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S

We propose a new class of frailty measurement error models for clustered survival data
when covariates are measured with error. We show that the induced hazard function
conditional on the observed covariates also follows a frailty model but of a more compli-
cated form. We study the asymptotic bias in regression coefficients and variance compo-
nents when measurement error is ignored, and the impact of censoring on this asymptotic
bias. We show that the naive estimator of the regression coefficient is attenuated and the
naive estimator of the variance component is inflated when measurement error is ignored.
As the censoring proportion increases, the asymptotic bias in the former becomes larger,
but the asymptotic bias in the latter interestingly becomes smaller. We develop a structural
approach for parameter estimation using the nonparametric maximum likelihood method,
where the baseline hazard is estimated nonparametrically. We prove model identifiability
and the existence of the nonparametric maximum likelihood estimators. An  algorithm
is developed for calculating the nonparametric maximum likelihood estimates. The method
is applied to the western Kenya parasitaemia data and its performance is evaluated
through simulations.

Some key words: Asymptotic bias; EM algorithm; Frailty measurement error model; Identifiability;
Nonparametric maximum likelihood estimation; Variance components.

1. I

Frailty models (Clayton & Cuzick, 1985) are increasingly popular for analysing clustered
survival data, where frailties or random effects often enter into the baseline hazard multipli-
catively to model the correlation among observations within the same cluster. A challenge
in fitting frailty models is that the standard partial likelihood approach is not applicable
and one has to estimate the regression coefficients, the variance components and the
nonparametric baseline hazard simultaneously. Nielsen et al. (1992) discussed the use of
the  algorithm for estimation in frailty models, and Murphy (1994, 1995) and Parner
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(1998) studied the theoretical properties of the models. For a review of frailty models, see
Oakes (1989).

A common problem in survival analysis is the presence of covariate measurement error.
For example, in clinical trials many biomarkers, such as blood pressure (Carroll, Ruppert
& Stefanski, 1995, Ch. 1) and CD4 counts (Tsiatis, De Gruttola & Wulfsohn, 1995), are
subject to measurement error. In nutritional studies, fat intake is often measured with
error (Carroll et al., 1995, Ch. 1). For independent survival data, several authors have
studied the measurement error problem within the proportional hazard model framework.
Prentice (1982) and Pepe, Self & Prentice (1989) showed that the induced hazard function
conditional on the observed covariates is also a multiplicative hazard model, but of a
complicated form. Hughes (1993) studied the asymptotic bias of the partial likelihood
estimator when measurement error is ignored and showed that the naive estimator of
the regression coefficient is attenuated and that increasing the level of censoring results
in a more attenuated naive estimator. Hu, Tsiatis & Davidian (1998) compared several
estimation procedures.

However, little has been done for clustered censored survival data with measurement
error in covariates. In this paper, we propose a new class of frailty measurement error
models, which model correlation using frailties and measurement error simultaneously,
for clustered survival data. We state the model in § 2. We then study in § 3 the impact of
covariate measurement error in frailty models by performing asymptotic bias analysis
when measurement error is ignored and by examining how censoring and cluster size
influence the effect of measurement error. We investigate in § 4 the theoretical properties
of the model including model identifiability and the existence of the nonparametric
maximum likelihood estimators. We develop in § 5 an  algorithm for calculating the non-
parametric maximum likelihood estimates. We evaluate the performance of the pro-
posed method through simulations in § 6 and apply it to the western Kenya parasitaemia
data in § 7, followed by discussion in § 8.

2. T    

We assume that survival times are subject to right censoring and that censoring is
noninformative. Let t

ij
=min(v

ij
, c
ij
) be the observed time for the jth subject ( j=1, . . . , n

i
)

in the ith cluster, such as a family, (i=1, . . . , m), where v
ij

is the true survival time and
c
ij

is the censoring time. Let d
ij
=I(v

ij
∏c

ij
) be the noncensoring indicator, which takes

value 1 if a failure is observed and 0 otherwise. Let X
ij

be the true unobserved covariate
and W

ij
be the observed X

ij
-related error-prone covariate. For simplicity, we here assume

that X
ij

is a scalar. Let Z
ij

( p×1) be the other covariates which are accurately measured.
Conditional on the cluster-specific frailty vector b

i
(q×1), the observations (t

ij
, d
ij
) are

independent with conditional proportional hazard functions

l
ij
( t |X

ij
, Z

ij
, b
i
)=l0 (t)eXijbx+Z∞ijbz+B∞ijbi, (1)

where l0( t) is an unspecified baseline hazard, b
x

and b
z
( p×1) are fixed effects, (X

ij
, Z

ij
)

and B
ij

(q×1) are covariates associated with the fixed effects and the frailty respectively,
and B

ij
is measured without error. Here we assume that the frailties b

i
are independent

of X
ij

and Z
ij

and are independent and identically distributed as N{0, D(h )}, where D(h )
is a positive definite matrix depending on h, and h is an l×1 vector of variance components.

Several authors considered the single frailty case where B
ij
=1 and assumed that the

scalar frailty b
i

follows a log-Gamma distribution, or equivalently exp{b
i
} follows a
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Gamma distribution (Clayton & Cuzick, 1985; Murphy, 1995). We here assume that the
frailty vector b

i
has a multivariate normal distribution. Advantages of this assumption are

that it can easily accommodate multiple frailties and is convenient for introducing a
measurement error model for X

ij
. Note that the log-Gamma distribution and the normal

distribution are often similar.
Define T

i
=( t

i1
, . . . , t

in
i

)∞, D
i
= (d

i1
, . . . , d

in
i

)∞ and X
i
, W

i
, Z

i
and B

i
similarly. The inte-

grated likelihood of (T
i
, D

i
) given X

i
and Z

i
in the ith cluster is

L
i
(T
i
, D

i
|X

i
, Z

i
)= P ani

j=1
{l0 (tij)eXijbx+Z∞ijbz+B∞ijbi}dije−L0(tij) exp(Xijbx+Z∞ijbz+B∞ijbi) dW (b

i
; D),

(2)

where W( . ; D) is the distribution function of N{0, D(h )} and L0 (t) is the cumulative baseline
hazard. Note that (2) does not have a closed form.

The frailty measurement error model is completed by adding measurement error to X
ij
:

W
ij
=X

ij
+U

ij
, (3)

where the measurement error terms U
ij

are independent and identically distributed as
N(0, s2

u
). We here assume that measurement error is non-differential, that is

L (T
i
, D

i
|X

i
, W

i
, Z

i
)=L (T

i
, D

i
|X

i
, Z

i
), which implies that, conditional on the true unob-

served covariate X
i
, the observed covariate W

i
does not contain additional information

about (T
i
, D

i
). The likelihood of the observed data (T

i
, D

i
, W

i
) is

L (T
i
, D

i
, W

i
|Z

i
)= P L (T

i
, D

i
|X

i
, Z

i
)L (W

i
|X

i
, Z

i
)L (X

i
|Z

i
) dX

i
, (4)

where L (W
i
|X

i
, Z

i
)=L (W

i
|X

i
) under (3), and L (X

i
|Z

i
) is the likelihood of X

i
.

