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A Model Details and Bayes Factor Evaluation

In this section, we provide the full details of the prior specification for the linear model (1) in
the main text.

In general, we consider the effect sizes of the regression coefficients at the scale of signal-to-noise
ratios with respect to 7;. We assign a normal prior to the intercept term gy, i.e.,

,U,Z\/7Tl ~ N(O, 7702)

When performing inference, we let ¢y — oo and essentially assume a flat prior for the intercept.
This prior provides no shrinkage effect, and allows the intercept term absorbing much of variation
in y;. Conditional on v, = 1, we also assign a normal prior to the genetic effect 5;,. More
specifically, we assume

BT | m =1 ~ N(0,¢%).
In particular, the prior genetic heritability explained by the single SNP association of /; can be
computed by
2fl1(1 — fli)¢2
L+2f,(1— fi,)¢*
where f;, represents the allele frequency of the SNP [;. Finally, we assign an inverse gamma prior
to T, i.e.,

T~ D(k/2,0/2),
and in inference, we consider the limiting form x, A — 0.

Given ¢ and taking limits with respect to the hyper-parameters ¢, xk and \. Many authors have
shown that the Bayes factor of the linear model BF(y,, ¢) can be analytically computed (Servin
and Stephens, 2007) or approximated (Wakefield, 2009, Wen, |2014). Although a single ¢ value
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would allow a wide range of effect sizes (from —oo to 00), we use a mixture normal distribution
to mimic the long-tailed effect size distribution observed in practice by considering L different
¢ values in a grid. Finally, we evaluate the Bayes factor with respect to =, by averaging over L
different ¢y, values, i.e.,

L
BF(v,) = Y _ mBF (v, éx),
=1

where 7, denote the weight on grid value ¢. Typically, we select a grid of ¢ values at the
heritability scale informed by the practical observations in relevant genetic association analysis.

B Bayesian FDR Control and Connection to Frequentist
Approaches

In the context of QTL discovery, the multiple testing problem can be framed as a binary decision
problem with respect to «; for [ = 1,..., L. We define a binary indicator, Z;, for each locus [
and set Z; = 1 if ; # 0 and 0 otherwise. Further, we denote the collection of the observed
phenotype-genotype data by Y. Let the function §,(Y") denote a decision (0 or 1) on Z; based on
the observed data, and define the total discoveries by D := Zle 0;. Following the formulation
of Miiller et al.| (2006)), the False Discovery Proportion (FDP), which is also a random variable,
can be defined as the proportion of false discoveries among total discoveries, i.e.,

L
ol —2)
FDP = == : B.1
Dv1 (B.1)
Recall,
w:=Pr(Z,=0Y)=1-E(Z|Y); (B.2)
thus, the Bayesian False Discovery Rate is naturally defined as
>l b
BFDR :=E(FDP |Y) = ="~"—— B.3
(FDP | ) = £ (B.3)
where the conditional expectation is taken with respect to Z := (Zy,...,Z1). Moreover, the
frequentist control of the False Discovery Rate focuses on the quantity
FDR := E(FDP) = E[E(FDP | Y)], (B.4)

where the additional expectation is taken with respect to Y over (hypothetically) repeated
experiments. It is important to note that controlling the Bayesian FDR is a sufficient but not
necessary condition to control the frequentist FDR; thus the Bayesian FDR control is more
stringent in theory.

As demonstrated by Newton et al.|(2004) and [Miiller et al.| (2006), the Bayesian FDR control is
based on the following natural decision rule

5t =1 (w <t). (B.5)
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For a pre-defined FDR level «, the threshold ¢, in (B.5|) is determined by

: Zl_—1 (51* (t) g
==l .
t, = arg mtln ( D(t) Y al, (B 6)

i.e., the rejection set determined by the threshold ¢, is the largest such set with the averaged
false discovery probability < «. In practice, we use the following simple algorithm proposed by
(Newton et al., 2004) to determine t,:

1. sort w;’s in ascending order: i.e., uqy < u) < ... < uy.

