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1. Underlying probability space

Let (Ω,F , P ) be the probability space that underlies all the random variables in the

paper. Here, Ω is the sample space, F is the σ-algebra and P is the probability measure. Let

ω ∈ Ω denote a sample point. The ensuing proofs need the results of the strong convergence

of Kaplan–Meier estimators and empirical quantiles for each covariate. We consider the

individual subsets of Ω in which the convergence results hold. Specifically, Theorem 5.9

of Shao (1999) and Theorem 3.1 of Foldes and Rejto (1981) indicate that Ŝ(t), Ŝ(t | Xj),

Q̂j(k) and Q̂ju(k) are strong consistent estimators of S(t), S(t | Xj), Qj(k) and Qju(k), for

1 ≤ j ≤ p. That is, there exists an Ωj such that on Ωj , sup0<t<τ |Ŝ(t | Xj) − S(t | Xj)| =

o(1), Q̂j(k) − Qj(k) = o(1) and Q̂ju(k) − Qju(k) = o(1), where Ωj ⊂ Ω with P (Ωj) = 1

and τ = inf{t : P (T > t) = 0}. In addition, there exists an Ω0 ⊂ Ω where P (Ω0) = 1,

such that on Ω0, sup0<t<τ |Ŝ(t) − S(t)| = o(1). Take Ω∗ = ∩p
j=0Ωj . Then it follows that

P (Ω∗) = 1 and P (Ωc
∗) = 0, where Ωc

∗ is the complement of Ω∗. All the events mentioned in



2

the following proofs should implicitly be viewed as the intersections with Ω∗, which ensures

that the aforementioned strong convergence results hold.

2. Lemmas and proofs

We present several useful lemmas before proving the theoretical results in the main text.

Lemma 1. Let τ = inf{t : P (T > t) = 0}. For a categorical covariate Xj with Kj

categories, let Ŝ(t | Xj = k) be the Kaplan–Meier estimator of the conditional survival

function within the category of Xj = k, k = 1, . . . , Kj . There exist d0 > 0, d1 > 0, κ and v

under Condition 2, for any ε > 0 and n sufficiently large,

P

{
max

1≤k≤Kj

sup
t∈[0,τ ]

|Ŝ(t | Xj = k)− S(t | Xj = k)| > ε

}
≤ d1K exp(−d0ε

2n1−3κ),

where K = max1≤j≤pKj .

Proof. By the inequality in the last paragraph on page 1161 of Dabrowska (1989), there exist

positive constants d0 and d1 not depending on ε, n and S(t | Xj), such that

P (max
k

sup
t∈[0,τ ]

|Ŝ(t | Xj = k)− S(t | Xj = k)| > ε)

≤ d1Kj exp(−d0ε
2 min

k
nkK

−2
j )

≤ d1K exp(−d0ε
2 min

k
nkK

−2)

where nk is the number of subjects within Xj = k. The result follows since mink nk ≥

n/K = n1−κ by Condition 2.

Lemma 2. Under the same constants and conditions for Lemma 1, for any q ≥ 1, ε > 0 and

n sufficiently large,

P (|Ψ̂(q)
j −Ψ

(q)
j | > ε) ≤ 2d1K exp

(
− d0

16G(q)2
ε2n1−3κ

)
,
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where G(q) = 2{mink
∫ τ

0
Sq(u | Xj = k)dS(u)/4}(1/q)−1.

Proof. By the Minkowski inequality and the definition of τ ,

|Ψ̂(q)
j −Ψ

(q)
j |

=

∣∣∣∣max
k1,k2

{
−
∫ ∞

0

|Ŝ(u | Xj = k1)− Ŝ(u | Xj = k2)|qdŜ(u)

}1/q

−max
k1,k2

{
−
∫ ∞

0

|S(u | Xj = k1)− S(u | Xj = k2)|q dS(u)

}1/q ∣∣∣∣
≤ max

k1

∣∣∣∣∣
{∫ ∞

0

|Ŝ(u | Xj = k1)|qdŜ(u)

}1/q

−
{∫ ∞

0

|S(u | Xj = k1)|q dS(u)

}1/q
∣∣∣∣∣

+ max
k2

∣∣∣∣∣
{∫ ∞

0

|Ŝ(u | Xj = k2)|qdŜ(u)

}1/q

−
{∫ ∞

0

|S(u | Xj = k2)|qdS(u)

}1/q
∣∣∣∣∣

= max
k1

∣∣∣∣∣
{∫ τ

0

|Ŝ(u | Xj = k1)|qdŜ(u)

}1/q

−
{∫ τ

0

|S(u | Xj = k1)|q dS(u)

}1/q
∣∣∣∣∣

+ max
k2

∣∣∣∣∣
{∫ τ

0

|Ŝ(u | Xj = k2)|qdŜ(u)

}1/q

−
{∫ τ

0

|S(u | Xj = k2)|qdS(u)

}1/q
∣∣∣∣∣

=: I11 + I12.