In the classical measurement error literature, it is common to assume the unobserved
X
ij

to be independent and normally distributed (Carroll et al., 1995, p. 7). However, for
clustered data, the X

ij
within the same cluster are likely to be correlated. Hence we consider

a linear mixed model (Laird & Ware, 1982) for the unobserved X
i
:

X
i
=1

i
m
x
+Z

i
m
z
+A

i
a
i
+e

i
, (5)

where 1
i
is an n

i
×1 vector of ones, (m

x
, m

z
) is a vector of fixed effects and a

i
is a vector

of random effects following N(0, S
xm

), A
i
is the design matrix associated with a

i
, and e

i
is

a residual vector independent of a
i
and following N(0, s2

x
I
i
). Here I

i
is an n

i
×n

i
identity

matrix. A special case of model (5) is the fixed effects model,

X
i
=1

i
m
x
+Z

i
m
z
+e

i
, (6)

which assumes that the X
ij

are independent and is appropriate when the X
ij

are cluster-
level covariates.

Define S
i,xx
=cov(X

i
)=A

i
S
xm

A∞
i
+s2

x
I
i
and C

i
=S

i,xx
(S

i,xx
+s2

u
I
i
)−1. Using equations

(3) and (5), one can easily calculate the conditional distribution of X
i
given W

i
and write

X
i
=(I

i
−C

i
)(1

i
m
x
+Z

i
m
z
)+C

i
W
i
+bA

i
, where bA

i
can be shown to be independent of W

i
conditional on Z

i
and follows N{0,(I

i
−C

i
)S
i,xx

}. Some calculations then show that, con-
ditional on the observed covariates (W

i
, Z

i
), the outcomes (T

i
, D

i
) also follow a frailty

model, but having a much more complicated form:

l
ij
( t |W

i
, Z

i
, b
i
, bA
i
)=l0 (t) exp{e∞

ij
(I
i
−C

i
)1
i
m
x
b
x
+e∞

ij
C
i
W
i
b
x
+e∞

ij
(I
i
−C

i
)Z

i
m
z
b
x

+Z∞
ij

b
z
+B∞

ij
b
i
+b

x
e∞
ij
bA
i
}, (7)
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where (b
i
, bA
i
) are frailties and are independent, and e

ij
is an n

i
×1 indicator vector whose

jth element is 1 and 0 otherwise. It is difficult to fit the frailty model (7) because of its
complicated form.

Equation (7) suggests that ignoring measurement error by naively replacing the X
ij

with the W
ij

in (1) results in misspecification of both the fixed effects and the frailty
structures. Our first goal in this paper is to understand the impact of measurement error
on parameter estimation in frailty measurement error models; see § 3. Specifically, we
study the asymptotic biases in regression coefficient and variance component estimators
when measurement error is ignored, and how cluster size and censoring influence these
biases. Our second goal is to develop nonparametric maximum likelihood estimation
under the structural model in equations (1), (3) and (5), where the baseline hazard l0 (t)
is estimated nonparametrically; see § 4–5.

3. A  

3·1. Preamble

Wang et al. (1998) studied the asymptotic bias in naive regression when measurement
error is ignored within the framework of generalised linear mixed measurement error
models. They restricted their attention to clustered Gaussian, Binomial and Poisson out-
comes. However, little is known about the bias in naive regression in frailty measurement
error models for survival outcomes, where extra complications arise. First, instead of
modelling the mean function we model the hazard function, and hence the impact of
measurement error is not clear and is more complicated. Secondly, survival data involve
censoring. It is of substantial interest to investigate how censoring affects the asymptotic
bias in naive regression when measurement error is ignored.

Our asymptotic bias analysis detailed below shows that ignoring measurement error
results in an attenuated regression coefficient estimator and an inflated variance compo-
nent estimator. When the unobserved covariate X is a subject-level covariate, as the
censoring proportion increases, the asymptotic bias in the naive regression coefficient
estimator increases, but the asymptotic bias in the naive variance component estimator
decreases.

3·2. T he specific model considered in bias analysis

Asymptotic bias analysis under the general model (1) is difficult, and here we concentrate
on a simple but representative frailty measurement error model. Specifically, we assume
a constant cluster size n

i
=n and consider a simple random intercept frailty model (Clayton

& Cuzick, 1985) with a single covariate X:

l
ij
(t |X

ij
, b
i
)=l0 (t)ebxXij+bi, (8)

where b
i
~N(0, h). The likelihood of (8) is

L (T
i
, D

i
|X

i
)= P an

j=1
{l0(tij)ebxXij+bi}dije−L0(tij) exp(bxXij+bi) dW (b

i
; h). (9)

A simple model for X
ij

is a random intercept model, which allows possible correlation
among the X

ij
within the same cluster:

X
ij
=m

x
+a

i
+e

ij
, (10)

where a
i
~N(0, s2

xm
) and e

ij
~N(0, s2

x
). Note that (10) is a special case of equation (5).
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Using equations (3) and (10), one can easily calculate the conditional distribution of
X
i
|W

i
. The frailty model (7) of the observed data (T

i
, D

i
|W

i
) can then be simplified as

l
ij
(t |W

i
, b*
i
, b**
ij

)=l0(t)eb*0+b*xWij+b*2W9 i.+b*i +b**ij , (11)

where

b*
0
=(1−a)aAmxb

x
, b*

x
=ab

x
, b*

2
=(1−a) (1−aA )bx ,

a=
s2
x

s2
x
+s2

u
, aA=

s2
x
+s2

u
s2
x
+s2

u
+ns2

xm
, W9 i.=n−1 ∑

n

j=1
W
ij
,

b*
i

is a cluster-level frailty following N(0, h+n−1b
x
b*
2

s2
u
), b**

ij
is a subject-level frailty

following N(0, c=as2
u
b2
x
), and b*

i
and b**

ij
are independent of each other and of W

i
. Some

calculations show that equation (11) can be rewritten as a single frailty model; compare
Prentice (1982, eqn (3)), with

l
ij
(t |W

i
, b*
i
)=l0 (t)eb*0+b*xWij+b*2W

9
i.+b*i E(eb**

ij
|t
ij

t, W

i
, b*
i
), (12)

where E(eb**
ij
| t
ij

t, W

i
, b*
i
) takes a complicated form involving L0 (t):

E(eb**
ij
|t
ij

t, W

i
, b*
i
)=
∆ eb**

ij
−L

0
(t) exp(b*

0
+b*

x
W
ij
+b*

2
W9
i.+b*i +b**ij ) dW (b**

ij
; c)

∆ e−L
0
(t) exp (b*

0
+b*

x
W
ij
+b*

2
W9
i.+b*i +b**ij ) dW (b**

ij
; c)

.