2. start from m = 1 and compute the partial mean using the sorted sequence of {uw} for

Sm = Z?il u@y/m
3. stop if s, > «

4. ta = Uan—1) if m > 1, and 0 otherwise; and reject the hypotheses corresponding to uy, ..., Ugm—1)-

C EM Algorithm for Estimating Enrichment Parameters

C.1 EM Algorithm Details

In this section, we outline the EM algorithm to estimate the enrichment parameter . We denote
I''={v,..v.},D:={D,....D.} and G = {Gy, ..., GL}. By treating I" as missing data, we
obtain the complete data likelihood by the following

PY,T'|G,D,a)=Pr(I'| D,a)P(Y | G,T)

=[[Pr(v | Do) [[ Py | Grvy). (C.1)

=1 =1

where the factorization is based on the conditional independence relationships induced by the
hierarchical model. We further re-write the prior probability Pr(«, | D;, a) using the logistic

model,
exp(a/d;,) \"i 1 1=
1 + exp(a’dy,) 1 + exp(a’dy,) '

Therefore, the complete data log-likelihood is given by

)2

Pr(y, | Do) = ]

=1

L
log P(Y,T'| G,D, o) ZZ% a'd,) ZZlog [1+exp(a’dy,)] + Zlog P(y, | G1,7,).
I=1

=1 i=1 =1 i=1



The EM algorithm is initiated at an arbitrary starting point o = ). In the E-step of the t-th
iteration, we compute

L p
EllogP(Y,T |G, D,a)|Y,G D,a"] =>" > Pr(y, =1|y,G, D, a")(/dy,)

=1 i=1

-3 lolt + explady)

=1 i=1

+E (logp<yl | ’7[7Gl) ‘ ylleva(t)) :

That is, we evaluate the posterior inclusion probability Pr(v,, |y, a(t)) for each candidate SNP
and for all loci. In the M-step, we find

L p D
(t+1) _ _ O o '
o arg max (Z Y Pr(y, =11y, G, Dy, aV)(@'dy,) = > > log[l + exp(a du)]) :

=1 i=1 =1 i=1

Note that the objective function coincides with the log likelihood function of a logistic regression
model with the binary response variable, 7;,, replaced by its corresponding posterior expectation,
Pr(y, = 1| y;, Gy, D;, ). For this well-known concave function, the optimization can be
achieved by numerical solutions such as Newton-Raphson and iterative re-weighted least square
(IRLS) algorithms. Our implementation in TORUS uses the Newton-Raphson algorithm.

An alternative strategy for the M-step in practice is to take advantage of the nature of the poste-
rior probability Pr(vy, = 1| y;, G;, D;,a®) and adopt a generalized EM algorithm. Specifically,
instead of attempting maximizing the likelihood function in the M-step, we find a new set of
parameter values, a**?) to simply increase the likelihood. To achieve this, we aim to improve
the curve fitting for the mean model

g (E(/ylz)) = a,dliﬂ

by a least squares algorithm, where g(-) denote the logistic link function. In particular, we use
the posterior expectation, Pr(y, = 1 | y;, G;, D;, o), in place of E(7;,) in each M-step. As
Bayesian posterior probabilities, the PIPs are never exactly 0 or 1 (although they can approaching
0 or 1 very closely). Mathematically, the solution of the least squares algorithm is the root of
the following linear system,

L p

ZZ (logit[Pr(y, =1y, G, D, aV)] - a'dy,) =0,

=1 i=1

L p

ZZ (logit[Pr(v, = 1| y,, Gi, Dy, @) — &'dy,) - dyyy = 0,

I=1 i=1 (C.2)
L p

Z Z (logit[Pr(%i =1 | Y, Gl, Dl, Oé(t))] - a'dli) : dlim =0.

