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Summary. The paper is motivated by cure detection among the prostate cancer patients in the
National Institutes of Health surveillance epidemiology and end results programme, wherein
the main end point (e.g. deaths from prostate cancer) and the censoring causes (e.g. deaths
from heart diseases) may be dependent. Although many researchers have studied the mixture
survival model to analyse survival data with non-negligible cure fractions, none has studied the
mixture cure model in the presence of dependent censoring. To account for such dependence,
we propose a more general cure model that allows for dependent censoring. We derive the
cure models from the perspective of competing risks and model the dependence between the
censoring time and the survival time by using a class of Archimedean copula models. Within
this framework, we consider the parameter estimation, the cure detection and the two-sample
comparison of latency distributions in the presence of dependent censoring when a proportion
of patients is deemed cured. Large sample results by using martingale theory are obtained. We
examine the finite sample performance of the proposed methods via simulation and apply them
to analyse the surveillance epidemiology and end results prostate cancer data.
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1. Introduction

With the development of modern medicine and effective therapies, the curability of many early
staged cancers (e.g. prostate, breast, head and neck cancers) is becoming a reality. In the pros-
tate cancer study of the National Institutes of Health surveillance epidemiology and end results
(SEER) programme, which motivated this paper, a large proportion of patients were deemed
cured of prostate cancer, meaning that an individual will have little or no risk of experiencing
the event of interest, e.g. death from prostate cancer. Survival models incorporating a cure frac-
tion, which are often termed cure rate models, have emerged recently as a powerful statistical
tool for analysing such cancer studies; see for example Kuk and Chen (1992), Maller and Zhou
(1996), Peng and Dear (2000) and Sy and Taylor (2000), among others. Most of the current
work stems from the mixture model that was originally proposed by Boag (1949) and Berkson
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and Gage (1952). A key assumption in these classical cure models is that the survival time and
the potential censoring time are independent.

However, such an independence assumption is often violated in observational studies.
Indeed, a non-negligible portion of patients who were diagnosed with prostate cancer in our
motivating example were found to have died from heart or cardiovascular diseases. A recent
study (http://www.thewbalchannel.com/healtharchive/4161401/detail.html)
has revealed that prostate cancer and cardiovascular disease may be linked through a common
risk factor, namely high cholesterol levels. Therefore, it would seem implausible to assume inde-
pendence between the main end point (e.g. deaths from prostate cancer) and the censoring causes
(e.g. deaths from heart diseases). Statistical analysis is often hampered by dependent censoring
as the classical models will not be valid, and ignoring dependent censoring will typically lead
to foreseeable biases.

In view of scarce literature that deals with survival data with cure fractions in the presence
of dependent censoring, we propose in this paper a more general cure model that allows for
dependent censoring. In particular we derive the mixture cure model from the perspective of
competing risks and model the dependence between the censoring time and the survival time by
using a class of Archimedean copula models. Within this framework, we focus on cure detec-
tion, and a comparison of latency distributions in the presence of dependent censoring when a
proportion of patients is deemed cured. To our knowledge, the methods proposed in this paper
are the first attempt at cure modelling in the presence of dependent censoring.

Our paper is indeed motivated by Rivest and Wells (2001), which considered estimating mar-
ginal survival in the absence of cures. However, our focus is on unobserved long-term survivors
who are obscured by censoring. Hence, our setting is more general and technically more del-
icate. The rest of the paper is structured as follows. In Section 2, we introduce a mixture cure
model with the dependence of the censoring and survival times modelled by a class of Archi-
medean copula models. We also derive an estimator for estimating the survival function and
the cure fraction with dependent censoring. In Section 3, we study the large sample properties
of the estimators proposed and present the results of consistency and asymptotic normality.
We conduct hypothesis tests in a two-sample comparison setting in Section 4. We illustrate the
proposed methods with applications to the SEER data in Section 5 and assess the finite sample
performance via simulation in Section 6. We conclude this paper with discussion and future
work in Section 7. We relegate all the technical proofs and additional lemmas to Appendix A.