The naive estimator is the estimator under the model that ignores measurement error
by simply replacing X

ij
by W

ij
in (8). Thus

l
ij,naive(t |Wij

, b
i,naive)=l0,naive (t)eWijbx,naive+bi,naive, (13)

where b
i,naive~N(0, hnaive ). A comparison of (11) and (13) suggests that the naive model

misspecifies both the fixed effect structure and the frailty structure. This makes asymptotic
bias analysis complicated and closed-form expressions are often not available.

When the X
ij

are cluster-level covariates, so that X
ij
=X

i
, asymptotic bias analysis is

simple and the naive estimators {b
x,naive , hnaive , l0,naive( t)} have a closed form. In this case,

it is more reasonable to assume that each X
i
follows N(m

x
, s2
x
) instead of the random

intercept model (10). The frailty model of the observed data (T
i
, D

i
|W

i
) hence takes the

simpler form

l
ij
(t |b**

i
)=l0( t)eb**0 +b*xWij+b**i ,

where b**
0
= (1−a)m

x
b
x

and b**
i
~N(0, h+as2

u
b2
x
). The naive model (13) becomes

l
ij,naive( t |Wi

, b
i,naive )=l0,naive (t)eWibx,naive+bi,naive.

Since the two models take the same form, one can use parameter correspondence to
calculate the asymptotic limits of the naive estimators as follows:

b
x,naive=ab

x
, hnaive=h+as2

u
b2
x
, l0,naive (t)=l0(t)e(1−a)mxbx.

This result suggests that the naive estimator of the regression coefficient b
x

is attenuated
in the conventional way, and the naive estimator of the variance component h over-
estimates h. This result applies to both uncensored and censored data and to any cluster
size n.

When X is a subject-level covariate, the bias analysis is much more complicated. There
is generally no closed-form expression for the asymptotic bias, and numerical calculations
are used.
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3·3. Asymptotic bias in the naive estimator when X is a subject-level covariate

We assume that X follows the random intercept model (10). A comparison of the naive
model (13) with the observed data (T

i
, D

i
|W

i
) model in (12) shows that the naive model

misspecifies the true (T
i
, D

i
|W

i
) model by a complicated term eb*

2
W9
i.E(eb**

ij
|t
ij

t, W

i
, b*
i
).

When the event is rare and the data are independent, Prentice (1982) showed that a
closed-form expression for the bias is available in the standard Cox model with measure-
ment error. We will show that this is not the case in frailty measurement error models.
When the event is rare, we have that

E(eb**
ij
| t
ij

t, W

ij
, b
i
)jE(eb**

ij
|W

ij
, b
i
)=ec2/2.

Hence the (T
i
, D

i
|W

i
) model in (12) becomes

l
ij
(t |W

i
, b*
i
)j l0( t)eb*0+c2/2+b*xWij+b*2W9 i.+b*i . (14)

A comparison of (14) with the naive model (13) reveals that the naive model misspecifies
the fixed effects structure. Therefore, unlike in the standard Cox model with measurement
error, we still do not have closed-form expressions for the asymptotic biases of the naive
estimators. Numerical calculations are necessary.

In what follows, we conduct bias analysis without making the rare-event assumption.
We consider the censoring mechanism as type I censoring, where all subjects are followed
to either a failure or some maximum time T

o
, whichever is shorter. In other words,

c
ij
=T

o
for all i and j. It is difficult to calculate the asymptotic bias numerically with the

baseline hazard l0( t) unspecified. In our numerical study, we assume for simplicity that
the baseline hazard function is a constant, l0 .

If we suppress the index i, the expected censoring proportion can be calculated as

pr (v
j
>T

o
)= P Sj (To |Xj , b) f (X

j
) dX

j
dW (b; h),

where S
j
( . ) is the conditional survival function under the frailty model (8) and f (X

j
) is the

marginal density of X
j

under (10). Values of T
o

can hence be chosen to obtain desired
censoring proportions, with T

o
=2 corresponding to noncensoring.

Denote the observed times by t
j
=vd

jj
T 1−d

jo
( j=1, . . . , n), or, in vector notation,

T=V ·D ·T 1−D
o

, where V= (v1 , . . . , vn )∞ is the true survival time vector and the operator ·
denotes an elementwise multiplication. Denote by H={b

x
, h, l0 (t)}∞ the true value and

by Hnaive the asymptotic limit of the naive estimator of H as m
2. It follows that Hnaive
maximises

E{lnaive (T , D |W ; Hnaive )}

= ∑
n

k=0
∑

d
1
+...+d

n
=k
P2
−2

. . . P2
−2
P To
0

. . . P To
0

lnaive (V ·D ·T 1−D
o

, D |X+U; Hnaive )

×Can
j=1

{ f
j
(v
j
|X

j
, b) dv

j
}d
j
{S
j
(T
o
|X

j
, b)}1−d

j
dW (U

j
; s2

u
)D

×dW (b; h) dW (X−m
x
1; s2

xm
11∞+s2

x
I ),

where lnaive (T , D |W ; Hnaive ) is the logarithm of equation (9) with X replaced by W. Here
f (t

j
|X

j
, b; H) ( j=1, . . . , n) is the true density of the survival time t

j
conditional on X

j
and

the frailty b and is equal to f (t
j
|X

j
, b)=l

0j
exp (−t

j
l
0j

) with l
0j
=l0 exp (b

x
X
j
+b).
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Maximisation is with respect to Hnaive for fixed H. Since E{lnaive (T , D |W ; Hnaive)}
involves multidimensional integration, we use combination of the methods of Gauss–
Hermite quadrature and Monte Carlo simulations to evaluate it. The Newton–Raphson
algorithm is then used for maximisation.

The parameter values used in our numerical calculations were cluster size n=2, l0=
exp(−2), b

x
=2, h=0·5, m=1, s2

xm
=1 and s2

x
=1. We varied the measurement error

variance s2
u

from 0 to 1. We chose T
o
to obtain censoring proportions equal to 0%, 30%,

50% and 80%. Figures 1(a), (b) give the asymptotic biases in the naive estimators b
x,naive

and hnaive assuming different censoring proportions. Figure 1 suggests that, in the presence
of censoring, b

x,naive underestimates b
x

and hnaive overestimates h. As the censoring pro-
portion becomes higher, the bias in b

x,naive increases, whereas the bias in hnaive interestingly
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R
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at
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e 
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x
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2

5

4

3

2

1

0

R
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e 
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(b) 

Fig. 1. Asymptotic relative biases in naive estimators against the measure-
ment error variance s2

u
when the cluster size n=2. The true parameter

values are l0=exp(−2), b
x
=2, h=0·5, m

x
=1, s2

xm
=1 and s2

x
=1. The

four curves in each plot correspond to censoring proportions, 0%, 30%,
50% and 80%, with the solid line for 0%, no censoring, and the longest

dashed line for 80%.

decreases. The bias results concerning hnaive are consistent with the results in Nielsen et al.
(1992) in frailty models without measurement error. They found in their simulation studies
that the finite sample bias in the maximum likelihood estimator of h is much smaller when
there is censorship than when there is no censorship.