=1 i=1



In comparison, the solution that maximizes the log-likelihood function is the root of the following
non-linear system,

L m

'd;.
ZZ <Pr(’ylz =1 ‘ yl7Gl7Dl7a(t)) eXp(a ll) ) = O’

=1 i=1 1 + exp(a/dy,)

/2

'd,.)
Pr(~ = 1 D, a®)_ _Spd) \ oo

~

P

exp(a’d;
> (Prm — 1|y, G, D), ") o d) >> i =0

gy 1+ exp(ad,

In practice given the same PIP input, we find the solutions by the two algorithms for a single
M-step are typically close, and importantly the solution by the least squares algorithm does
increase the log-likelihood. As a result, both maximization strategies lead to numerically almost
identical final result for &. (Although exceptions exist in the case that the binary responses
are extremely imbalance.) The main benefit of the least square algorithm is that it provides
an analytic tool for us to understand the effect of approximations of PIPs on the enrichment
parameter estimate.

C.2 Approximation of Posterior Inclusion Probability

The computational difficulty of the EM algorithm mainly lies in evaluating the PIPs in the
E-step. The situation is the same as computing u; in Bayesian FDR control where the exact
computation is intractable. To ease computation, we apply the same deterministic approximation
technique. The key assumption is again that posterior probabilities of single QTN association
models dominate the posterior probability space of {~} for locus [, i.e.,

ZH")/Hgl Pr(v, =~ | D, a)BF(y)
>~ Pr(v =~"| D, )BF(v')

(C.4)

Note that the model space of {7 : |]7v|| < 1} contains only the null model, v, = 0, and all
single-SNP association models. We denote

P
mo = Pr(y, = 0| D) = [[ (1 + exp(eddy,)) ™.

i=1
Let v denote the single-SNP association model where the j-th SNP is the assumed QTN. Clearly,

)2

Pr(y, =5 | Dy, @) = exp(d/dy;) H (1+exp(ad)) " =mp- exp(a’dy,),

=1



and
BF('Y;) = BFy,,

and recall that BF;; denotes the Bayes factor based on the single-SNP analysis of SNP j at
locus I. Finally, we note that given the restrained model space, the PIP of SNP j, Pr(y, =1 |
Y;, Gi, Dy, o), coincides with the posterior model probability, Pr(vy, =5 | y;, Gi, D, o). Given
all of the above, it follows from the simple algebra that

ealdli BFZZ
L+, e'dy, BF, ’

PI.(’WZ' =1 | Y, GlaDlva) ~ (C5)

which can be analytically evaluated given .

C.3 Justification for Claim 1

We provide necessary arguments for Claim 1 by considering a scenario that the sample size in QTL
mapping is reasonably large. Under such condition, the behavior of the proposed approximation
is better understood. Without loss of generality, we first assume all candidate SNPs are
uncorrelated, i.e., they are in linkage equilibrium (and we will relax this assumption at the end
of the section). As a consequence, it follows that the Bayes factor for single SNP association
model BF;, > 1 if the SNP [; is a QTN, and BF;, — 0, otherwise.

First, we qualitatively compare the approximate PIP (C.5) with the corresponding value from
the exact Bayesian computation. Note that if a locus contains at most a single QTN, the
approximation is accurate based on the arguments provided in the main text, i.e., the
difference between the approximation and the exact calculation is negligible. Here, we mainly
focus on the situation where a candidate locus contains multiple QTNs. In such a locus [, if
the SNP [; is not associated with the trait of interest, because BF;, — 0 given our sample size
assumption, the approximation yields that Pr(y, =1 | y;, Gi, &) — 0 for any reasonable value
of a, and this result should be consistent with the exact Bayesian calculation under the same
assumption. If the SNP [; is genuinely associated, we expect that the Pr(v, =1 | y,, G|, ) — 1,
as the sample size increases. This is no longer the case in the approximation : although
individually, it is expected that BF;, > 1 for any QTN in the locus, the PIP evaluated by
is determined by the relative magnitude of the Bayes factor (which is a function of the genetic
effect size, see |Wakefield| (2009) for details). Consequently, they are no longer guaranteed to all
converge to 1. For example, consider two independent QTNs [; and [; with different effect sizes
with 3; > f3;, the single SNP Bayes factors follow the relationship with sufficiently large samples,

BF,, > BF;, > 1.

