all irreducible pieces connected by a

subsidiary condition have to be regularized by a commonQ, if anyQ is necessary.

5.g Symmetric, traceless, divergenceless tensors

As a practical example, we work out the propagator for two fields that are sym-

metric, traceless, divergenceless tensors of any rank. This of course includes con-

served currents and energy-momentum tensor densities; and it is simple enough,

as is any other example with irreducible spin content, that we can treat it directly

9But needs checking.
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without going through the process just outlined of reducing with Clebsch-Gordan

coefficients and imposing the subsidiary conditions.

Namely, excluding any discrete, zero mass in the spectrum, the measure

�(�)(�) = Θ(p0) �(m
2, p̂)(�)(�) (5.32)

corresponding to the two-point function

S+(x − y)
(�)(�) = ⟨Ω,  ∗�1…�S ��1…�S Ω⟩ (5.33)

can be reduced to the earlier case by contracting with the M(p) transformation

symbols � (�)(p̂)�, defined up to a sign by:

(i) � (�)(p)� is a covariant polynomimal in p;

(ii) � (�)(p)� is symmetric and traceless in its tensor indices;

(iii) p� ��
�2…�S (p)� = 0;

(iv) � (�)(p)� �(�)(p)
� = (p2)S ��

� .

It follows that

G(�)(�)(p)

(p2)S
≡ � (�)(p)� �

(�)(p)�

(p2)S
. (5.34)

is the (Fronsdal) projection operator for the symmetric, traceless, conserved ten-

sors of rank S. The transformation symbol � can be written down explicitly in

terms of Pauli matrices and Clebsch-Gordan coefficients.10

Let ��� = � (�)� �
(�)
� �(�)(�). It is a covariant measure to which we can apply

the same discussion as before:

��� = �̂(m2)DS(")�� , (5.35)

where �̂ is a tempered measure. Then,

�(m2, p̂)(�)(�) = �̂(m2)G(�)(�)(p̂) , (5.36)

where

�̂ = �̂∕m2S (5.37)

10This construction is reviewed in Appendix 2 of [].
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is a tempered measure, with the possible exception of a neighborhood ofm2 = 0,

and where G(p) is the covariant polynomial defined in (5.34) above.

In an appendix, we show that we have chosen the standard covariant G cor-

rectly, that indeed �̂ is a measure near m2 = 0, too. The argument is quite analo-

gous to that we gave before; and it uses the fact that

G(0)(0)(p̂) = C (p⋅p)S , (5.38)

where C is a nonzero constant, independent of m2.

From this point, the discussion precisely parallels our earlier remarks:

(i) Local commutatitivty implies that

⟨Ω, �(�)(y) ∗(�)(x) Ω⟩ = S+(y − x)
(�)(�). (5.39)

(ii) The propagator

ŜF(x)
(�)(�) = Θ(p0)S+(x)

(�)(�) + Θ(−p0)S+(−x)
(�)(�) (5.40)

has the representation

ŜF(x)
(�)(�) =

i

(2�)3 ∫
∞

0

dm2 �̂(m
2)

Q(m2) ∫ d4p
Q(p2)

p2 − m2 + i"
e−ip ⋅x

×
1

2!m

[
(p0+!m)G

(�)(�)(!m, p)

−(p0−!m)G
(�)(�)(−!m, p)

]
.

(5.41)

(iii) The covariant propagator has the representation

SF(x)
(�)(�) =

i

(2�)3 ∫
∞

0

dm2 �̂(m
2)

Q(m2) ∫ d4p
Q(p2G(�)(�))

p2 − m2 + i"
e−ip ⋅x (5.42a)

=
i

2�
G(�)(�)(i)) ΔF(x) . (5.42b)

We leave it to the reader to read off the conditions on �̂ and Q for the repre-

sentations ŜF and SF to exist.
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The most important special cases are the conserved vector and second rank

tensor, where of course

G�� = p2 g�� − p� p� , (5.43)

G�1�1;�2�2 =
1

2
p4

(
g�1�1 g�2�2 + g�1�2 g�2�1 − 2

3
g�1�2 g�1�2

)

−
1

2
p2 [p�1 p�1 g�2�2 + p�1 p�2 g�2�1 + p�2 p�1 g�1�2 + p�2 p�2 g�1�1

−
2

3
(p�1 p�2 g�1�2 + p�1 p�2 g�1�2)

]

+
2

3
p�1 p�2 p�1 p�2 .

(5.44)
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