We next bound I11 and I12 separately. We first define

ψ(z) =

{∫ τ

0

|z[Ŝ(u | Xj = k1)− S(u | Xj = k1)] + S(u | Xj = k1)|qdŜ(u)

}1/q

.

Here, ψ(z) is continuous with respect to z on z ∈ [0, 1] and

ψ(0) =

{∫ τ

0

|S(u | Xj = k1)|qdŜ(u)

}1/q

and ψ(1) =

{∫ τ

0

|Ŝ(u | Xj = k1)|qdŜ(u)

}1/q

.

We intent to apply the mean value theorem to bound |ψ(1)− ψ(0)|. Since ψ(z) involves

an absolute value, we need to compute the subgradient of ψ(z), which is denoted by ∂ψ(z).

Given |∂(|z|)| ≤ 1 and by the strong consistency of Ŝ(t | Xj) to S(t | Xj) and Ŝ(t) to S(t),
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for any z ∈ [0, 1], we have that

|∂ψ(z)| ≤
∣∣∣∣ [∫ τ

0

∣∣∣∣|z{Ŝ(u | Xj = k1)− S(u | Xj = k1)}+ S(u | Xj = k1)|qdŜ(u)

](1/q)−1

×
[ ∫ τ

0

|z{Ŝ(u | Xj = k1)− S(u | Xj = k1)}+ S(u | Xj = k1)|q−1

× {Ŝ(u | Xj = k1)− S(u | Xj = k1)}
∣∣∣∣dŜ(u)

]∣∣∣∣
≤ G(q) sup

t∈[0,τ ]

|Ŝ(t | Xj = k1)− S(t | Xj = k1)|,

where G(q) = 2{mink
∫ τ

0
Sq(u | Xj = k)dS(u)/4}(1/q)−1.

Hence, by Rolle’s mean value inequality theorem (Aussel et al., 1995),

|ψ(1)− ψ(0)| ≤ G(q) sup
t∈[0,τ ]

|Ŝ(t | Xj = k1)− S(t | Xj = k1)|.

Then, we have

I11 = max
k1

∣∣∣∣∣
{∫ τ

0

|Ŝ(u | Xj = k1)|qdŜ(u)

}1/q

−
{∫ τ

0

|S(u | Xj = k1)|q dS(u)

}1/q
∣∣∣∣∣

≤ max
k1

∣∣∣∣∣
{∫ τ

0

|Ŝ(u | Xj = k1)|qdŜ(u)

}1/q

−
{∫ τ

0

|S(u | Xj = k1)|q dŜ(u)

}1/q
∣∣∣∣∣

+ max
k1

∣∣∣∣∣
{∫ τ

0

|S(u | Xj = k1)|qdŜ(u)

}1/q

−
{∫ τ

0

|S(u | Xj = k1)|q dS(u)

}1/q
∣∣∣∣∣

≤ G(q)×max
k1

sup
t∈[0,τ ]

|Ŝ(t | Xj = k1)− S(t | Xj = k1)|+ ε

4
,

when n is sufficiently large. Here, the last inequality involving ε/4 stems from the uniform

strong convergence of Ŝ(t) to S(t) over [0, τ).

Similarly, we can obtain that

I12 = max
k2

∣∣∣∣∣
{∫ τ

0

|Ŝ(u | Xj = k2)|qdŜ(u)

}1/q

−
{∫ τ

0

|S(u | Xj = k2)|q dS(u)

}1/q
∣∣∣∣∣

≤ G(q)×max
k2

sup
t∈[0,τ ]

|Ŝ(t | Xj = k2)− S(t | Xj = k2)|+ ε

4

for a sufficiently large n.
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Therefore,

P (|Ψ̂(q)
j −Ψ

(q)
j | > ε) ≤ P (I11 > ε/2) + P (I12 > ε/2)

≤ P

{
max

1≤k1≤Kj

sup
t∈[0,τ ]

|Ŝ(t | Xj = k1)− S(t | Xj = k1)| > ε

4G(q)

}
+P

{
max

1≤k2≤Kj

sup
t∈[0,τ ]

|Ŝ(t | Xj = k2)− S(t | Xj = k2)| > ε

4G(q)

}
≤ 2d1K exp

(
− d0

16G(q)2
ε2n1−3κ

)
.