For any reasonable a values, the approximation leads to the PIP of [; close to 1, whereas the
PIP of [; is clearly < 1. In a different situation that 3; ~ ;, we expect the approximate PIPs for
l; and [; are both close to 0.5. In conclusion, the approximate PIPs of QTNs are shrunk towards
0 if a locus harbors multiple association signals.
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We then proceed to consider the impact of potentially shrunken PIP values on the empirical
Bayes estimates of the prior probabilities. Note that in the EM algorithm, the M-step of the t-th
iteration directly provides the prior probabilities for the E-step of the (¢ + 1)-th iteration, i.e.,
for the SNP [;, the quantity is

expla™V'd,,]

1+ explat+1)d; ]’

which also can be considered as the fitted value for /; in the logistic regression model solved in the
t-th M-step. Importantly, these fitted values can be viewed as unbiased estimates of their input
PIPs (or unbiased predicted values in a logistic regression). This justified by the first equation in
. Now consider two coupled EM runs starting with the same initial value a(!). The first EM
run (EM-exact) uses (hypothetically) exact PIP values from each E-step and is expected to yield
the desired unbiased MLE for the enrichment parameter «; and the second EM run (EM-appx)
applies approximation that shrinks PIPs toward 0. Given the shrinkage effect on PIP by
the approximation, the priors for EM-appx in next iteration of the E-step are also shrunk toward
0 comparing to EM-exact, especially for the multiple causal SNPs co-existing in a locus. As a
consequence, we expect that the approximate PIP values are further biased toward 0 in the next
immediate E-step for those SNPs. In general, the joint effects of more conservative prior input
and the approximation lead to more conservative prior estimates in all future iterations.
Let the coupled EM runs end when both runs achieves the pre-defined convergence criteria. It
is easy to conclude that EM-appx yields the prior estimates biased toward 0 in comparison to
EM-exact. Therefore, the Claim 1 is justified.

In addition, using the GEM algorithm with the least squares described in the section B.2, we
explore the impact of the PIP approximation on the individual enrichment parameter estimates.
To this end, we further assume that conditional on SNPs being QTNs, their genetic effect sizes
are no longer relevant to their genomic annotations. Furthermore, we assume a more explicit
approximate relationship between the approximate PIP by , PIP, (y,, G, D;, &), for SNP
[; with its true value at the logistic scale by

logit[f/)il\jli(yh Gl7Dl7a)] ~ lOgit [Pr(’yli =1 | Y Gla Dlaa)] - Alz‘(ﬁl)? and Alz(lgl) > 0. (06)

More specifically, assumes that the effect of reasonable a values on the shrinkage effect is
negligible, which generally holds in practice for reasonably large sample size. By plugging
into the GEM procedure, it should be clear that in each M-step with the least squares implemen-
tation, the shrinkage effect by the PIP approximation is orthogonal to the annotation D; and
absorbed only by the intercept term, ag, in the enrichment parameter which is under-estimated;
whereas ay, ..., a;,,, remain roughly intact. As a consequence, by considering two coupled GEM
runs with the exact and the approximate PIPs, we conclude that the approximation leads
to a downward biased estimate of «g, while the estimates of aq, ..., a,, remain unbiased.

Finally, we address the issue of LD on the PIP calculation. In brief, the presence of LD may
result in that -, becomes non-identifiable in association analysis (Guan and Stephens, 2011)).
Consider two perfectly correlated SNPs, however only one of the two is the actual QTN. Based
on genetic association data alone, the two SNPs are indistinguishable. Consequently, each is
supposed to be assessed PIP = 0.50 asymptotically. The interpretation is that although we



are almost certain one of the two SNPs is the QTN (the sum of the PIPs — 1), there is no
information to distinguish the two. In general, in the presence of LD, instead of expecting that
single SNP PIP values converge to 1, we should expect the sum of individual PIPs of a cluster
of SNPs in LD converge to 1 in the exact Bayesian computation. Furthermore, the distributive
pattern of PIPs within a LD cluster is determined by the degree of genotype correlation with the
causal SNP and the relevant genomic annotations. Therefore, the approximation should
shrink the PIPs of all member SNPs within a cluster close to 0, and the other arguments and
our main conclusions remain unchanged.