2. Mixture cure model with Archimedean dependence

Suppose that T is the survival time, e.g. the time from the diagnosis of prostate cancer, and U
is the potential random censoring time, e.g. the duration of study or death from other causes
(e.g. cardiac failure), with only X = min.T , U/ and censoring indicator δ= I.X = T/ observed
in practice. Denote by FT .t/=P.T � t/ and FU.t/=P.U � t/ the cumulative distribution func-
tions, and ST .t/=P.T>t/ and SU.t/=P.U>t/ the survival functions, for T and U respectively.
Scientific research often centres on discerning FT .t/ while treating FU.t/ as a nuisance.

The mixture cure model assumes FT to be an improper distribution over the entire real line
and specifies

FT .t/=p F0.t/ .1/

or, equivalently,

ST .t/=1−p+p S0.t/, .2/
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where 0<p<1, S0.t/=1−F0.t/ and F0.t/ is a proper distribution such that limt→∞{F0.t/}=1.
Models (1) and (2) consider the study population as an unobservable mixture of patients who
are deemed to be susceptible (non-cured) and non-susceptible (cured). 1−p corresponds to the
fraction of cured, i.e. the point mass that T puts on ∞, and F0.t/ is the distribution for the
non-cured patients, which is often termed the latency distribution.

We complete the model by specifying the dependence of the failure time T and censoring time
U via a strict Archimedean copula model,

C.t, u/
def= P.T>t, U>u/

=φ−1[φ{ST .t/}+φ{SU.u/}], .3/

where φ : [0, 1]→ [0, ∞] is a non-increasing function such that φ.1/=0 and φ.0/=∞. Examples
of Φ include φ.t/ =− log.t/, corresponding to independent censoring, the family of Clayton’s
models with φ.t/= .t−a −1/=a (for a> 0), and the Frank family with

φ.t/=−log
{

1− exp.−at/

1− exp.−a/

}
(for a > 0). We adopt the Archimedean copula formulation to emphasize the functional inde-
pendence of the parameterizations of the marginal distribution functions, which are governed
by ST and SU , and the dependence structure, which is governed by a class of copula functions
φ. This formulation facilitates a derivation of the estimator for ST , our main interest.

Suppose that we observe n independent and identically distributed data, .Xi, δi/, i=1, . . . , n,
and consider the counting processes Ni.t/ = I.Xi � t, δi = 1/ and the at-risk processes Yi.t/ =
I.Xi � t/. Denote by N.t/ = Σ Ni.t/ and Y.t/ = Σ Yi.t/. Introduce the filtration Fn

t = σ{Ni.s/,
Yi.s+/, 0� s� t, i=1, . . . , n}, which contains the survival information up to time t for all n sub-
jects and to which all the ensuing martingales and stopping times adapt. We denote the survival
function for the observed times Xi by π.t/=P.Xi > t/=C.t, t/.

The following remarks heuristically discuss an estimator based on equation (3), whose large
sample properties will be considered in the next section. Denote by ŜT , which will be defined in
equation (5), and ŜU the estimates for ST and SU respectively, which are right continuous and
piecewise constant functions with jumps only at the observed failures and censorings respec-
tively. Denote by π̂.t/ the empirical estimate of π.t/, which is π̂.t/=Σi I.Xi > t/=n=Y.t+/=n.

By equation (3), at each observed time point Xi, i=1, . . . , n,

φ{ŜT .Xi/}+φ{ŜU.Xi/}=φ{π̂.Xi/}:

Assume that P.T =U/=0 (i.e. censoring and failure cannot occur at the same time almost surely).
Then, at each observed failure time point Xi (such that δi =1/, we have ŜU.X−

i /= ŜU.Xi/ and

φ{ŜT .Xi/}−φ{ŜT .X−
i /}=φ{π̂.Xi/}−φ{π̂.X−

i /}
=φ

{
Y.Xi/

n
− 1

n

}
−φ

{
Y.Xi/

n

}
: .4/

Applying equation (4) recursively, the estimator ŜT can be written by using the form of counting
processes