Proof of Theorem 1. By Lemma 2, we have that

P (M⊂ M̂1) ≥ P

(
|Ψ̂(q)

j −Ψ
(q)
j | ≤ cn−v

)
≥ P ( max

1≤j≤p
|Ψ̂(q)

j −Ψ
(q)
j | ≤ cn−v)

≥ 1−
p∑
j=1

P (|Ψ̂(q)
j −Ψ

(q)
j | > cn−v)

≥ 1−
p∑
j=1

[
2d1K exp

(
− d0c

2

16G(q)2
n1−3κ−2v

)]
= 1− 2pd1c0n

κ exp

(
− d0c

2

16G(q)2
n1−3κ−2v

)
= 1− c2p exp(−c1n

1−3κ−2v + κ log n),

where c2 = 2d1c0 and c1 = d0c
2/16G(q)2.

Let Q̂j(k) and Qj(k) be the empirical and theoretical k/Kj× 100-th percentiles of Xj , for

k = 1, . . . , Kj . For notational simplicity, let Ĵk = [Q̂j(k−1), Q̂j(k)) and Jk = [Qj(k−1), Qj(k)).

Lemma 3. For a continuous covariateXj , let Ŝ(t | Xj ∈ Ĵk) be the Kaplan–Meier estimator

of the conditional survival function within the subsamples of Xj ∈ Ĵk. There exist constants



6

c3 > 0, c4 > 0, κ and ρ under Condition 3, for sufficiently large n,

P

{
max
k

sup
t∈[0,τ ]

|Ŝ(t | Xj ∈ Ĵk)− S(t | Xj ∈ Jk)| > ε

}
≤ d3K exp(−d2ε

2n1−3κ−2ρ),

for any 1 ≤ k ≤ Kj and K = max1≤j≤pKj .

Proof. By the strong consistency of Q̂j(k) and the continuity of FXj
, it follows that when n

is sufficiently large

FXj
(Q̂j(k))− FXj

(Q̂j(k−1)) > 0.5{FXj
(Qj(k))− FXj

(Qj(k−1))}

on Ω∗ for k = 1, . . . , Kj . Here, by convention, Q̂j(0) = Qj(0) = 0 and Q̂j(Kj) = Qj(Kj) =∞.

Now for each k = 1, . . . , Kj , by the mean value theorem,

|S(t | Xj ∈ Ĵk)− S(t | Xj ∈ Jk)|

=

∣∣∣∣P (T > t,Xj < Q̂j(k))− P (T > t,Xj < Q̂j(k−1))

FXj
(Q̂j(k))− FXj

(Q̂j(k−1))

−
P (T > t,Xj < Qj(k))− P (T > t,Xj < Qj(k−1))

FXj
(Qj(k))− FXj

(Qj(k−1))

∣∣∣∣
≤

∣∣∣∣P (T > t,Xj < Q̂j(k))− P (T > t,Xj < Q̂j(k−1))

FXj
(Q̂j(k))− FXj

(Q̂j(k−1))

−
P (T > t,Xj < Qj(k))− P (T > t,Xj < Qj(k−1))

FXj
(Q̂j(k))− FXj

(Q̂j(k−1))

∣∣∣∣
+

∣∣∣∣P (T > t,Xj < Qj(k))− P (T > t,Xj < Qj(k−1))

FXj
(Q̂j(k))− FXj

(Q̂j(k−1))

−
P (T > t,Xj < Qj(k))− P (T > t,Xj < Qj(k−1))

FXj
(Qj(k))− FXj

(Qj(k−1))

∣∣∣∣
≤

2|P (T > t,Xj < Q̂j(k))− P (T > t,Xj < Qj(k))|
FXj

(Qj(k))− FXj
(Qj(k−1))

+
2|P (T > t,Xj < Q̂j(k−1))− P (T > t,Xj < Qj(k−1))|

FXj
(Qj(k))− FXj

(Qj(k−1))

+
2|FXj

(Q̂j(k−1))− FXj
(Qj(k−1))|

{FXj
(Qj(k))− FXj

(Qj(k−1))}2
+

2|FXj
(Q̂j(k))− FXj

(Qj(k))|
{FXj

(Qj(k))− FXj
(Qj(k−1))}2

=: I21 + I22 + I23 + I24.
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It is easy to show that I21 = 0 when k = Kj as Q̂j(Kj) = Qj(Kj) = ∞. Now for k =

1, . . . , Kj − 1,

I21 =
2

FXj
(Qj(k))− FXj

(Qj(k−1))
|P (T > t,Xj < Q̂j(k))− P (T > t,Xj < Qj(k))|

≤ 2

FXj
(Qj(k))− FXj

(Qj(k−1))