C.4 Evaluation of Enrichment Parameter Estimate by Simulation

We perform numerical simulations to validate our findings in the previous section. Our simulation
setting mimics the application of genome-wide cis-eQTL mapping, however at a reduced scale.
Specifically, we select a subset of 5,000 random genes from the GEUVADIS data. For each gene,
50 c¢is-SNPs are used in the simulation and we annotate 30% of the SNPs with a binary feature.
For each SNP, the association status is determined by a Bernoulli trail with the success (i.e.
associated) probability given by

_ exp(—4+ aid)
P=17 exp(—4 + azd)’

where d is the SNP specific binary annotation value, and «; is the true enrichment parameter.
Given the true QTNs of each gene, we then apply the scheme described in section [Ef to simulate
the effect sizes of the QTNs and the expression levels for the 343 European individuals. We
set a; = —0.25,0.00,0.25,0.50,0.75,1.00, and for each a; value, we simulate 100 data sets.
We use the proposed EM algorithm with approximation to analyze the simulated data
sets. For comparison, we also estimate «; using a logistic regression with the true association
status as the outcome variable and the annotations as the predictor. This analysis represents a
theoretical best case scenario, and its results should be regarded as the optimal bound for the
analyses that infer the latent association status from the genotype-phenotype data. The results
(Supplementary Fig. indicate that the EM algorithm based on our posterior approximation
scheme consistently yields unbiased estimates for ;. The decrease of estimation efficiency from
the theoretical optimal estimator, represented by the difference of the standard errors, is not large.
However, we do find the baseline parameter «q is consistently under-estimated, as predicted in
the previous section.

D Derivation of Approximation (11)

For a given genomic locus, our goal is to show that
L L
Pr(y | o) BF(v) ~ [ [ Pr(vyy | @) - [ BF ().
k=1 k=1
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Figure 1: Point estimates of the enrichment parameter in simulations. The point estimate of
a; + standard error (obtained from 100 simulated data sets) for each method is plotted for
each simulation setting. The “best case” method uses the true association status and represents
the optimal performance for any enrichment analysis method. The estimate based on the EM
algorithm using the posterior approximation yields unbiased estimate but with larger variation
than the optimal method, which is fully expected.

Recall that {'y[k} :k=1,2,3...} form a partition of the vector «y. Because the prior probabilities

are assumed to be independent across SNPs; it follows trivially that Pr(vy | a) = Hé:l Pr(yy |
o).

To show that ;
BF(v) ~ [ [ BF(v),
k=1

we note the result from Wen| (2014)),

BF () = / P(8 | ) BF(8) dB,

where the probability P(3 | «v) defines the prior effect size given association status «. Further-



more, note the independent relationship of the prior effect sizes across SNPs,

p

PB|~) =[] PGB | )

=1

If vy = 1, f; is assigned a normal prior (the derivation can be trivally extended to the case
Bi | 7 = 1 is assigned a mixture normal prior), whereas if ; = 0, 8; = 0 with probability 1 (or
is represented by a degenerated normal distribution, 8; ~ N(0,0)). Equivalently, we write

B | v N(O> W)v
where W' is a diagonal prior variance-covariance matrix, and for v # 1, W is singular.

