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SUMMARY

We consider a class of semiparametric normal transformation models for right-censored bi-
variate failure times. Nonparametric hazard rate models are transformed to a standard normal
model and a joint normal distribution is assumed for the bivariate vector of transformed variates.
A semiparametric maximum likelihood estimation procedure is developed for estimating the
marginal survival distribution and the pairwise correlation parameters. This produces an efficient
estimator of the correlation parameter of the semiparametric normal transformation model, which
characterizes the dependence of bivariate survival outcomes. In addition, a simple positive-mass-
redistribution algorithm can be used to implement the estimation procedures. Since the likelihood
function involves infinite-dimensional parameters, empirical process theory is utilized to study
the asymptotic properties of the proposed estimators, which are shown to be consistent, asymp-
totically normal and semiparametric efficient. A simple estimator for the variance of the estimates
is derived. Finite sample performance is evaluated via extensive simulations.

Some key words: Asymptotic normality; Bivariate failure time; Consistency; Semiparametric efficiency; Semipara-
metric maximum likelihood estimate; Semiparametric normal transformation.

1. INTRODUCTION

Examples of censored bivariate data include the Danish Twin Study (Wienke et al., 2003),
the diabetic retinopathy study (Hougaard, 2000), the dual infection kidney dialysis study
(van Keilegom & Hettmansperger, 2002) and the reproductive health study of the association
of age at a marker event and age at menopause (Nan et al., 2006). In all these studies, the
assessment of marginal distribution as well as dependence among dependent individuals, such
as twins, is of major interest, the latter because it renders genetic information.
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Few existing bivariate distributions for nonnegative random variables accommodate semipara-
metric specifications of marginal distribution and unrestricted pairwise dependence. Consider
Clayton’s (1978) model for a pair of survival times (T̃1, T̃2), defined by

S(t̃1, t̃2) = [max{S1(t̃1)−θ + S2(t̃2)−θ − 1, 0}]−1/θ ,

where S(t̃1, t̃2) = pr(T̃1 > t̃1, T̃2 > t̃2), S1(t̃1) = S(t̃1, 0−) and S2(t̃2) = S(0−, t̃2) are bivariate sur-
vival and marginal survival functions, respectively, and θ has an interpretation as cross ratio
(Oakes, 1989) as well as corresponding to other dependence measures such as Kendall’s τ .
This model allows for negative dependence when −1 < θ < 0. However, for random variables
T̃1 and T̃2 which are marginally absolutely continuous with respect to the Lebesgue mea-
sure µ, the joint distribution of (T̃1, T̃2) is absolutely continuous with respect to the product
Lebesgue measure µ × µ only when θ > −0·5. When θ � − 0·5, Oakes (1989) noted that
the distribution is no longer absolutely continuous, but has a mass along the curve given by
{(t̃1, t̃2) : S1(t̃1)−θ + S2(t̃2)−θ − 1 = 0}. Hougaard (2000) further noted that frailty models can-
not yield unrestricted marginal distributions with unrestricted pairwise parameters.

Hence it is of substantial interest to specify a semiparametric likelihood model that allows
for arbitrary modelling of the marginal survival functions, that has a flexible and interpretable
correlation structure and that retains a likelihood so that an efficient and simple estimating
procedure is possible. For this purpose, we study a class of semiparametric normal transformation
models for right-censored bivariate failure times. Specifically, nonparametric marginal hazard rate
models are transformed to a standard normal model and a joint normal distribution is imposed
on the bivariate vector of transformed variates. The induced joint distribution is closely related
to the normal copula model developed by, for example, Klaassen (1997) and Pitt et al. (2006).
However, all the previous efforts in normal copula focused only on noncensoring situations, and
it is unclear whether these existing results can be generalized to censoring situations.

This paper is motivated by a recent work of Li & Lin (2006) on spatial survival data. Li &
Lin only considered estimating equation approaches in spatial settings and their estimators are
not efficient under the bivariate normal transformation model. In contrast, we focus this paper on
semiparametric likelihood-based inference for bivariate survival data.

2. SEMIPARAMETRIC NORMAL TRANSFORMATION MODELS

Consider a pair of survival times (T̃1, T̃2), where each T̃ j marginally has a cumulative
hazard � j (t). Then � j (T̃ j ) marginally follows a unit exponential distribution, and its probit
transformation

Tj = �−1{1 − e−� j (T̃ j )
}

(1)

has a standard normal distribution, where �(·) is the cumulative distribution function for N (0, 1).
To specify the correlation structure within the survival time pair (T̃1, T̃2), we assume that the

normally transformed survival time pair (T1, T2) is jointly normally distributed with correlation
coefficient ρ and with a joint tail probability function

�(z1, z2; ρ) =
∫ ∞

z1

∫ ∞

z2

φ(x1, x2; ρ)dx1dx2, (2)

where φ(x1, x2; ρ) is the joint probability density function for a bivariate normal vector with
mean (0, 0) and covariance matrix ( 1 ρ

ρ 1 )· It follows that the bivariate survival function for the
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original survival time pair (T̃1, T̃2) is

S(t̃1, t̃2; ρ) = pr(T̃1 > t̃1, T̃2 > t̃2; ρ) = �[�−1{F1(t̃1)},�−1{F2(t̃2)}; ρ], (3)

where Fj (·) is the marginal cumulative distribution function of T̃ j for j = 1, 2. In addition, the
density for the original survival time pair (T̃1, T̃2) is

f (t̃1, t̃2; ρ) = f1(t̃1) f2(t̃2)eg(t1,t2;ρ), (4)

where ti = �−1{1 − e−�i (t̃i )}, fi (t̃ ) = λi (t̃ ) exp{−�i (t̃ )} is the marginal density for T̃i (i = 1, 2)
and

g(t1, t2; ρ) = −0·5 log(1 − ρ2) − 0·5(1 − ρ2)−1(ρ2t2
1 + ρ2t2

2 − 2ρt1t2
)
. (5)