To study the effect of the cluster size n on the asymptotic bias in the presence of
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censoring, we consider the cases where n=2 and n
2. When n
2, we have aA
0,
b*
2

 (1−a)b

x
and W9 i.=m

x
+a

i
+U9 i.+e:i.
m

x
+a

i
. It follows that the observed data

(T
i
, D

i
|W

i
) model becomes

l
ij
(t |W

i
, b
i*

)=l0 (t)eb*0+b*xWij+bi*E(eb**
ij
| t
ij

W

ij
, b
i*

), (15)

where b
i*
~N{0, h+(1−a)2s2

xm
b2
x
}. Asymptotic bias of the naive estimator is hence calcu-

lated by maximising E{lnaive (Ti , Di |Wi
; Hnaive )}, where the expectation is taken under (15).

Figures 2(a), (b) compare the asymptotic biases in naive estimators of b
x

and h when
n=2 and n=2 and the censoring proportions are 0% and 50%. These plots show that,
as the cluster size increases, the biases become more severe. Similar results hold in linear
mixed models and logistic mixed models (Wang et al., 1998).
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n = 2, 0% censored
n = ∞, 0% censored
n = 2, 50% censored
n = ∞, 50% censored

n = 2, 0% censored
n = ∞, 0% censored
n = 2, 50% censored
n = ∞, 50% censored

Fig. 2. Asymptotic relative biases in naive estimators against the measure-
ment error variance s2

u
for two cluster sizes, n=2 and n=2, and for two

censoring proportions, 0% and 50%. The true parameter values are l0=
exp(−2), b

x
=2, h=0·5, m

x
=1, s2

xm
=1 and s2

x
=1.

4. T     


In this section we propose estimation for the general frailty measurement error model
in equations (1) and (3) using the nonparametric maximum likelihood method. We assume
that X

i
follows the linear mixed model (5) and that the baseline hazard l0( t) is unspecified.
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Let V={b
x
, b∞

z
, m∞, h, vec(S

xm
), s2

x
}∞ and H={V, L0( t)}. The nonparametric maximum

likelihood estimator of H maximises the observed data likelihood (4).
We study the theoretical properties of the model using counting process theory; the

proofs of the theorems are given in the Appendix. These results motivate an  algorithm
in § 5 for calculating the nonparametric maximum likelihood estimator of H, where the
estimated L0( t) is a step function with jumps at distinct failure times.

The outcomes (t
ij
, d
ij
) can be written in terms of the counting and at-risk processes

N
ij
(t)=I(t

ij
∏t, d

ij
=1), Y

ij
(t)=I(t

ij

t),

respectively. For simplicity, we assume the cluster sizes n
i
to be the same, n

i
=n, in our

proof. Let

N
i
(t)={N

i1
(t), . . . , N

in
(t)}∞, Y

i
(t)={Y

i1
(t), . . . , Y

in
(t)}∞.

Denote (N1 , . . . , Nm
)∞ by N and define Y and W similarly. Introduce the right continuous

filtration {F
t
: t
0}, where

F
t
=s{X

i
, Z

i
, N

i
(u), Y

i
(u+) : 0∏u∏t}

and s{.} denotes a s-algebra. Given (X
i
, Z

i
) and the frailty vector b

i
, let (J, {F

t
}
t�0

, P)
be a filtered probability space such that, under P, N

i
(t) is a multivariate counting process.

We assume that there is no possibility for ties in failure times. The loglikelihood (4) of
the observed data {N

i
(t), Y

i
(t), W

i
} can be written using counting process notation as

l
m
(N, Y, W; V, L0 )

= ∑
m

i=1
l(N

i
, Y

i
, W

i
; V, L0 )

= ∑
m

i=1
log P eWn

j=1
∆2
0 log{Y*ij(t)l0(t)}dNij(t)−Y*ij(t) dL0(t)L (W

i
|X

i
)L (X

i
|Z

i
) dX

i
dW (b

i
; D), (16)

where Y *
ij

(t)=Y
ij
(t) exp (X

ij
b
x
+Z∞

ij
b
z
+B∞

ij
b
i
).

Let H0={V0 , L00( t)} be the true value of H and let {(N
i
, Y

i
, W

i
, Z

i
, B

i
)} be a sequence

of identically and independently distributed replicates. We postulate the following regu-
larity conditions.

Regularity Condition 1. We require pr
H
0

{Wn
j=1

Y
ij
(u)
1, for all uµ[0, 2 )}>0.

Regularity Condition 2. We require pr
H
0

{Wn
i=1

Y
ij
(0)
2}>0.

Regularity Condition 3. If cG(W
ij
)=0, where G(.) is any nondegenerate function, then

c=0.

Regularity Condition 4. If c∞Z
ij
=G(W

ij
), where G(.) is any function, then c=0.

Regularity Condition 1 is a standard assumption in the conventional proportional
hazards model to ensure that we can observe failures in the entire interval and therefore
can estimate L0(t) in the entire interval. Regularity Condition 2 excludes the case where
there is only one subject per cluster and ensures the identifiability of the variance compo-
nents h (Nielsen et al., 1992). Regularity Conditions 3 and 4 exclude the trivial situation
where the observed covariate W

i
is a constant or is collinear with Z

i
.

T 1 (Identifiability). If L0 (t) is a nonnegative nondecreasing continuous function
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over [0, 2) with L0 (0)=0, then, under Regularity Conditions 1–4, the Kullback–L eibler
information is strictly positive for HNH0 .

T 2 (Unboundedness). T he loglikelihood l
m
{N, Y, W ; V, L0} in (16) is unbounded

in the Euclidean space×C+[0, 2), where C+[0, 2) is the set of nonnegative nondecreasing
continuous functions on [0, 2 ) taking value 0 at t=0.

Theorem 1 shows that, under Regularity Conditions 1–4, the frailty measurement error
model is identifiable. Theorem 2 implies that, when L0 (t) lies in the space of continuous
functions, the maximiser of the likelihood (16) does not exist. This suggests that we need
to restrict the parameter space of L0( t) to include only discrete functions. In other words,
one needs to replace l0(t), the continuous derivative of L0 (t), in the likelihood function
(16) by DL0 (t), the jump of L0 (t) at time t. The resulting maximiser is called the non-
parametric maximum likelihood estimator. Since direct maximisation of the integrated
likelihood (16) is difficult, in § 5 we propose  algorithms for calculating this estimator;
a simpler  algorithm was used by Nielsen et al. (1992) and Murphy (1995) for estimation
in frailty models without measurement error. Theorem 3 shows that such an estimator
exists.