ŜT .t/=φ−1
(∫ t

0
I{Y.s/> 0}

[
φ

{
Y.s/

n
− 1

n

}
−φ

{
Y.s/

n

}]
dN.s/

)
, .5/

which corresponds to the estimator that was derived by Rivest and Wells (2001) in the absence
of a cure fraction. When computing equation (5), we invoke the convention that 0=0 = 0 if
necessary.
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It is obvious that ŜT .t/ is non-increasing and is a constant when t �maxδi=1{Xi}=XnÅ, the
largest observed failure time. In addition this constant is non-zero when the largest value among
all the observed times (X1, . . . , Xn/, which is denoted by

Xn = sup
t

{t : Y.t/> 0}, .6/

is censored. We also introduce the right extremes

τF0 = sup
t

{t : F0.t/< 1}, .7/

τU = sup
t

{t : FU.t/< 1}, .8/

τX = sup
t

{t :π.t/> 0}: .9/

From equation (1), it follows that τF0 = supt{t :FT .t/<p}= supt{t :ST .t/>1−p}. Throughout,
denote by a∧b=min.a, b/ and a∨b=max.a, b/ for two real numbers a and b.

For applications in the SEER prostate cancer data, we shall use ŜT .t/ as defined in equa-
tion (5) to describe the survival pattern for the entire population of prostate cancer patients, use
1− ŜT .Xn/ to estimate the cure fraction and use F̂ T .t/=F̂T .Xn/ to depict the latency distribution
for the non-cured prostate cancer patients. To draw valid inference based on these estimates,
we shall consider the following asymptotic results under some regularity conditions (which are
listed in Appendix A.1).

(a) The cure fraction can be consistently estimated on the basis of ŜT (as defined in equa-
tion (5)). Specifically, ŜT .Xn/

pr→ 1−p or, equivalently, F̂ T .Xn/
pr→ p.

(b) The estimate of the cure fraction is asymptotically normally distributed, i.e. n1=2{F̂ T .Xn/−
p} or, equivalently, n1=2{ŜT .Xn/− .1−p/} converges in distribution to a mean 0 normal
random variable with a finite variance.

(c) The estimate of the latency distribution is uniformly consistent and asymptotically nor-
mal. More specifically,

sup
t∈[0,τX]

∣∣∣∣∣ F̂ T .t/

F̂ T .Xn/
−F0.t/

∣∣∣∣∣ pr→0,

and

n1=2

{
F̂ T .t ∧Xn/

F̂T .Xn/
−F0.t ∧Xn/

}

converges weakly to a tight Gaussian process on the Skorohod space D[0, τX].

To study the racial disparities in prostate cancer, we shall further consider a comparison of
cure fractions between racial groups and propose a class of tests for testing the equality of the
latency distribution F0 across racial groups along the lines of Li and Feng (2005).

3. Estimation and large sample results

Introduce the crude hazard function which is defined by

dΛ̃.t/= λ̃.t/ dt

=P.t<T � t +dt|T >t, U>t/, .10/
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along with the martingale processes

Mi.t/=Ni.t/−
∫ t

0
Yi.s/ dΛ̃.t/:

Our later development relies heavily on the fact that Mi.t/ are square integrable martingales
with respect to filtration Fn

t even when the survival time T and the censoring time U are depen-
dent (Fleming and Harrington (1991), theorem 1.3.1). When T and U are dependent the crude
hazard λ̃.t/ may not be equal to the conventional hazard that is defined by

λ.t/= 1
dt

P.t<T � t +dt|T >t/:

For example, consider a Clayton joint survival

C.t, u/={exp.aλ1t/+ exp.aλ2u/−1}−1=a,

which corresponds to the Archimedean copula model with a generator φ.t/= .t−a − 1/=a and
ST .t/ = exp.−λ1t/ and SU.u/ = exp.−λ2u/, where a � 0, λ1 > 0 and λ2 > 0. It follows that the
crude hazard

λ̃.t/=λ1
exp.aλ1t/

exp.aλ1t/+ exp.aλ2t/−1

differs from the conventional hazard λ1 when a �= 0. Other counterexamples can be found in
example 1.3.1 of Fleming and Harrington (1991).