Clearly, ρ = 0 results in f (t̃1, t̃2; ρ = 0) = f1(t̃1) f2(t̃2), corresponding to the independent case.
One can easily show that the bivariate survival function approaches the upper Fréchet bound
min{S1(t̃1), S2(t̃2)} as ρ → 1−, and the lower Fréchet bound max{S1(t̃1) + S2(t̃2) − 1, 0} as
ρ → −1+. Indeed, the correlation parameter ρ provides a summary measure for the pairwise
dependence, whose connection with the other commonly used dependence measures, including
Kendall’s tau, Spearman’s rho and the cross-ratio, can be found in Li & Lin (2006). Also of
interest is that equation (4) can be rewritten as

f (t̃1 | t̃2)

f (t̃1 |O)
= f (t̃2 | t̃1)

f (t̃2 |O)
= eg(t1,t2;ρ),

where f (·|·) denotes a conditional density function and O is the empty set. Hence, function g
or parameter ρ can also be interpreted as a Bayes factor for a dependence model against an
independence model.

We are now in a position to consider estimation based on a censored sample of m pairs; that
is, we estimate the marginal hazard rate and the correlation parameter on the basis of observed
pairs (X̃i1, δi1, X̃i2, δi2), where X̃i j = T̃i j ∧ Ũi j= min(T̃i j , Ũi j ), δi j = I (T̃i j � Ũi j ) ( j = 1, 2).
For simplicity, we assume that censoring is random in that the censoring pair (Ũi1, Ũi2) is
independent of the survival pair (T̃i1, T̃i2). The likelihood function can then be factorized into
the product of contributions from the survival and censoring times, facilitating likelihood-based
inference.

In some applications involving bivariate survival data, including studies of disease occurrence
patterns of twins or siblings, it is natural to restrict the marginal cumulative hazard to be common
for members of the same pair. Hence, we first consider drawing inference with the constraint
of �1 ≡ �2 in § 3, followed by the case of separate marginal cumulative hazards � j ( j = 1, 2),
which do not have such a constraint, in § 4.

3. ESTIMATION WITH A COMMON MARGINAL CUMULATIVE HAZARD

3·1. The likelihood function

This section proposes a semiparametric maximum likelihood estimation procedure for the
semiparametric normal transformation model with a common marginal cumulative hazard, �,
say. We define the normally transformed observed time Xi j = �−1[1 − exp{−�(X̃i j )}], for
j = 1, 2. As this transformation is monotone, it can easily accommodate right-censored data
as the transformed outcome (Xi j , δi j ) contains the same information as the original (X̃i j , δi j ),
facilitating the derivation of a likelihood function that can be factorized into the product of
contributions from the survival and censoring times. It follows that the likelihood function for
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the unknown parameters (�, ρ) can be written, up to a constant, as the product of factors

L̃ i (ρ,�) = {
eg(Xi1,Xi2;ρ)�′(X̃i1)�′(X̃i2)e−�(X̃i1)−�(X̃i2)}δi1δi2

× {
�1(Xi1, Xi2; ρ)�′(X̃i1)e−�(X̃i1)}δi1(1−δi2)

× {
�2(Xi1, Xi2; ρ)�′(X̃i2)e−�(X̃i2)}(1−δi1)δi2× {

�(Xi1, Xi2; ρ)
}(1−δi1)(1−δi2) (6)

for i = 1, . . . , m, where � j (x1, x2; ρ) = −(∂/∂x j )�(x1, x2; ρ)/φ(x j ), for j = 1, 2. Indeed,
� j (x1, x2; ρ) = pr(T3− j � x3− j | Tj = x j ), for j = 1, 2.

Direct maximization of the above likelihood in a space containing continuous hazard �(·) is
not feasible, as one can always let the likelihood go to infinity by choosing some continuous
function �(·) with fixed values at each X̃i j , while letting �′(·) go to infinity at an observed
failure time, for example, at some X̃i j with δi j = 1. Thus we need to assume that � is cadlag,
right continuous with left limits, and piecewise constant. It follows that the maximum likelihood
estimator of �(·) will be the one which jumps only at distinct observed failure times. We denote
the jump size of �(·) at t by ��(t) = �(t) − �(t−). The semiparametric maximum likelihood
estimator is the maximizer of the empirical likelihood function L(ρ,�), which is the product
of terms (6) with �′(·) replaced by ��(·). We denote the log empirical likelihood function by
�(ρ,�) = log L(ρ,�).

3·2. Theoretical properties of the semiparametric maximum likelihood estimator

The main results of the paper are proved under the following set of regularity conditions.

Condition 1 (Boundedness). The parameter ρ lies in a compact set within (−1, 1).

Condition 2 (Finite interval). There exist a t0 > 0 and a constant c0 > 0 such that pr(Ũi j � t0) =
pr(Ũi j = t0) > c0. In practice, t0 is usually the duration of the study.

Condition 3 (Differentiability). The marginal cumulative hazard �(t) is differentiable and
�′(t) > 0 over [0, t0]. Moreover, �(t0) < ∞.

Condition 1 ensures the existence and consistency of the estimators. A similar boundedness
condition on the frailty parameter was assumed by Murphy (1994) in the context of frailty models
for the same purpose. Condition 2 ensures that the failures for both pair members can be observed
over a finite interval [0, t0], which makes it possible to estimate the hazard over [0, t0]. Condition
3 implies absolute continuity of the cumulative hazard, which is useful in the consistency proof,
and that we can work with the supremum norm on the space of cumulative hazard functions. Also,
Condition 3 guarantees the identifiability of the semiparametric normal transformation model
specified in equations (1) and (2).