T 3 (Existence). Suppose that L0(t) is a step function with steps taken at each
failure time, the observed covariates W

ij
and Z

ij
are bounded in Rp+1, s2

x
is bounded away

from 0, S
xm

is positive definite and its norm is bounded away from 0, and b
x
, b

z
and m are

bounded. If Wm
i=1

Wn
j=1

N
ij
(2)
1, the maximiser (VC

m
, LC

0,m
) of l

m
(N, Y, W ; V, L0) exists and

is finite.

5. T       
 

5·1. T he  algorithm when X follows the fixed eVects model

When the covariate X is a cluster-level covariate, it is often appropriate to assume that
it follows the fixed effects model (6). Let XB

i
= (X

i
, Z

i
) and b=(b

x
, b∞

z
). Define T=

(T1 , . . . , Tm)∞, and D, W, X, Z and b similarly. The complete data are (T , D, W, Z, X, b),

while the observed data are (T , D, W, Z). When the unobserved covariate X follows the
fixed effects model (6), the complete data loglikelihood is, apart from an additive constant,

l(T , D, W, Z, X, b; H)

= ∑
m

i=1
q ∑ni
j=1

[d
ij

log{DL
ij
(t
ij
)}−L

ij
(t
ij
)]−

n
i

2
log s2

u
−

1

2s2
u

(W
i
−X

i
)∞(W

i
−X

i
)

−
n
i

2
log s2

x
−

1

2s2
x

(X
i
−ZB

i
m)∞(X

i
−ZB

i
m)−

1

2
log |D |−b∞

i
D−1b

ir ,
where L

ij
( t)=L0 (t) exp (XB ∞

ij
b+B∞

ij
b
i
), ZB

i
= (1

i
, Z

i
) and H={V, DL0( t)}.

Let HC (k) be the estimate of H at the kth iteration. The -step updates H by solving
E{∂l(T , D, W, Z, X, b; H)/∂H |T , D, W, Z; HC (k)}=0. For simplicity, we here consider the

case where the covariance matrix D of the frailty b
i
is unstructured. Then H is updated
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using

m@ (k+1)=A ∑m
i=1

ZB ∞
i
ZB
iB−1 ∑m

i=1
ZB ∞
i
E(X

i
|T , D, W, Z; HC (k) ),

s@ 2(k+1)
x

=
1

W n
i
∑
m

i=1
E{(X

i
−ZB ∞

i
m)∞(X

i
−ZB ∞

i
m) |T , D, W, Z; HC (k)},

DC (h)(k+1)=
1

m
∑
m

i=1
E(b

i
b∞
i
|T , D, W, Z; HC (k) ),

DLC 0(t)(k+1)=
W

i,j
d
ij
I(t

ij
=t)

W

i,j
E(eXB ∞

ij
b+B∞

ij
b
i
|T , D, W, Z; HC (k) )I(t

ij

t)

, (17)

U(b)=∑
i,j

E[{d
ij
−LC 0 (tij)eXB ∞ijb+B∞ijbi}XB ij |T , D, W, Z; HC (k)]=0, (18)

where U(b) is the conditional score equation for b. Equation (17) resembles the Breslow
baseline hazard estimator. If we substitute (17) into (18), some calculations give

U(b)=∑
i,j

d
ij qE(XB

ij
|T , D, W, Z; HC (k) )−

W

s,t
E(XB

st
eXB ∞
st
b+B∞

st
b
s
|T , D, W, Z; HC (k) )I(t

st

t

ij
)

W

s,t
E(eXB ∞

st
b+B∞

st
b
s
|T , D, W, Z; HC (k) )I(t

st

t

ij
) r ,

which takes the same form as the partial likelihood score equation in the conventional
Cox proportional hazards model with the Breslow approximation for ties. The Newton–
Raphson method can be used to solve (18) iteratively.

The above conditional expectations are calculated at the -step using Monte Carlo
simulations by generating (X, b) under the conditional density of (X, b |T , D, W, Z), which
takes the form

f (X, b |T , D, W, Z; H)=
f (T , D |X, Z, b; H) f (W |X; H) f (X |Z; H) f (b; H)

∆ f (T , D |X, Z, b; H) f (W |X; H) f (X |Z; H) f (b; H) dX db
.

5·2. T he  algorithm when X follows the random eVects model

When X is a subject-level covariate, it is often more proper to assume that X follows
the random effects model (5). The complete data now are (T , D, W, Z, X, b, a), where a=
(a1 , . . . , am)∞, and we add S

xm
to the parameter vector H. The equations used to solve for

{b, D(h ), DL0 (t)} at the -step remain the same as those in § 5·1, while

m@ (k+1)=A ∑m
i=1

ZB ∞
i
ZB
iB−1 ∑m

i=1
ZB ∞
i
E{(X

i
−A

i
a
i
) |T , D, W, Z; HC (k)},

s@2(k+1)
x

=A ∑m
i=1

n
iB−1 ∑m

i=1
E{(X

i
−ZB

i
m−A

i
a
i
)∞(X

i
−ZB

i
m−A

i
a
i
) |T , D, W, Z; HC (k)},

SC (k+1)
xm
=m−1 ∑

m

i=1
E(a

i
a∞
i
|T , D, W, Z; HC (k) ).

Alternatively, one can use the  approach of Liu & Rubin (1994), which has a faster
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convergence rate, to estimate m as

m@ (k+1)=A ∑m
i=1

ZB ∞
i
V −1
i

ZB
iB−1 ∑m

i=1
ZB ∞
i
V −1
i

E(X
i
|T , D, W, Z; HC (k) ),

where V
i
=co@v{X

i
|H(k)}=A

i
SC (k)
xm

A∞
i
+s@2(k)x

I
i
.

The conditional expectations are calculated at the -step using Monte Carlo simulations
by generating (X, a, b) under the conditional density of (X, a, b |T , D, W ), namely

f (X, a, b |T , D, W, Z; H)

=
f (T , D |X, Z, b; H) f (W |X; H) f (X |Z, a; H) f (a; H) f (b; H)

∆ f (T , D |X, Z, b; H) f (W |X; H) f (X |Z, a; H) f (a; H) f (b; H) dX da db
.

5·3. Standard error calculations using profile likelihood

The standard errors of the maximum likelihood estimates are conventionally calculated
by inverting the observed information matrix. However, in the case of the nonparametric
maximum likelihood estimates, the number of parameters is large and this approach is
not feasible. Hence we calculate the variance of VC using the profile likelihood method
(Hu et al., 1998; Murphy, 1995). The profile loglikelihood of V is defined as l

p
(V)=

sup
L
0

l(V, L0), where the baseline cumulative hazard L0 is the nuisance parameter. Then
the covariance matrix of the maximum likelihood estimate VC is estimated by co@v(VC )=
{−∂2l

p
(VC )/∂V ∂V∞}−1. Numerical differentiation is used to calculate this derivative.