Under the regularity conditions (conditions 1–6 that are listed in Appendix A.1) on ST .t/ (or
FT .t/), π.t/ and the copula function φ, we can show that ŜT .t/ as defined in equation (5) is a
uniformly consistent estimator to ST .t/ on [0, τX] (lemma 1 in Appendix A.2). It is thus natural
to use the plateau of the estimated survival curve ŜT .Xn/ to estimate the cure fraction 1 − p.
Indeed, further investigations reveal that this approach is proper if and only if the support of
the latency distribution is covered by that of the censoring distribution. In particular, we have
obtained a useful result (lemma 2 in Appendix A.2) that ŜT .Xn/

pr→ 1−p if and only if τF0 �τX.

Remark 1. The result of consistency holds, as indicated in the proof of lemma 1, even when
π.τX/ = 0, i.e. we consider the convergence over the entire support of the distribution of X , a
useful result for the cure detection in our later development and a stronger result than theorem
1 of Rivest and Wells (2001) in the absence of cure.

Remark 2. As τX characterizes the support of X=T ∧U, we can further show (see lemma 3
in Appendix A.2) that τX = τU in the presence of cure under model (3), i.e. the supports of X
and U coincide under an Archimedean model when the cure fraction is non-zero. Hence, when
p < 1 (or when the cure fraction is non-zero), it will be consistently estimated by 1 − ŜT .Xn/

if τF0 � τU , i.e. if the right extreme of the censoring distribution SU exceeds that of the latency
distribution F0. Even when p=1, similar proofs will show that 1− ŜT .Xn/ consistently estimates
p=1 provided that τF0 � τU . Thus, even in the absence of a cure fraction, equation (5) provides
a consistent estimate for p and we shall not be misled by using equation (5) as long as τF0 � τU ,
reflecting a sufficient follow-up. Testing sufficient follow-up has been considered in detail by
Maller and Zhou (1994).

We now consider the asymptotic normality of the proposed estimator for cure fractions.
Define the stopped process

Zn.t/=n1=2[φ{ŜT .t ∧Xn/}−φ{ST .t ∧Xn/}] .11/
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and the covariance function

C.t1, t2/=
∫ t1∧t2

0
π.s/ φ′{π.s/}2 dΛ̃.s/

+2
∫ t1∧t2

0

∫ s

0
π.s/{1−π.u/} ψ′{π.u/} ψ′{π.s/} dΛ̃.u/ dΛ̃.s/

+2
∫ t1∧t2

0

∫ s

0
φ′{π.u/} π.s/ ψ′{π.s/} dΛ̃.u/ dΛ̃.s/

+
∫ t1∨t2

t1∧t2

π.s/ ψ′{π.s/} dΛ̃.s/

∫ t1∧t2

0
[{1−π.u/} ψ′{π.u/}+φ′{π.u/}] dΛ̃.u/ .12/

for 0� t1, t2, < τX, where

ψ.s/
def= −s φ′.s/:

From lemma 1, this covariance function can be consistently estimated by replacing π.s/ and
dΛ̃.u/ by their empirical counterparts π̂.s/ and I{Y.u/>0} dN.u/=Y.u/ respectively. We denote
the obtained estimator by Ĉ.t1, t2/. Next denote the variance function v0.t/=C.t, t/, which co-
incides with the variance function that was obtained by Rivest and Wells (2001), namely the
numerator of their equation (12). Assume that limt→τX{v0.t/}=v∞

0 <∞ and

C∞.t/
def= lim

v→τX
{C.v, t/}<∞

for every t ∈ [0, τX/.

Theorem 1. Zn.t/ converges weakly to I[0, τX/ Z.t/ + I{τX}Z∞ on D[0, τX], where Z.t/ is a
tight Gaussian process with covariance function C.t1, t2/ and Z∞ is a normal random variable
with variance v∞

0 and cov{Z∞, Z.t/}=C∞.t/.