Under Conditions 1–3, we show in a technical report, obtainable at http://biowww.dfci.
harvard.edu/∼yili/bikaproof.pdf, that the semiparametric maximum likelihood estimates do exist
and are finite. Furthermore, the next two propositions indicate that the semiparametric maximum
likelihood estimator of � remains bounded, and that the estimators of {ρ,�(·)} are consistent
and asymptotically normal estimators of the true parameters. The proofs can be found in the
aforementioned technical report.

PROPOSITION 1 (Consistency). Denote the true parameters by (ρ0,�0). Then |ρ̂ − ρ0| → 0
and supt∈[0,t0] |�̂(t) − �0(t)| → 0 almost surely.
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PROPOSITION 2 (Asymptotic normality). The scaled process m1/2(ρ̂ − ρ0, �̂ − �0) converges
weakly to a zero-mean Gaussian process in the metric space R × l∞[0, t0], where l∞[0, t0] is
the linear space containing all the bounded functions in [0, t0] equipped with the supremum
norm. Furthermore, ρ̂ and

∫ t0
0 η(s)d�̂(s) are asymptotically efficient, where η(s) is any function

of bounded variation over [0, t0].

Proposition 2 implies that both ρ̂ and �̂(t), and hence the estimator of the marginal survival
are asymptotically efficient by taking η(s) = I (s � t) for any t ∈ [0, t0]. It further implies that the
infinite-dimensional parameter, �(·), can be treated in the same fashion as the finite-dimensional
correlation parameter ρ. Hence the asymptotic covariance matrix can be estimated by inverting
the observed information matrix. To be specific, for any constant h1 and any function h2 of
bounded variation, the asymptotic variance of

h1ρ̂ +
∫ t0

0
h2(s)d�̂(s) = h1ρ̂ +

∑
{(i, j):δi j =1}

h2(X̃i j )��̂(X̃i j ) (7)

can be estimated by ĥ′ Ĵ−1ĥ, where ĥ is a column vector comprising h1 and h2(X̃i j ) for which
δi j = 1, and Ĵ is the negative Hessian matrix of �(ρ,�) with respect to ρ and the jump size of
� at X̃i j when δi j = 1. More formally, it can be shown that mĥ′ Ĵ−1ĥ→V (h1, h2) in probability
as m → ∞, where V (h1, h2) is the asymptotic variance of m1/2{h1ρ̂ + ∫ t0

0 h2(s)d�̂(s)}. The
justification follows the proof of Theorem 3 in Parner (1998), who argued that the empirical
information operator based on Ĵ approximates the true invertible information operator. We will
evaluate the finite-sample performance of this variance estimator in § 5.

3·3. A positive-mass-redistribution algorithm

Consider the following computationally efficient procedure for obtaining the semiparametric
maximum likelihood estimates and their variance-covariance matrix. Since T̃1 and T̃2 have the
same distribution function, whose estimator has masses at the distinct failure times of T̃1 and
T̃2, we denote by t1 < · · · < tK the K distinct, ordered and pooled T̃1 and T̃2 failure times.
Define r (t1, t2) = #{l | X̃1l � t1, X̃2l � t2} to be the size of the risk set at (t1, t2) and let R̃ =
{(t1, t2) | r (t1, t2) > 0} denote the risk region. We focus on the square grids {(t1, t2) | t1 = ti , t2 =
t j , (i, j = 1, . . . , K ) formed by the observed T̃1 and T̃2 pooled failure times. This is because the
censored values in T̃1, or T̃2, in the sample can be replaced by censored values at the immediately
smaller T̃1 and T̃2 pooled uncensored failure time, or by zero if there is no corresponding smaller
uncensored time, without affecting the log empirical likelihood �(ρ,�). We refer to such replace-
ment as positive mass redistribution. Then let nδ1δ2

i j = #{l | X̃1l = ti , X̃2l = t j , δ1l = δ1, δ2l = δ2}
for δ1, δ2 ∈ {0, 1} (i, j = 1, . . . , K ) with t0 = 0. Also let fi j = f (ti , t j ), Fi = ∏i

l=1(1 − λl) and
F−

i = Fi−1 where λl = ��(tl). The log empirical likelihood �(ρ,�) defined in § 3·1 can now
be written as

� =
K∑

i=1

K∑
j=1

n11
i j log flm + n10

i j log
(

λi F−
i −

j∑
v=1

fiv

)
+ n01

i j log
(

λ j F−
j −

i∑
u=1

fu j

)

+ n00
i j log

(
Fi + Fj +

i∑
u=1

j∑
v=1

fuv − 1
)

, (8)
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which involves only the marginal hazard rates at uncensored T̃1 and T̃2 times, and the joint den-
sity at grid points in the risk region. The latter can be rewritten as fi j = λi F−

i λ j F−
j eg(si ,s j ;ρ),

with g(·, ·) defined in equation (5) and si = �−1(1 − Fi ). To ensure numerical stability and
avoid arguments of 0 for �−1 in computation in finite samples, we use an asymptoti-
cally equivalent transformation si = �−1{1 − (1 − m−1)Fi }. A simple Newton–Raphson pro-
cedure, starting with ρ = 0 and the Kaplan–Meier marginal hazard rates derived by treating
(X̃i j , δi j ) ( j = 1, 2 and i = 1, . . . , m), as 2m independent observations can be used to compute
the semiparametric maximum likelihood estimates λ̂i , ρ̂. These calculations are less computa-
tionally demanding as they do not require the evaluation of bivariate incomplete normal integrals,
only the evaluation of the univariate �−1.