6. S 

In our simulation studies of the finite sample performance of our methods, survival
times v

ij
were generated within each cluster under the conditional hazard

l
ij
(t)=l0(t) exp(b

x
X
ij
+b

z
Z
ij
+b

i
) ( j=1, . . . , n; i=1, . . . , m),

where the Z
ij

were generated as independent N(0, 1). Censoring times c
ij

were generated
as independent uniform random variables on [0, c].

We chose true parameter values as follows: the baseline hazard was l0 (t)=t; we took
n=3 and m=40; X followed the random intercept model (10) with m=1, s2

xu
=1 and

s2
x
=1; the frailty variance was h=0·5; we took b

x
=2 and b

z
=1; the values of c were

chosen to yield four different censoring proportions, 0%, 30%, 50% and 80%; and the
measurement error variance s2

u
was 0·5. We calculated the nonparametric maximum likeli-

hood estimates by the  algorithms in § 5 using /. We ran 500 simulations under
each combination of parameter configurations.

For each simulated dataset, we calculated the naive estimates which ignore measurement
error and the nonparametric maximum likelihood estimates which account for measure-
ment error. The averages of the estimates, the empirical standard errors, the estimated
profile likelihood standard errors and the mean squared errors are displayed in Table 1.
This shows that the naive estimates of b

x
and b

z
are attenuated and the naive estimate of

h is inflated. Higher censorship results in more biased naive estimates of b
x

and b
z
and a

less biased naive estimate of h. These results are consistent with our theoretical bias
calculations in § 3.

The results in Table 1 show that the nonparametric maximum likelihood estimates
calculated using the  algorithm perform very well and that the average estimates are
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Table 1. Simulation results for the frailty measurement error model based on 500
replicates. T he true values are b

x
=2, b

z
=1, h=0·5, m=1, s2

x
=1 and s2

xu
=1.

T he measurement error variance is s2
u
=0·5.

Censoring Full likelihood Naive
level Parameter Estimate 

e

p

 Estimate 
e


p



0% h 0·47 0·37 0·40 0·137 0·69 0·28 0·31 0·115

b
x

1·97 0·31 0·34 0·098 1·48 0·14 0·15 0·290
b
z

0·97 0·17 0·18 0·029 0·88 0·13 0·13 0·031
m 1·00 0·19 0·18 0·036 — — — —

s2
x

1·02 0·30 0·29 0·090 — — — —
s2
xu

1·02 0·34 0·35 0·116 — — — —

30% h 0·48 0·42 0·47 0·177 0·68 0·35 0·30 0·148

b
x

2·04 0·36 0·32 0·131 1·39 0·17 0·20 0·392
b
z

1·02 0·21 0·22 0·044 0·82 0·14 0·16 0·052
m 1·01 0·21 0·20 0·044 — — — —

s2
x

1·01 0·25 0·26 0·063 — — — —
s2
xu

0·98 0·41 0·40 0·168 — — — —

50% h 0·48 0·43 0·48 0·185 0·64 0·39 0·34 0·171
b
x

1·95 0·36 0·32 0·132 1·33 0·17 0·14 0·442

b
z

0·96 0·22 0·21 0·049 0·72 0·16 0·15 0·104
m 1·00 0·22 0·21 0·048 — — — —

s2
x

1·01 0·26 0·25 0·067 — — — —
s2
zu

1·01 0·36 0·38 0·130 — — — —

80% h 0·51 0·97 1·01 0·941 0·59 0·90 0·93 0·818
b
x

2·03 0·43 0·39 0·185 1·21 0·19 0·16 0·660

b
z

1·03 0·28 0·27 0·079 0·60 0·19 0·18 0·196
m 0·99 0·19 0·19 0·036 — — — —

s2
x

1·02 0·30 0·32 0·090 — — — —
s2
xu

1·01 0·35 0·37 0·123 — — — —


e
, empirical standard error; 

p
, average of the standard errors obtained by the profile likelihood;

’s are mean squared errors using 
e
.

close to the true values. One can easily see the trade-off between bias and variance. The
nonparametric maximum likelihood estimates effectively correct the biases in the naive
estimates, but their variances are larger. The mean squared errors of the nonparametric
maximum likelihood estimates are smaller than those of the naive estimates, especially for
the estimates of the regression coefficients. As the percentage of censoring increases, the
variances of the estimates become larger.

We also examined the performance of the standard error estimates calculated using the
profile likelihood method. As shown in Table 1, the estimated standard errors using the
profile likelihood method agree well with the empirical standard errors.

7. A   K  

A major interest of the western Kenya parasitaemia study (McElroy et al., 1997) was
to investigate the effect of daily mean dose of infective mosquito bite exposure on the risk
of parasitaemia, which is an indicator for potential malaria. The main challenges in this
study are as follows: the exposure variable, daily mean dose of infective bites, was measured
with substantial measurement error; multiple children from the same household were
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involved in the study and their outcome variables, times until parasitaemia, might be
correlated.

A total of 607 children aged from six months to six years were enrolled into the study
between February 1986 and July 1987. Parasitaemia is highly prevalent among African
children, and 94% of children in the study were affected upon enrolment. At entry into
the study, each child, regardless of parasitaemia status, was treated with drugs sulfadoxine
and pyrimethamine to eliminate the parasitaemia infection in blood. Their blood films
were examined two weeks after enrolment. Children with positive blood films were
excluded from the study to minimise the chance that a recurrent parasitaemia was caused
by sulfadoxine/pyrimethamine drug resistance. This left 542 children from 309 households.
These children were then followed for the first recurrence of parasitaemia up to 22 months.

In the first two weeks after enrolment, two field workers visited each household one
night each week and took turns to collect mosquitoes from each other’s legs every
30 minutes through the night. The numbers of infective mosquitoes were identified in a
laboratory and the daily mean dose of infective mosquito bites in the first two weeks was
calculated using the average of the two night measures. It was hence measured with
substantial error: first, only one night measure was available per week; secondly, the
mosquitoes were collected from the legs of the field workers rather than from the children
directly. The other covariates included gender, coded as 1 for female and 0 for male, age
and baseline parasitaemia density. The average follow-up time was 9 months, and about
90% of children experienced recurrent parasitaemia during the follow-up. The daily mean
dose of infective mosquito bites was 0·89 on average. The baseline parasitaemia density
was log-transformed to give ‘logbase’, and the daily mean dose of infective bites in the
first two weeks was quartic-root transformed, creating a variable ‘qbite’, to make the
normality assumption more plausible.