In practice, we shall use the plateau of the estimated survival curve ŜT .Xn/ to estimate the
cure fraction 1 −p and denote the resulting estimator by p̂= 1 − ŜT .Xn/. We show that p̂ will
be asymptotically normally distributed.

Theorem 2. Assume that 0 <p< 1. Then

n1=2{φ.1− p̂/−φ.1−p/} d→Z∞, .13/

where Z∞ is a mean 0 normal random variable with variance v∞
0 = limt→τX{v0.t/}. Further-

more,

n1=2.p̂−p/
d→ Z∞

−φ′.1−p/
: .14/

With the consistently estimated cure proportion, estimate the latency distribution by

F̂0.t/= F̂ T .t/

p̂
= 1− ŜT .t/

p̂
,

where ŜT .t/ is as defined in equation (5). The large sample properties of F̂0.t/ are summarized
in the following theorem.

Theorem 3. For 0 <p< 1,

sup
[0,τX]

|F̂0.t/−F0.t/| pr→0:

Moreover,

n1=2{F̂0.t ∧Xn/−F0.t ∧Xn/} w→G.t/
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on a Skorohod space D[0, τX], where τX = sup{t :π.t/> 0} and

G.t/=− Z.t/

pφ′{ST .t/} + Z∞{1−ST .t/}
p2 φ′.1−p/

and Z.t/ and Z∞ are defined as in theorem 1.

These asymptotic results are the basis for our tests of comparing the survival patterns across
various racial groups in the SEER data example. In practice, we can replace the largest observed
time Xn by the largest observed failure time XnÅ, in the estimator 1− p̂= ŜT .Xn/, as P{ŜT .Xn/=
ŜT .XnÅ/}=1 by the definition of ŜT as in equation (5).

4. Hypothesis testing

4.1. Testing the existence of cure fraction
A natural question arising from cure modelling is whether the cure fraction exists. Hence, test-
ing p< 1 is of substantial interest. In what follows we derive a test for testing H0 : p=1 against
Ha : p < 1 by extending Klebanov and Yakovlev’s test to the situation of dependent censoring.
The derivations come at a small price by assuming that the underlying hazard for non-cured
patients is a monotone function of time, which is a plausible assumption in most biological stud-
ies, as opposed to the restrictive non-decreasing hazard assumption that was made by Klebanov
and Yakovlev (2005).

Under the mixture model (2), H0 is equivalent to H ′
0 : max0<t<τX{ST .t/−S0.t/}=0. For given

data, our idea is to compute the 1 −α confidence interval for the difference Δ= maxt{ST .t/−
S0.t/} and to reject H ′

0 at the α-level. Klebanov and Yakovlev (2005) considered H ′′
0 : S.t1/ −

S0.t1/= 0, where t1 is a prespecified constant. Though H ′
0 and H ′′

0 are essentially equivalent, a
data-driven choice of t1, which magnifies the difference between these two survival functions,
allows us to increase the power of the proposed test while controlling the significance level.

We first assume that the hazard

λ0.t/=− d
dt

log{S0.t/}
is a non-decreasing function in t, implying that − log{S0.t/}=t is a non-decreasing function.
Hence, for any t1 � t0 > 0, − log{S0.t1/}=t1 �− log{S0.t0/}=t0 or

S0.t1/�S0.t0/t1=t0 �ST .t0/t1=t0 .15/

and, from equation (2), ST .t1/�1−p+p ST .t0/t1=t0 . Therefore, we obtain an upper bound for
p,

p� 1−ST .t1/

1−ST .t0/t1=t0
:

Since t0 and t1 are arbitrary,

p� min
0<t0<t1<τX

{
1−ST .t1/

1−ST .t0/t1=t0

}
def= p̃:

Because of the uniform consistency of ŜT that is defined in equation (5) (lemma 1) and the
almost sure convergence of Xn to τX, p̃ can be consistently estimated by the statistic

ˆ̃p=min

[
min

0<t0<t1<Xn

{
1− ŜT .t1/

1− ŜT .t0/t1=t0
, 1

}]
: .16/
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From inequality (15), we have