If we follow the arguments in § 3·2, the variability of λ̂i , ρ̂ can be assessed by invert-
ing the negative Hessian matrix of equation (8), denoted by Ĵ , a (K + 1) × (K + 1) matrix.
Furthermore, the functional (7) can be rewritten as a linear combination of ρ̂ and the λ̂i ,
namely, h1ρ̂ + ∑K

i=1 h2(ti )λ̂i , whose variance function can be easily computed as ĥ′ Ĵ−1ĥ, where
ĥ = {h1, h2(t1), . . . , h2(tK )}′. We can easily apply this result to estimate the variance of the esti-
mator of a survival probability. For example, the common marginal survival S(u0) = pr(T̃1 > u0)
at any given time u0 ∈ [0, t0] can be estimated by Ŝ(u0) = e−�̂(u0). With a first-order Taylor
expansion,

Ŝ(u0) − S(u0) � −S(u0){�̂(u0) − �(u0)} =
∫ t0

0
−S(u0)I (s � u0)d�̂(s) + const.

Hence, Ŝ(u0) can be approximated by the functional form (7) with h1 = 0 and h2(s) =
−S(u0)I (s � u0) and application of the above results will render Ŝ2(u0)ê′ Ĵ−1ê as a consistent
estimator of the variance of Ŝ(u0), where ê = {0, I (t1 � u0), . . . , I (tK � u0)}′.

4. ESTIMATION FOR THE STRATIFIED-HAZARD MODEL

4·1. The estimator and its theoretical properties

In this section, we relax the condition of a common marginal hazard and allow each T̃i j to have
a separate cumulative hazard function � j (·) ( j = 1, 2). This is often appropriate in practice.

We consider joint maximum likelihood estimation, following a development parallel to that
for the common-hazard model. Our inference stems from the loglikelihood function of unknown
parameters (�1,�2, ρ) based on the observed data (X̃i j , δi j ) ( j = 1, 2 and i = 1, . . . , m), which
can be written, up to a constant, as the product over i = 1, . . . , m of terms

L̃ i (ρ,�1,�2)

={
eg(Xi1,Xi2;ρ)�′

1(X̃i1)�′
2(X̃i2)e−�1(X̃i1)−�2(X̃i2)}δi1δi2

{
�1(Xi1, Xi2; ρ)�′

1(X̃i1)e−�1(X̃i1)}δi1(1−δi2)

× {
�2(Xi1, Xi2; ρ)�′

2(X̃i2)e−�2(X̃i2)}(1−δi1)δi2 × {�(Xi1, Xi2; ρ)}(1−δi1)(1−δi2). (9)

Here Xi j = �−1{1 − exp(−� j (X̃i j )} for j = 1, 2. Again, direct maximization of the likelihood
function in a space containing continuous hazards �1(·) or �2(·) is infeasible, as one can always
make the likelihood arbitrarily large by constructing some continuous functions �1(·) and �2(·)
with fixed values at each X̃i j , while letting �′

1(·) or �′
2(·) go to infinity at an observed failure

time. Hence, when performing the maximum likelihood estimation, we assume that (�1,�2) are
cadlag and piecewise constant. It follows that the semiparametric maximum likelihood estimator,
(ρ̂, �̂1, �̂2), is the maximizer of the empirical likelihood function �(ρ,�1,�2), which is obtained
from equation (9) with the derivatives �′

1(·) and �′
2(·) at the observed failure times, respectively
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replaced by their jumps ��1(·) and ��2(·) at the corresponding time-points. We can show
that (ρ̂, �̂1, �̂2) exist and are finite. Furthermore, under Conditions 1–3, with both �1 and
�2 satisfying Condition 3, the asymptotic properties of the estimators are summarized in the
following two theorems, the proofs of which can be found in our technical report.

PROPOSITION 3 (Consistency). Denote the true parameters by (ρ0,�01,�02). Then |ρ̂ − ρ0| →
0, supt∈[0,t0] |�̂1(t) − �01(t)| → 0 and supt∈[0,t0] |�̂2(t) − �02(t)| → 0 almost surely.

PROPOSITION 4 (Asymptotic normality). The empirical process m1/2(ρ̂ − ρ0, �̂1 − �01, �̂2 −
�02) converges weakly to a zero-mean Gaussian process in the metric space R × l∞[0, t0] ×
l∞[0, t0], where l∞[0, t0] is the linear space containing all the bounded functions in [0, t0]
equipped with the supremum norm. Furthermore, ρ̂,

∫ t0
0 η1(s)d�̂1(s) and

∫ t0
0 η2(s)d�̂2(s) are

asymptotically efficient, where η1(s) and η2(s) are any functions of bounded variation over
[0, t0].

As in the case of a common-hazard model, the asymptotic covariance matrix of the estimators
of the unknown, finite-dimensional and infinite-dimensional parameters can be estimated by
inverting the observed information matrix. For any constant h1 and any function h2 and h3 of
bounded variation, the asymptotic variance of

h1ρ̂ +
∫ t0

0
h2(s)d�̂1(s) +

∫ t0

0
h3(s)d�̂2(s) = h1ρ̂ +

∑
{i :δi1=1} h2(X̃i1)��̂(X̃i1)

+
∑

{i :δi2=1} h2(X̃i2)��̂2(X̃i2) (10)

can be estimated by ĥ′ Ĵ−1ĥ, where ĥ is a column vector comprising h1, the h2(X̃i1) for which δi1 =
1 and the h2(X̃i2) for which δi2 = 1, and Ĵ is the negative Hessian matrix of �(ρ,�1,�2) with
respect to ρ and the jump sizes of � j at X̃i j when δi j =1. Indeed, following the proof of Theorem 3
in Parner (1998), one can show mĥ′ Ĵ−1ĥ→V (h1, h2, h3) in probability as m → ∞, where
V (h1, h2, h3) is the asymptotic variance of m1/2{h1ρ̂ + ∫ t0

0 h2(s)d�̂1(s) + ∫ t0
0 h3(s)d�̂2(s)}.