Without loss of generality, we assume that both the phenotype vector y and the genotype vectors
g1, -, g, are centered, i.e., the intercept term in the association model is exactly 0. Furthermore,
we also assume that the residual error variance parameter 7 is known. It then follows from the
result of [Wen| (2014) that

1 1
BF(B; W) =|I + TG'GW| ™2 - exp (§y'G (W(I +7G'GW)™] G'y) : (D.1)

This expression provides the theoretical basis for the factorization. In particular, the p x p sample
covariance matrix ~G'G is a well-known estimate of Var(G). In other words, G'G can be viewed
as a noisy observation of nVar(G). Using population genetic theory, [Wen and Stephens (2010)
show that Var(G) is extremely banded. Based on this result, Berisa and Pickrell (2016) recently
provided an algorithm to segment the genome into L non-overlapping loci utilizing the population
parameter of the recombination rate, i.e.,

G - (G[l], ey G[L}),
and we approximate G'G by a block diagonal matrix
G'G=GyGn @ o GG, (D.2)

where “@” denotes the direct sum of the matrices. It is important to note that (D.2)) should
be viewed as a de-noised version of G'G with non-zero entries outside the LD blocks shrunk to

exactly 0. By plugging into , it follows that
L
BF(3; W) = | [ BF, (D.3)
k=1
where
BF[k] = |I + TGEk}G[k}W[k”_% - exp (%y’G[k] [W[k](.[ + TGEk]G[k]W[k})_l] Gfk}y) . (D.4)

In particular, (Wpy,..., Wyy)) is a decomposition of the diagonal matrix W compatible with
the decomposition of G.
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Finally, following Wen| (2014)), we integrate out the residual error variance parameter 7 for each
BF[ by applying the Laplace approximation. This step results in plugging in a point estimate
of 7 (e.g., based on y and Gy for each block k) into the expression . Taken together, we
have shown that

L
BF(v) ~ H/P(B[k] | Vi) BF g dBpy,
k=1
and consequently,

L
PI'<’7 | Y, G7 Oé) ~ HPI‘<7[k] ’ Y Gla OL)
k=1

E Simulation Details

In this section, we provide the details of the scheme for simulating genetic effects of casual QTNs
and the individual-level quantitative traits.

As described in the main text, we perform Bernoulli trials for each of the candidate SNPs and
determine its association status with the target (expression) quantitative trait. For each causal
QTN, we then draw its genetic effect from a Normal distribution, i.e.,

By, | v, =1~ N(0,0.6%).

The individual-level expression levels for locus [ are then simulated according to the linear model

pi
Yy = Z/Blz Y91, +e, e~ N(Oa I)
i=1
In our scheme, the genetic association by a causal QTN explains 0.7% (for QTN with minor
allele frequency 1%) to 15% (for QTN with minor allele frequency 50%) of the heritability, which
is quite realistic.

In the analysis, we compute the single SNP Bayes factor using the analytic formula by |Wakefield
(2009). More specifically, we assume the prior genetic effect of an QTN is drawn from a mixture
of Normal distribution, i.e.,

B,

v, =1~ mN(0,47).

And we use a grid of ¢ values, {¢: 0.1,0.2,0.4,0.8}, and set m; = --- = my = 0.25. We also apply
this setting for analyzing the eQTL data from the GTEx project.

F  Binning of cis-SNPs by DTSS

Here we describe the binning scheme to annotate the SNPs in the cis region of a target gene. We
place each SNP into 21 unequally spaced bins according to its DTSS (Table . The the bins are
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smaller and denser as close to T'SS, which helps capture the rapid decay of QTL signals. This
binning scheme leads to estimation of 21 enrichment parameters in the enrichment analysis.

Table 1: Binning scheme for cis-SNPs

Bin ‘ Range (kb) ‘ Size (kb)
-10 < =500 500
9 (500, —250) 250
8 [~250, —100) 150
7 [~100, —50) 50
6 [—50, —25) 25
5 (25, —10) 15
4 (~10, —5) 5
3 (-5, —2.5) 2.5
2 [~2.5,—1) 15
1 [~1,-0.5) 0.5
0 (0.5, 0.5) 1

1 0.5,1) 0.5
2 1,2.5) 1.5
3 [2.5,5) 2.5
4 [5,10) 5

5 10, 25) 15
6 [25, 50) 25
7 150, 100) 50
8 100, 250) 150
9 250, 500) 250
10 > 500 500
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