ST .t1/−S0.t1/�ST .t1/−ST .t0/t1=t0 def= Δ.t0, t1/,

for any fixed 0 < t0 < t1. Our goal is to construct an asymptotic 1 −α confidence interval for
Δ.t0, t1/ that is based on theorem 2 and we leave aside the question of choosing t0 and t1 for
now. Let Δ̂.t0, t1/, =ST .t1 ∧Xn/−S0.t1 ∧Xn/�ST .t1 ∧Xn/−ST .t0 ∧Xn/t1=t0 be the empirical
counterpart of Δ.t0, t1/. We show in Appendix A.6 that

P.Δ�Ln/=P{Δ̂.t0, t1/�Ln}�1−α, .17/

where

Ln = ŜT .t1 ∧Xn/− ŜT .t0 ∧Xn/t1=t0 −
{

1+ t1

t0
.1+ "0/ST .t0/t1=t0−1

}
Dα=2

n1=2 , .18/

where Dα is the upper 100α-percentile of supt |Z.t/=φ′{ST .t/}| (based on theorem 1). Since
expression (17) holds true for any "0 > 0, we may let "0 → 0 in equation (18). In practice, the
lower bound would be obtained by replacing the unknown ST .t0/ in equation (18) with its
consistent estimate ŜT .t0 ∧Xn/.

In contrast, if the hazard

λ0.t/=− d
dt

log{S0.t/}

is a non-increasing function of t, we can obtain that

P.Δ�Ln/�1−α .19/

where

Ln = ŜT .t0 ∧Xn/− ŜT .t1 ∧Xn/t0=t1 −
[

Dα=2

n1=2 +min

{
t0

t1
ŜT .t1 ∧Xn/t0=t1−1 Dα=2

n1=2 ,
(

Dα=2

n1=2

)t0=t1
}]

:

The detailed derivation has been deferred to Appendix A.7.
If the lower end of the 1 −α confidence interval in expression (17) or (19) (depending on

whether λ0.·/ is non-decreasing or non-increasing) is greater than 0, then hypothesis H0 would
be rejected at a significance level of less than α. To increase the power, the choice of t0 and t1 can
be data driven. In particular, they can be chosen on the basis of equation (16) or equation (29)
(again depending on the monotonicity ofλ0.·/) to minimize the upper bound of p. Indeed, that t0
and t1 in expression (17) or (19) are chosen by minimizing the lower bound of p (see equation (16)
or equation (29)) does not affect the probabilistic arguments leading to expression (17) or (19)
because the latter limit is based on the Kolmogorov distance n1=2 sup |ŜT .·∧Xn/−ST .·∧Xn/|,
which is uniformly valid for all times t1 and t0. Thus, the data-driven t1 and t0 will allow us to
increase power while maintaining the proper level of significance.

4.2. Comparisons of cure fractions and latency distributions
If the presence of a cure fraction is verified, it would also be of interest to compare the cure
fractions and to study the latency distributions, for example, when evaluating racial disparities
in cancer. We consider below a two-sample comparison scenario and adopt the notation that
is used in the general cure model, except that we use an additional subscript i to indicate the
racial groups. Specifically, we denote the time-to-event variables and censoring times by Tij, Uij,
i=1, 2, j =1, . . . , ni, where, for example, i=1 corresponds to whites in the SEER data and i=2
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to the non-whites, and j refers to the jth patient in his respective group. Let n = n1 + n2. We
assume that n1=n → γ where γ is a fixed constant and 0 < γ< 1. We further assume that the
{Tij, Uij : i= 1, 2, j = 1, . . . , ni} are all independent, but Tij and Uij can be dependent. Because
of censoring, we observe only Xij = Tij ∧ Uij and δij = I.Tij � Uij/. We assume that the joint
survival of Tij and Uij follows an Archimedean model. Define the right extremes τF0,1 , τF0,2 ,
τX,1 and τX,2. To apply the large sample results that were obtained in the previous section, we
assume that τF0,1 ∨ τF0,2 � τX,1 ∧ τX,2

def= τ , i.e. [0, τ ] fully covers the supports of both latency
distributions.