4·2. Practical implementation for the stratified-hazard model

Denote by t11 < · · · < t1I the I distinct ordered T̃1-failure times and by t21 < · · · < t2J the J
distinct T̃2-failure times in the observed sample. As defined in § 3·2, let r (t1, t2) be the size of the
risk set at (t1, t2) and let R̃ be the risk region. We only consider the rectangular grids {(t1, t2) | t1 =
t1i , t2 = t2 j , (i = 1, . . . , I, j = 1, . . . , J ) formed by the observed T̃1- and T̃2-failure times. This
is because the censored values in T̃1, or T̃2, in the sample can be replaced by censored values at the
immediately smaller T̃1, or T̃2, uncensored failure times, or by zero if there is no corresponding
smaller uncensored time, without affecting the empirical likelihood �(ρ,�1,�2). With these
replacements, or the so-called positive mass redistributions, let nδ1δ2

i j = #{l | X̃1l = t1i , X̃2l =
t2 j , δ1l = δ1, δ2l = δ2} for δ1, δ2 ∈ {0, 1} and for i = 0, . . . , I and j = 0, . . . , J , with t10 =
t20 = 0. Also let fi j = f (t1i , t2 j ), F1i = ∏i

l=1(1 − λ1l), F−
1i = F1,i−1, F2 j = ∏ j

k=1(1 − λ2k) and
F−

2 j = F2, j−1, where λ1l = ��1(t1l), λ2k = ��2(t2k). The log empirical likelihood function can
now be written as

� =
I∑

i=1

J∑
j=1

n11
i j log flm + n10

i j log

⎛
⎝λ1i F−

1i −
j∑

v=1

fi j

⎞
⎠ + n01

i j log

(
λ2 j F−

2 j −
i∑

u=1

fu j

)

+ n00
i j log

⎛
⎝F1i + F2 j +

i∑
u=1

j∑
v=1

fuv − 1

⎞
⎠ , (11)
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which involves only the marginal hazard rates at uncensored T1 and T2 times, and the
joint density at grid points in the risk region, namely, fi j = λ1i F−

1i λ2 j F−
2 j e

g(s1i ,s2 j ;ρ), with

s1i = �−1(1 − F1i ) and s2 j = �−1(1 − F2 j ). In practice, we use an asymptotically equiva-
lent transformation s1i = �−1{1 − (1 − m−1)F1i } and s2 j = �−1{1 − (1 − m−1)F2 j }. A sim-
ple Newton–Raphson procedure, starting with ρ = 0, and Kaplan–Meier marginal hazard rates
λ1i = ∑J

j=1(n11
i j + n10

i j )/r (t1i , 0), λ2 j = ∑I
i=1(n11

i j + n01
i j )/r (0, t2 j ), can be used to compute the

semiparametric maximum likelihood estimators λ̂1i , λ̂2 j and ρ̂. The likelihood evaluations are
computationally less demanding, requiring only the computation of the univariate �−1.

Similarly, the variability of λ̂1i , λ̂2 j and ρ̂ can be assessed by inverting the negative Hessian
matrix of equation (11), denoted by the (I + J + 1) × (I + J + 1) matrix Ĵ . Moreover, functional
(10) can be rewritten as a linear combination of ρ̂ and the λ̂1i , λ̂2 j , namely,

h1ρ̂ +
I∑

i=1

h2(t1i )λ̂1i +
J∑

j=1

h3(t2 j )λ̂2 j ,

whose variance can be easily computed by ĥ′ Ĵ−1ĥ, where ĥ = {h1, h2(t11), . . . , h2(t1I ),
h3(t21), . . . , h3(t2J }′.

As an illustration of this variance formula, consider the bivariate survival estimator Ŝ(u0, v0)
S(u0, v0) at any given time pair (u0, v0) ∈ [0, t0]2. Based on the semiparametric normal transfor-
mation model, this is

Ŝ(u0, v0) = �
[
�−1{1 − e−�̂1(u0)},�−1{1 − e−�̂2(v0)}; ρ̂

]
.

To evaluate the variance of Ŝ(u0, v0), we perform a first-order Taylor expansion, yielding

Ŝ(u0, v0) − S(u0, v0)

� γ1(u0, v0)(ρ̂ − ρ0) + γ2(u0, v0){�̂1(u0) − �1(u0)} + γ3(u0, v0){�̂2(v0) − �2(v0)}

= γ1(u0, v0)ρ̂ +
∫ t0

0
γ2(u0, v0)I (s � u0)d�̂1(s) +

∫ t0

0
γ3(u0, v0)I (s � v0)d�̂2(s) + const,

where

γ1(t1, t2) = ∂�(x1, x2; ρ)/∂ρ, γ2(t1, t2) = −�1(x1, x2; ρ0) exp{−�1(t1)},
γ3(t1, t2) = −�2(x1, x2; ρ0) exp{−�2(t2)}, x j = �−1{1 − e−� j (t j )

}
.