We fitted a random intercept frailty measurement error model with X=true ‘qbite’ and
Z=(‘age’, ‘gender’, ‘logbase’). Since different children within the same household might
enter into the study at different times, their ‘qbite’ might be different, and we therefore
assumed that X follows the random intercept model (10). The observed ‘qbite’, W, also
follows a linear random intercept model with the variance of the random intercept equal
to s2

xm
and the residual variance equal to s2

x
+s2

u
. Since there were no validation data

available and there was no replication, the measurement error variance s2
u

could not be
estimated from the available data. We fitted a linear random intercept model to W. This
allowed us to estimate the sum of s2

x
and s2

u
, which was 0·20. Then we conducted a

sensitivity analysis by varying s2
u

from 0, that is naive analysis, to moderate measurement
error, s2

u
=0·08, to severe measurement error, s2

u
=0·20. In our illustration, we treated

s2
u

as fixed and known. We fitted the model using the  algorithm discussed in § 5·2 and
calculated the standard errors of the parameter estimates using the profile likelihood
method discussed in § 5·3. The results are presented in Table 2.

All analyses showed that a higher daily mean dose of infective mosquito bites signifi-
cantly increased the risk of parasitaemia. Older children had a significantly higher risk
of parasitaemia and higher baseline parasitaemia density also significantly increased the
risk of recurrent parasitaemia. Ignoring measurement error attenuated the regression
coefficient estimates. As s2

u
increased, the estimates of the regression coefficients became

larger. For example, the estimate of the coefficient of ‘qbite’, with estimated standard error
in brackets, increased from 0·33 (0·11) when s2

u
=0 to 0·99 (0·23) when s2

u
=0·20. This

indicates that accounting for measurement error increases the magnitude of the estimated
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Table 2. Parameter estimates for the Kenya parasitaemia data.
Moderate error corresponds to the measurement error variance
s2
u
=0·08. Severe error corresponds to s2

u
=0·20. Naive estimates

assume that s2
u
=0 by ignoring measurement error

Naive estimate Moderate error Severe error
Covariate Estimate  Estimate  Estimate 

qbite 0·333 0·108 0·491 0·149 0·990 0·230
age 0·041 0·016 0·039 0·020 0·039 0·021

gender 0·056 0·033 0·057 0·035 0·053 0·036
logbase 0·092 0·016 0·092 0·024 0·094 0·024

h 0·161 0·114 0·146 0·111 0·114 0·118

, standard error.

effects of ‘qbite’. As s2
u

increased from 0 to 0·20, the estimate of the frailty variance h@
decreased from 0·161 to 0·114. These results coincide with our theoretical findings in § 3.

8. D

Our simulation study shows that the  algorithm performs well. The algorithm can
however be computationally intensive, especially when the number of clusters and the
cluster sizes are large, since a large number of clusters often implies estimation of more
jumps of the cumulative baseline hazard and a large cluster size implies evaluating a
higher dimensional integral at the -step. The convergence of the  algorithm can be
very slow when numerous parameters are estimated.

The proof of consistency and asymptotic normality of the nonparametric maximum
likelihood estimator is still an open problem, but our simulation results seem to point to
the asymptotic validity of the proposed method.

The measurement error literature distinguishes structural modelling and functional
modelling by whether or not a distribution is assumed for the unobserved covariate X.
In this paper we have considered structural modelling using the approach, which requires
correct specification of the distribution of X. In a subsequent paper, we study the robust-
ness of maximum likelihood estimation with respect to misspecification of the distribution
of the unobserved covariate. Our results show that the biases in the misspecified maximum
likelihood estimators of the regression coefficients are small, but the biases in the variance
components are often high. An alternative more robust approach is to explore functional
modelling using the  approach (Carroll et al., 1995), which does not make a distri-
butional assumption about X. The  method could yield more robust estimators of
the model parameters, but the estimators could be less efficient compared to those under
structural modelling when the X model is correctly specified. We will report on this
elsewhere.
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A

Proofs

Proof of T heorem 1. For simplicity, we only prove model identifiability when X follows the fixed
effects model (6) and the frailty b

i
is a scalar. The proof when X follows the random effects model

(5) and b
i
is a vector is similar.

Suppose that the true parameters are

H0={V0 , L00 (t)}={b
x0

, b
z0

, m
x0

, m
z0

, h0 , s2
x0

, L0
0
(t)}.

Let pr
H

denote the probability measure on the s-algebra

F
t
=s{W, Z, N(u), Y (u+) : 0∏u∏t},

with respect to H. It is well known that the Kullback–Leibler information is nonnegative (Bickel
et al., 1993), and is equal to 0 only when pr

H
=pr

H
0

.
The identifiability can be proved by showing that the joint distribution of (N, Y, W ) is uniquely

determined by the parameters H0 . That is, we need to show that, if the joint distributions of
(N, Y, W ) are equal under two sets of parameters, H0 and H1={b

x1
, b

z1
, m

x1
, m

z1
, h1 , s2

x1
, L1

0
(t)},

then H0=H1 . Since the equivalence of the joint distributions implies the equivalence of the
marginal distributions, we first prove the identifiability of (m

x
, m

z
, s2
x
) by considering the marginal

distribution of W. Marginally, W
ij

follows normal distributions N(m
x0
+Z∞

ij
m
z0

, s2
x0
+s2

u
) and

N(m
x1
+Z∞

ij
m
z1

, s2
x1
+s2

u
) under H0 and H1 respectively. As a result of the non-collinearity of Z, we

immediately have that m
x0
=m

x1
and m

z0
=m

z1
. Since s2

u
is known, we have that s2

x0
=s2

x1
.

Suppressing the index i, we next consider the marginal intensities N
j
( . ) with respect to the

filtration s{N
j
(s), Y

j
(s), Z

j
, W

j
|0∏s∏u} before u reaches a failure, that is u∏ inf{s |N

j
(s)>0}.

Under the two sets of parameters H0 and H1 , we have that l(u |Z
j
, W

j
; H0 )=l(u |Z

j
, W

j
; H1), that

is

E
H
0

{l0
0
(u)eb

x0
X
j
+b∞

z0
Z
j
+b |T

j

u, Z

j
, W

j
}=E

H
1

{l1
0
(u)eb

x1
X
j
+b∞

z1
Z
j
+b |T

j

u, Z

j
, W

j
}, (A1)

where T
j
is the true survival time for the jth observation.