We first focus on the comparison of the cure fractions between two groups (e.g. whites versus
non-whites) and formulate the hypotheses

H0 : p1 =p2.=p/ versus H1 : p1 �=p2: .20/

Denote by p̂i the estimate of pi in arm i, i = 1, 2. Then under the null hypothesis in expres-
sion (20), from theorem 2, we have

n1=2.p̂1 − p̂2/
d→ 1

−φ′.1−p/

{
Z∞

1√
γ

− Z∞
2√

.1−γ/

}
,

where Z∞
1 and Z∞

2 are independent and are as defined in theorem 2 (with an added subscript
for each group). Hence a Wald-type test statistic

.p̂1 − p̂2/

/√{
.1−γ/v̂∞

0,1 +γv̂∞
0,2

nγ.1−γ/ φ′.1− p̂/2

}
.21/

will approximately follow a standard normal distribution. Here v̂∞
0,i = Ĉi.X

n
i , Xn

i / are the consis-
tent estimates of v∞

0,i as defined in theorem 1 (with an added subscript for each group), which are
readily available, and the pooled estimate p̂= .n1p̂1 +n2p̂2/=n. Simulations (which, for brevity,
are not reported) have verified that the distribution of statistic (21) under the null hypothesis is
indeed a standard normal distribution.

Our next interest lies in comparing two latency distributions F0,i.t/ = P.Tij � t|Tij < ∞/,
i=1, 2. For a two-sample comparison, the statistical test is formulated as

H0 : F0,1 =F0,2 versus H1 : F0,1 �=F0,2: .22/

On the basis of .Xij, δij/, j =1, . . . , n, we may estimate F0,i by F̂0,i.t/= p̂i
−1 F̂ i.t/, where F̂ i.t/

is the estimator for the Fi based on equation (5) and p̂i = F̂ i.X
niÅ/ is the consistent estimator

for pi, the estimated non-cure fraction in the ith arm.
Denote the pooled conditional distribution by

F̂0,pool =
n1p̂1F̂0,1 +n2p̂2F̂0,2

n1p̂1 +n2p̂2
:

To test hypothesis H0 in expression (22), we define a class of test statistics to gauge the discrep-
ancy between the two empirical distributions F̂0,1.·/ and F̂0,2 as follows:

Wn =n1=2
{∫ ∞

0
|F̂0,1.t/− F̂0,2.t/|r dF̂0,pool.t/

}1=r

, .23/

for r�1, where r=2 corresponds to the Cramér–von Mises statistic that was proposed by Li and
Feng (2005) and r=∞ corresponds to the Kolmogorov–Smirnov test Wn =supt∈[0,τ ]{n1=2|F̂0,1.t/

− F̂0,2.t/|}.
To draw inference based on Wn, we derive the asymptotic distribution of Wn, under H0 :F0,1 =

F0,2 .=F0/, which is summarized in the following theorem.
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Theorem 4. Assume that n1=n→γ. Then, under the null hypothesis in expression (22),

Wr
n ⇒X def=

∫ ∞

0
|G̃.t/|r dF0.t/, if r<∞,

and

Wn ⇒X def= sup
t∈[0,τ ]

|G̃.t/| if r =∞,

where the Gaussian process G̃ is (distributionally) uniquely defined by

G̃.t/= 1√
γ

G1.t/− 1√
.1−γ/

G2.t/

and where Gi.·/, i=1, 2, are independent Gaussian processes as defined in equation (26) (with
an added subscript) in Appendix A.5.