Hence, Ŝ(u0, v0) can be approximated by the functional form (10) with

h1 = γ1(u0, v0), h2(s) = γ2(u0, v0)I (s � u0), h3(s) = γ3(u0, v0)I (s � v0),

and application of the above variance formula renders a consistent estimator of the variance for
Ŝ(u0, v0), namely, ĥ′ Ĵ−1ĥ, where

ĥ = {γ̂1(u0, v0), γ̂2(u0, v0)I (t11 � u0), . . . , γ̂2(u0, v0)I (t1I � u0),

γ̂3(u0, v0)I (t21 � u0), . . . , γ̂3(u0, v0)I (t2J � u0)}′

and γ̂ j (·, ·) is obtained from γ j (·, ·), for j = 1, 2, 3, with all the unknown parameters replaced
by their estimators. We evaluate the finite sample performance of this variance estimator in § 5.
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Table 1. Averages and model-based and empirical SEs of the SPMLEs under the semiparametric
normal transformation model (3) with a common-hazard function. The true values are ρ =

0·5, S(0·1625) = 0·85, S(0·3566) = 0·70, S(0·5978) = 0·55

t = 0·1625 t = 0·3566 t = 0·5978
Censoring ρ SEe SEm Ŝ(t) SEe Ŝ(t) SEe Ŝ(t) SEe

Censoring on T1 only 0·502 0·109 0·104 0·842 0·023 0·692 0·035 0·546 0·044
Univariate censoring 0·503 0·122 0·114 0·842 0·025 0·694 0·035 0·546 0·051
Bivariate censoring 0·493 0·141 0·138 0·846 0·027 0·697 0·042 0·555 0·055

SE, standard error; SPMLE, semiparametric maximum likelihood error; SEe, empirical standard error; SEm , model-based
standard error.

5. NUMERICAL STUDIES

5·1. Preamble

A series of simulation studies was performed to examine the properties of the proposed estima-
tor and to compare it with the existing bivariate survivor estimators, including the Prentice–Cai
(Prentice & Cai, 1992), Dabrowska (1988) and repaired nonparametric maximum likelihood (van
der Laan, 1996; Moodie & Prentice, 2005) estimators. The simulation set-up mimics those in
Prentice et al. (2004). The marginal distributions of T̃1 and T̃2 were specified as unit exponential,
and the censoring time Ũ1 was taken to be an exponential variate with mean 0·5. Three special
cases for Ũ2 were considered: Ũ2 = ∞, corresponding to no T̃2 censoring; Ũ2 = Ũ1, correspond-
ing to univariate censoring; Ũ2 is independent of Ũ1 and is an exponential variate with mean 0·5.
A sample size of 120 pairs was considered with 1000 repetitions at a given configuration.

5·2. Performance under the correct model

We began by evaluating the finite sample performance of the semiparametric maximum
likelihood estimator when the true model follows the semiparametric normal transformation
model (3) with ρ = 0·5. We considered both the common-hazard model and the stratified-hazard
model, but, as both models yielded similar results, in Table 1 we report only the simulation
results for the common-hazard model. As efficient estimation of the common-hazard function or
the common marginal distribution function is of major interest under the common-hazard model,
we report only the estimates of the marginal survival function at various time-points in Table 1.
The sample averages of the estimates are very close to the true values, and the model-based
standard errors, which were computed by applying the results of § 3·3, match very well with the
empirical standard errors up to the third decimal point.

5·3. Performance under the misspecified model

We next considered the robustness of the semiparametric maximum likelihood estimator when
the semiparametric normal transformation model was misspecified. The failure times were gen-
erated under the following bivariate Clayton model:

S(t̃1, t̃2) = {S1(t̃1)−θ + S2(t̃2)−θ − 1}−1/θ , (12)

with θ = 4, implying a strong positive dependence between T̃1 and T̃2. We compared the per-
formance of the semiparametric maximum likelihood estimator based on the semiparametric
normal transformation model, ŜNT with the other existing nonparametric estimators, including
the Prentice–Cai estimator, ŜPC, the empirical hazard rate estimator, ŜE and the redistributed
empirical estimator, ŜRE, which were taken from Tables 1 and 2 of Prentice et al. (2004). As
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Table 2. Averages, SEs and mean squared errors for various bivariate survival function estimators
at various time pairs (t1, t2) when the correct model (12) with θ = 4 is misspecified to the
semiparametric normal model (3). The true bivariate survival probabilities at these pairs are

0·771, 0·666 and 0·608, respectively

(t1, t2) = (0·1625, 0·1625) (t1, t2) = (0·1625, 0·3566) (t1, t2) = (0·3566, 0·3566)
Censoring Bias (%) SE MSE Bias (%) SE MSE Bias (%) SE MSE

(×10−2) (×10−3) (×10−2) (×10−3) (×10−2) (×10−3)
Censoring on ŜE 0·0 4·6 2·1 0·3 5·5 3·0 0·0 5·7 3·2
T1 only ŜPC 0·1 4·0 1·6 0·1 4·3 1·9 –0·1 4·7 2·2

ŜRE 0·1 4·3 1·8 0·3 4·6 2·1 0·0 4·9 2·4
ŜNT 3·2 3·5 1·7 4·4 3·5 2·0 3·3 4·3 2·2

(3·3) (3·0) (3·8)
Univariate ŜE 0·0 5·1 2·6 0·3 5·9 3·5 0·1 6·3 4·0
censoring ŜPC 0·1% 4·1 1·7 0·3% 4·9 2·4 0·0% 5·1 2·6

ŜRE 0·1 4·8 2·3 0·3 5·7 3·2 0·0 5·8 3·4
ŜNT 2·6 3·2 1·4 3·3 3·9 2·0 2·1 4·2 1·9

(2·8) (3·7) (4·2)
Bivariate ŜE 0·0 5·8 3·4 0·3 7·3 5·3 –0·1 7·7 5·9
censoring ŜPC –0·1 4·1 1·7 –0·1 4·9 2·4 –0·3 5·3 2·8

ŜRE –0·2 5·6 3·1 0·3 6·6 4·4 –0·3 6·8 4·6
ŜNT 2·2 3·5 1·5 1·9 4·2 1·9 0·1 4·7 2·2

(3·3) (4·6) (4·8)

MSE, mean squared error; ŜE, the empirical hazard rate estimator; ŜPC, the Prentice–Cai estimator; ŜRE, the redistributed
empirical estimator; ŜNT, the semiparametric maximum likelihood estimator; SEs, empirical standard errors; for ŜNT

the model-based standard errors are displayed inside the brackets.