Under Regularity Condition 2 in § 4, we can consider the joint counting process for two
individuals within the same cluster. The joint intensity of N1 ( . ) and N2 ( . ) with respect to the
filtration of

s{N
j
(s
j
), Y

j
(s
j
), W

j
, j=1, 2 |0∏s

j
∏u

j
},

for u1 and u2 such that max (u1 , u2 )∏ inf{s |N1 (s)+N2 (s)>0}, is defined as

lim
Du
1
�0,Du

2
�0

E[N1(u1+Du1 )N2 (u2+Du2 ) |s{N
j
(s
j
), Y

j
(s
j
), Z

j
, W

j
, 0∏s

j
∏u

j
, j=1, 2}]

Du1Du2
Then, under H0 and H1 , we have that

E
H
0

{l0
0
(u1 )l00 (u2 )ebx0(X1+X2)+b∞z0(Z1+Z2)+2b |Tj
u

j
, Z

j
, W

j
, j=1, 2}

=E
H
1

{l1
0
(u
1
)l1
0
(u
2
)eb

x1
(X
1
+X

2
)+b∞

z1
(Z
1
+Z

2
)+2b |T

j

u

j
, Z

j
, W

j
, j=1, 2}. (A2)

Let u, u1 , u2
0 in (A1) and (A2). We have that

l0
0
(0)eb∞

z0
Z
j
E
V
0

(eb
x0
X
j
+b |W

j
)=l1

0
(0)eb∞

z1
Z
j
E
V
1

(eb
x1
X
j
+b |W

j
), (A3)

{l0
0
(0)}2eb∞

z0
(Z
1
+Z

2
)E
V
0

{eb
x0
(X
1
+X

2
)+2b |W

1
, W

2
}={l1

0
(0)}2eb∞

z1
(Z
1
+Z

2
)E
V
1

{eb
x1
(X
1
+X

2
)+2b |W

1
, W

2
}.
(A4)



865Measurement errors in frailty models

Comparing the coefficients of Z
j
in (A3), we have that b

z0
=b

z1
. Since b and W are independent

and X
j
and X

j∞
( jN j∞ ) are independent under the fixed effects model (6), we have that, for k=0, 1,

E
V
k

(eb
xk
X
j
+b |W

j
)=E

V
k

(eb )E
V
k

(eb
xk
X
j
|W

j
)=eh

k
/2E

V
k

(eb
xk
X
j
|W

j
),

E
V
k

{eb
xk
(X
1
+X

2
)+2b |W

1
, W

2
}=e2h

k
a
2

j=1
E
V
k

(eb
xk
X
j
|W

j
).

If we substitute these two identities into (A3) and (A4), simple calculations give that h0=h1 . For
k=0, 1, E

V
k

(eb
xk
X
j
|W

j
)=c

k
eb
xk
aW
j
, where the c

k
are some constants and a=s2

x
/(s2

x
+s2

u
). Comparing

the coefficients of W
j
in (A3), we have that b

x0
=b

x1
.

We now have finished proving the identifiability of the finite-dimensional parameter vector V.
We next show that L0

0
( . )=L1

0
( . ). Consider the survival function under H

k
(k=0, 1),

S(t |W
j
, Z

j
; H

k
)=E

V
0

{e−Lk
0
(t) exp(b

xk
X
j
+b∞

zk
Z
j
+b) |W

j
, Z

j
}={Lk

0
(t)},

where ( . ) is the Laplace transformation of the random variable exp(b
x0

X
j
+b∞

z0
Z
j
+b) con-

ditional on W
j
, Z

j
. Then, by the invertibility of the Laplace transformation, L0

0
(t)=L1

0
(t). This

completes the proof of identifiability. %

Proof of T heorem 2. Denote by t1< . . .<t
K

the distinct failure times. Consider the function

L
M

(t)=
M

K
∑
K

k=1
qAt−t

k
+

1

2MB
+

−At−t
k
−

1

2MB
+
r ,

where M>max{1/(t
k
−t

k−1
)} and (t−a)

+
=0 if t<a and t−a if t
a. Then L

M
(t)µC+[0, 2 )

and, for fixed V, l
m
(N, Y, W ; V, L

M
)
2 as M
2. This implies the unboundedness of

l
m
(N, Y, W ; V, L

M
) in the Euclidean space×C+[0, 2 ). %

Proof of T heorem 3. Denote by t1< . . .<t
K

the distinct failure times. Replace l0 (t) by DL0 (t)
in the likelihood function (16). Introduce the failure set for the ith cluster, D

i
={(i, j ) : d

ij
=1}, with

corresponding failure times t
k
ij

=t
ij
. Then l(N

i
, Y

i
, W

i
; V, L0 ) in (16) can be rewritten as

l(N
i
, Y

i
, W

i
; V, L0 )= log P q a

(i,j)µD
i

f
ij
(t
k
ij

|X
i
, b
i
) a
(i,j)1D

i

S
ij
(t
ij
|X

i
, b
i
)r L (W

i
|X

i
)L (X

i
) dX

i
dW(b

i
; h ),

where

f
ij
(t
k
ij

|X
i
, b
i
)=DL0 (tk

ij

) exp{b
x
X
ij
+b∞

z
Z
ij
+b

i
−S

l:t
l
<t
kij

DL0 (tl ) exp(b
x
X
ij
+b∞

z
Z
ij
+b

i
)},

S
ij
(t
ij
|X

i
, b
i
)=exp{−S

l:t
l
<t
ij

DL0 (tl ) exp(b
x
X
ij
+b∞

z
Z
ij
+b

i
)}.

Now we want to show that, if {DL
0
(t
k
)}|K

1
does not remain bounded, the loglikelihood (16) goes

to minus infinity. Without loss of generality, we assume that, for some k0 , DL0 (tk
0

)
2, with the
other {DL

0
(t
k
)} (kNk0 ) bounded. Suppose that subject (i0 , j0 ) fails at time t

k
0

. We can write (16)
as

l
m
(N, Y, W ; V, L0 )= ∑

m

iNi
0

l (N
i
, Y

i
, W

i
; V, L0)+ l(N

i0
, Y

i0
, W

i0
; V, L

0
), (A5)

where the first term is bounded and the second term can be written

log P q fi0j0(tk0) a
(i
0
,j)µD

i0
, jNj

0

f
i
0
j
(t
i
0
j
) a
(i
0
,j)1D

i0

S
i
0
j
(t
i
0
j
)r L (W

i
0

|X
i
0

)L (X
i
0

) dX
i
0

dW(b
i
0

; h ).

It can be easily seen that f
i
0
j
0

(t
k
0

)
0 uniformly as DL0 (tk
0

)
2 in any bounded set containing
b
x
, b

z
, h, X

i
0
j
0

and b
i
0

. Hence the second term in (A5) tends to −2. It follows that, if
{DL

0
(t
k
)}|K

1
does not remain bounded, the likelihood (16) goes to minus infinity. Further, using the

boundedness of V, these results show that we only need to consider maximising l
m
(N, Y, W ; V, L0 )

in a compact set. Since l
m
(N, Y, W; V, L0) is a continuous function of V and {DL

0
(t
k
)}|K

1
, its

supremum exists and can be attained in any compact set. %
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