∣∣∣∣ ∫ ∞
t

f(s | Q∗j(k))fXj
(Q∗j(k))ds

∣∣∣∣max
k
|Q̂j(k) −Qj(k)|

≤ 2

FXj
(Qj(k))− FXj

(Qj(k−1))
fXj

(Q∗j(k)) max
k
|Q̂j(k) −Qj(k)|

≤ 2

FXj
(Qj(k))− FXj

(Qj(k−1))
max
x

fXj
(x) max

k
|Q̂j(k) −Qj(k)|,

where Q∗j(k) lies between Q̂j(k) and Qj(k), for k = 1, . . . , Kj − 1. By the strong consistency

of Q̂j(k), the continuity of fXj
and Theorem 5.9 of Shao (1999), there exist positive constants

b01 and b11 such that

P

(
I21 >

ε

8

)
≤ P

[
max

1≤k≤Kj−1
|Q̂j(k) −Qj(k)| >

ε{FXj
(Qj(k))− FXj

(Qj(k−1))}
16 maxx fXj

(x)

]
≤ b11Kj exp(−b01nδ

2
ε ),

where δε = min1≤k≤Kj−1{FXj
(Qj(k) + ε) − F (Qj(k)), F (Qj(k)) − FXj

(Qj(k) − ε)} ≥

min1≤k≤Kj−1 f(Qj(k))ε. Hence, we have that P (I21 > ε/8) ≤ b11K exp(−b01c
2
3n

1−2ρε2)

by Condition 3.

Similarly, for w = 2, 3, 4, there exist constants b0w and b1w such that P (I2w > ε/8) ≤
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b1wK exp(−b0wc
2
3n

1−2ρε2). Therefore,

P{max
k

sup
t∈[0,τ ]

|Ŝ(t | Xj ∈ Ĵk)− S(t | Xj ∈ Jk)| > ε}

≤ P{max
k

sup
t∈[0,τ ]

|Ŝ(t | Xj ∈ Ĵk)− S(t | Xj ∈ Ĵk)| > ε/2}

+P{max
k

sup
t∈[0,τ ]

|S(t | Xj ∈ Ĵk)− S(t | Xj ∈ Jk)| > ε/2}

≤ d1K exp{−d0(ε/2)2n1−3κ}+
4∑

w=1

P

(
I4w >

ε

8

)

≤ d1K exp

{
−d0

4
n1−3κε2

}
+

4∑
w=1

b1wK exp(−b0wc
2
3n

1−2ρε2)

≤ d3K exp(−d2n
1−3κ−2ρε2),

where d3 = max{d1, b11, . . . , b14} and d2 = min{d0/4, b01c
2
3, . . . , b04c

2
3}.

Lemma 4. If Xj is a continuous covariate, under Condition 3, there exist positive constants

d′2 and d′3, for n sufficiently large,

P (|Ψ̂(q)
j −Ψ

(q)
j | > ε) ≤ d′3K exp(−d′2ε2n1−3κ−2ρ),

where K = max1≤j≤pKj .

Proof. The proof of this lemma is similar to that of Lemma 2. By Lemma 3, the conclusion

follows.

Proof of Theorem 2. By Lemma 4, the proof of this theorem is similar to that of Theorem

1.

For notational simplicity, we let Ĵur = [Q̂ju(r−1), Q̂ju(r)) and Jur = [Qju(r−1), Qju(r)).

Lemma 5. If Xj is a continuous covariate, there exist constants d̃0 > 0, d̃1 > 0, κ̃ and ρ̃

under Condition 5, for any ε > 0 and n sufficiently large, we have that

P (|Ψ̃(q)
j −Ψ

(q)
jo | > ε) ≤ d̃1K log n exp(−d̃0ε

2n1−3κ̃−2ρ̃/ log n),
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where K = max1≤j≤p,1≤u≤N Kju.

Proof.

|Ψ̃(q)
j −Ψ

(q)
jo | ≤

N∑
u=1

|Ψ̂(q)
j,Λju
−Ψ

(q)
j,Λjuo

|

≤
N∑
u=1

[
max
k1

∣∣∣∣ {∫ τ

0

|Ŝ(t | Xj ∈ Ĵuk1)|qdŜ(t)

}1/q

−
{∫ τ

0

|S(t | Xj ∈ Juk1)|qdS(t)

}1/q ∣∣∣∣
+ max

k2

∣∣∣∣ {∫ τ

0

|Ŝ(t | Xj ∈ Ĵuk2)|qdŜ(t)

}1/q

−
{∫ τ

0

|S(t | Xj ∈ Juk2)|qdS(t)

}1/q ∣∣∣∣].
The conclusion follows by using a proof similar to Lemma 2 and Lemma 4.