Prentice et al. (2004) only considered stratified-hazard models, we focused on the stratified-
hazard model to make the resulting estimates comparable.

Tables 2 and 3 contain the sample averages of the relative biases of the bivariate survival
estimates and marginal survival estimates at selected time-points and the average model-based
standard errors, calculated by applying the results of § 4·2, for the point estimates, along with the
empirical standard errors. We also list the summary statistics for the empirical hazard rate, ŜE,
Prentice–Cai, ŜPC and redistributed empirical, ŜRE estimators (Prentice et al., 2004). Finally, we
computed the mean squared errors for all the estimators.

Our results show that, even when the underlying model is misspecified, the semiparamet-
ric maximum likelihood estimation based on the semiparametric normal transformation model
incurred only small biases. Among all the scenarios examined, the relative biases of the semipara-
metric maximum likelihood estimates ranged from −5·7% to 4%. Compared to the competing
nonparametric estimators, the new estimator also achieved high efficiency and had the smallest
standard errors in almost all the scenarios examined. It had a smaller mean squared error than the
other estimators in most cases considered. In addition, the model-based standard errors agreed
well with their empirical counterparts.

5·4. Comparison with the inverse-probability-of-censoring-weighted estimator

We also compared the new estimator with a doubly robust inverse-probability-of-censoring-
weighted estimator, derived under univariate censoring, which stipulates that the censoring time is
common for both pair members (Lin & Ying, 1993; Tsai & Crowley, 1998; Wang & Wells, 1998;
Nan et al., 2006). The detailed derivation can be found in our technical report. We first compared
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Table 3. Averages, standard errors and mean squared errors for various estimators of the
marginal survival functions S1 and S2 when the correct model (12) with θ = 4 is misspeci-
fied to the semiparametric normal model (3). The true marginal survival probabilities for both

T1 and T2 are 0·850, 0·700 and 0·55, respectively

t1 = 0·1625 t1 = 0·3566 t1 = 0·5978
Censoring Bias (%) SE MSE Bias (%) SE MSE Bias (%) SE MSE

(×10−2) (×10−3) (×10−2) (×10−3) (×10−2) (×10−3)
Censoring on ŜE 0·0 3·6 1·3 0·0 4·9 2·4 0·2 6·3 3·9
T1 only ŜKM 0·0 3·6 1·3 0·1 4·9 2·4 0·4 6·4 4·1

ŜRE 0·1 3·6 1·3 0·2 4·8 2·3 1·6 6·0 3·7
ŜNT 0·8 3·1 1·0 2·7 4·7 2·5 3·4 6·5 4·6

(3·6) (5·0) (6·2)
Univariate ŜE 0·1 4·3 1·8 0·1 5·7 3·2 0·4 7·1 5·0
censoring ŜKM 0·0 3·6 1·3 0·1 4·9 2·4 0·4 6·4 4·1

ŜRE 0·1 4·1 1·7 0·3 5·4 2·9 1·1 6·9 4·8
ŜNT 0·6 3·0 0·9 2·4 4·6 2·4 3·4 6·1 4·1

(3·5) (5·0) (6·7)
Bivariate ŜE –0·1 4·8 2·3 0·1 7·2 5·1 –0·4 10·0 10·0
censoring ŜKM 0·0 3·5 1·2 0·3 5·1 2·6 0·4 6·4 4·1

ŜRE 0·0 4·7 2·2 0·6 6·5 4·2 2·3 6·9 4·9
ŜNT 0·9 3·1 1·0 1·9 4·7 2·4 1·0 6·3 4·0

(3·5) (5·1) (6·5)

ŜE, the empirical hazard rate estimator; ŜKM, the Kaplan–Meier estimator; ŜRE, the redistributed empirical estimator;
ŜNT, the semiparametric maximum likelihood estimator. SEs; empirical standard errors; for ŜNT the model-based
standard errors are displayed inside the brackets; only the estimates of the T1-survival are reported, as similar patterns
were observed for the estimates of the T2-survival.

the efficiency of the inverse-probability-of-censoring-weighted estimator with the semiparametric
maximum likelihood estimator when the true underlying model indeed followed the semipara-
metric normal transformation model (3) with ρ = 0·5. The results are documented in Table 4, and
demonstrate that the new estimator has noticeably smaller variances than its competitor. We next
considered the robustness of the inverse-probability-of-censoring-weighted estimator when the
underlying model was misspecified as the semiparametric normal transformation model, while
the true model followed the bivariate Clayton model (12) with θ = 4. The results in Table 4 indi-
cate that the inverse-probability-of-censoring-weighted estimator has eliminated the bias caused
by the misspecification of the semiparametric normal transformation model, while the new esti-
mator incurs negligible biases and retains smaller variances. In terms of mean squared error, the
semiparametric maximum likelihood estimator was superior in the scenarios considered.