Proof of Theorem 3. By Lemma 5, the proof is similar to that of Theorem 1.

Proof of Theorem 4. Since ql satisfies Condition 6, by Theorem 3, there exist constants c2,l,

c3,l, κl, vl and ρl such that

P{M ⊂ M̃(ql)} ≥ 1− c3,lp log n exp{(−c2,ln
1−3κl−2vl−2ρl/ log n) + κl log n}.

Note that M̃h =∪L
l=1M̃(ql). Hence, we have M̃(ql) ⊂ M̃h and

P (M⊂ M̃h) ≥ P (M⊂ M̃(ql))

≥ 1− c3,lp log n exp{(−c2,ln
1−3κl−2vl−2ρl/ log n) + κl log n}.

2. Additional Simulation Results

We explored some dependent censoring situations, where the censoring times Ci depend on

X . In the following, Example 3∗ is the same as Example 3, except that the censoring times

Ci were generated from the following proportional hazards model

hC(t | X) = c0 exp(βTX),
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where β = (0.3, 0.3, 0T
p−2)T and c0 was chosen to give approximately 20% and 40% of cen-

soring proportions. Table S1 shows that the proposed method still provides good performance

under the considered dependent censoring scenarios.

We next studied the performance of the proposed methods when the number of selected

top genes was 133, which was far more than 27 as reported in the main text. Table S2 reports

the numbers of overlapping genes selected by different methods, showing that the variables

selected by Lq-norm learning with different q did differ and the proposed method helped

choose novel genes that were not identified by the existing methods.

We calculated and compared the c-statistics obtained by various methods. First, using

the full dataset of 170 patients, we randomly generated 10 training/testing splits, with 133

in the training set and the rest in the testing set. In each training dataset, we fitted a random

survival forests model based on the top 133 genes selected by each method. When fitting the

random forests, a total of 100 trees were generated for each dataset. Then the fitted “forests”

were applied to each testing dataset, for which a c-statistic was computed. Finally, for each

method, the average of the c-statistics from all 10 testing datasets, along with its confidence

interval, is listed in Table S3. The results showed that even with more selected genes, the

c-statistics did not improve much across all the methods compared to the ones based on the

top 27 genes.
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Table S1: Performance of different variable screening methods with (n, p) = (400, 1000) under

Examples 3 and 3∗.

Example 3

20% CR 40% CR

MMS TPR PIT MMS TPR PIT

L1 2 1.00 1.00 2 1.00 1.00

L2 2 1.00 1.00 2 1.00 1.00

L5 2 1.00 1.00 2 1.00 1.00

L13 2 1.00 1.00 2 1.00 0.99

L89 2 1.00 1.00 2 0.99 0.99

L∞ 2 1.00 1.00 2 0.99 0.99

Hybrid 2 1.00 1.00 2 1.00 1.00

Example 3∗
20% CR 40% CR

MMS TPR PIT MMS TPR PIT

L1 2 1.00 1.00 2 0.99 0.99

L2 2 1.00 1.00 2 0.99 0.99

L5 2 1.00 1.00 2 0.99 0.98

L13 2 1.00 1.00 2 0.99 0.99

L89 2 1.00 1.00 2 0.99 0.98

L∞ 2 1.00 1.00 3 0.99 0.98

Hybrid 2 1.00 1.00 3 0.99 0.99
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Table S2: The numbers of overlapping genes among top 133 genes selected by various screening

methods on the multiple myeloma training dataset.

PSIS CRIS FAST CS QA L1 L2 L5 L13 L89 L∞ Hybrid

PSIS 133 42 55 7 0 38 37 30 19 13 12 29

CRIS 133 16 5 1 30 31 27 17 13 17 26

FAST 133 9 1 15 14 11 4 2 1 10

CS 133 0 11 14 15 17 12 15 15

QA 133 0 0 0 0 0 2 0

L1 133 122 88 53 36 33 82

L2 133 94 57 37 34 84

L5 133 94 72 69 109

L13 133 108 97 99

L89 133 115 84

L∞ 133 82

Hybrid 133

Table S3: Comparisons of the average c-statistics (95% CI) based on 10 random testing datasets of

multiple myeloma.

PSIS CRIS FAST CS QA Hybrid

0.61 (0.53, 0.70) 0.62 (0.49, 0.75) 0.56 (0.41, 0.72) 0.60 (0.43, 0.76) 0.56 (0.47, 0.65) 0.63 (0.56, 0.69)
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