5·5. Estimation of ρ

Finally, we discuss the interpretation and estimation of ρ, which has a one-to-one correspon-
dence between the common dependence measure for bivariate survival, such as Kendall’s τ . As
indicated in Li & Lin (2006),

τ = 4
∫ ∞

0

∫ ∞

0
f (t̃1, t̃2; ρ)S(t̃1, t̃2; ρ)dt̃1dt̃2 − 1,
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Table 4. Comparison of the semiparametric normal transformation model (3) based SPMLE esti-
mator and the inverse-probability-of-censoring-weighted estimator at various time pairs (t1, t2)
under univariate censoring. The true underlying models are the semiparametric normal transfor-
mation model (3) with ρ = 0·5, i.e. the working model is correctly specified, and Clayton’s model
(12) with θ = 4, i.e. the working model is misspecified. The true bivariate survival probabilities
at the specified points are 0·7577, 0·6415 and 0·5568, respectively, and the averages of the

relative biases are listed in the table

(t1, t2) = (t1, t2) = (t1, t2) =
True underlying model (0·1625, 0·1625) (0·1625, 0·3566) (0·3566, 0·3566)

Bias (%) SEe MSE Bias (%) SEe MSE Bias (%) SEe MSE

(×10−2) (×10−3) (×10−2) (×10−3) (×10−2) (×10−3)
Semiparametric normal ŜNT 0·1 4·0 1·6 0·0 4·9 2·4 0·1 5·0 2·5
Transformation model ŜIP –0·1 4·3 1·9 –0·1 5·2 2·7 0·0 5·5 3·0
Clayton model ŜNT 2·6 3·1 1·4 3·3 3·9 2·0 2·1 4·2 1·9

ŜIP 0 4·1 1·7 0·3 5·1 2·6 0 5·3 2·8

ŜNT, the semiparametric maximum likelihood estimator based on the semiparametric normal transformation model;
ŜIP, the inverse-probability-of-censoring-weighted estimator; SEe, the empirical standard error; MSE, the mean squared
error.

Table 5. Averages and SEs of ρ and the model-based Kendall’s τ when the correct model (12)
with various true θ is misspecified to the semiparametric normal model (3) with parameter ρ to

be estimated

θ True Kendall’s censoring ρ Model-based τ

τ ρ̂ SEe SEm τ̂ SEe SEm

4 0·614 Censoring on T1 only 0·840 0·020 0·014 0·620 0·024 0·016
Univariate censoring 0·839 0·026 0·021 0·619 0·028 0·022
Bivariate censoring 0·820 0·033 0·030 0·608 0·033 0·026

2 0·500 Censoring on T1 only 0·696 0·042 0·038 0·490 0·035 0·030
Univariate censoring 0·685 0·063 0·057 0·487 0·050 0·041
Bivariate censoring 0·693 0·064 0·057 0·492 0·052 0·043

1 0·333 Censoring on T1 only 0·500 0·060 0·059 0·339 0·044 0·041
Univariate censoring 0·483 0·076 0·077 0·320 0·056 0·053
Bivariate censoring 0·493 0·077 0·072 0·327 0·058 0·051

0·5 0·199 Censoring on T1 only 0·313 0·067 0·072 0·209 0·046 0·048
Univariate censoring 0·291 0·084 0·078 0·194 0·054 0·062
Bivariate censoring 0·297 0·087 0·079 0·196 0·057 0·064

SEe, empirical standard errors; SEm , model-based standard errors.

where S(t̃1, t̃2; ρ) and f (t̃1, t̃2; ρ) are, respectively, the joint bivariate survival and density functions
defined in equations (3) and (4). After a change of variables, we have that

τ = τ (ρ) = 4
∫ ∞

0

∫ ∞

0
�(t1, t2; ρ)eg(t1,t2;ρ)φ(t1)φ(t2)dt1dt2 − 1,

where �(·) is the joint tail function for the bivariate normal distribution defined in equation (2),
g(t1, t2; ρ) is the cross-term defined in equation (5) and φ is the standard normal density function,
none of which depends on any specific forms of hazard functions. As shown in Li & Lin (2006),
ρ uniquely determines τ , and thus provides a standardized dependence measure for bivariate
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survival. Indeed, τ (ρ̂) yields the model-based estimator of Kendall’s τ , with a model-based
standard error that can be conveniently obtained using the delta method.

We considered the estimation and the interpretation of the estimate of ρ when the semiparamet-
ric normal transformation model was misspecified, and the failure times were generated under the
bivariate Clayton model in equation (12). We chose θ to be 0·5, 1, 2 and 4, which correspond to
Kendall’s τ of 0·199, 0·333, 0·5 and 0·613, respectively, using formula (4·4) of Hougaard (2000).

The sample averages of the estimates of ρ and the model-based Kendall’s τ are displayed in
Table 5, along with the empirical and model-based standard errors. It appears that, when the
underlying model is misspecified, the estimate of ρ itself might not be of interest, as it does not
recover the specific dependence structure of the true model. However, the model-based estimator
of Kendall’s τ based on the estimates of ρ are very comparable to the true values. We envisage
that, at least for the scenarios we considered, the estimate of ρ would lead to a reasonable
approximation for Kendall’s τ even if the model were misspecified.

6. DISCUSSION

With the analytical framework established in this article, we are able to extend the results to
multivariate data, where clusters are allowed to have varying cluster sizes and where each pair
of failure times may have a distinct correlation parameter. A key feature of this transformation
model is that it can easily accommodate covariates in such a way that survival outcomes marginally
follow a common Cox proportional hazards model, and their joint distribution is specified by a
joint normal distribution. Hence, the regression coefficients have population-level interpretations,
a feature not shared by conditional frailty models.
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