The implementation of theorem 4 requires a simulation of G̃.t/. We give an algorithm below.
Let ŜT ,i and p̂i be consistent estimates for ST ,i and pi respectively (the survival and the non-cure
proportion in the ith arm), and let Ĉi.t1, t2/ be a consistent estimate of the covariance function
Ci.t1, t2/ for i=1, 2, computed by using the aforementioned estimates of the unknown quantities.
Let Wi.t/ be a tight Gaussian process with covariance function Ĉi.t1, t2/ and let W∞

i be a normal
random variable with variance v̂∞

0,i Then the stochastic process that is defined as

Ĝi.t/=− Wi.t/

p̂i φ
′{ŜT ,i.t/}

+ {1− ŜT ,i.t/}W∞
i

p̂2
i φ

′.1− p̂i/

converges weakly to the process Gi.·/. For a given grid of time points (e.g. observed failure times)
the finite dimensional distribution of the process Ĝi.·/ is indeed a multivariate normal distribu-
tion with a known covariance matrix and is, thus, easy to generate. Then the combination of
two independent processes, namely

Ĝ.t/= 1√
γ

Ĝ1.t/− 1√
.1−γ/

Ĝ2.t/

provides an approximation to G̃.·/.

5. Analysis of surveillance epidemiology and end results prostate cancer data

We applied the developed methods to analyse the prostate cancer data in the SEER database,
which was released in April 2004. We have focused on male prostate cancer patients in Con-
necticut and Detroit metropolitan area who were diagnosed between year 1973 and 2001 and
during the early stages of the disease, excluding the cases where the cancer had spread to remote
parts of the body. There were 91873 such cases, of which 75615 people were white. The analysis
consisted of estimating the survival fractions, survival curves and latency distributions for the
white and non-white subpopulations, targeting on racial disparities, which were one main end
point of the SEER study. As pointed out by a referee, since the SEER study was not a ran-
domized study, care must be taken to ensure that the demographics of the study population
were comparable among the comparison groups. Indeed, our descriptive analysis revealed that
important outcome-related variables, such as the age of diagnostics, grade of the tumour and
types of treatment received, were evenly distributed between these two subpopulations (Table 1).
Hence, the differences detected in cures and latency distributions could be attributed to racial
disparities.
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Table 1. Comparison of important demographics across whites and non-whites

Results for Results for
whites non-whites

(N =75615) (N =16258)

Treatment
No radiation and/or cancer-directed surgery 91.35% 90.53%
Radiation before surgery 0.19% 0.17%
Radiation after surgery 7.90% 8.29%
Radiation before and after surgery 0.017% 0.012%
Intraoperative radiation 0.007% 0.006%
Intraoperative radiation with other radiation 0.003% 0.006%

before or after surgery
Sequence unknown, but both were given 0.52% 0.97%

Tumour grade
1 18.29% 16.60%
2 53.63% 52.98%
3 15.52% 17.93%
4 0.62% 0.69%
Unknown 11.92% 11.78%

Age at diagnosis (years)
Mean 70.1 68.2
Standard deviation 9.0 9.0
Median 71.0 68.0
25th percentile 64.0 62.0
75th percentile 76.0 74.0

About 37% of the censored observations were due to death from other causes, with cardio-
vascular disease (CVD) being the major cause of these deaths. As prostate cancer and CVD
share common risk factors, e.g. a high intake of fat, we assumed various strengths of correlation
between time to prostate cancer death and the censoring time. For illustration, we considered
both Frank’s and Clayton’s families of Archimedean copulas, with the correlation parameter
chosen such that Kendall’s τ ranged from 0 to 0.47. As expected, the point estimates of the cure
fraction varied as the strength of the dependence varied—the weaker the dependence is, the
larger the estimate of the cure fraction is. This indeed has some important implications in the
evaluation of the progress made in cancer. With the mortality rate for CVD having a decreasing
trend, fewer censorings would be due to CVD. Assuming a positive dependence between CVD
and prostate cancer, we might see that the overall dependence among the prostate cancer deaths
and censoring would become weaker as fewer censorings are due to CVD. Hence, the data
would yield a trend of higher rates of cancer cure, indicating overall progress against cancer.
In contrast, if the dependence increases, more deaths that could have resulted from CVD are
transferred to cancer. As a result, we would see a faster decrease in the cure fraction estimates,
thus artificially indicating that we are not making decent progress in curing cancer, though in
reality there might be a higher true cure rate. Theoretical justifications for this phenomenon will
be given in Section 7.

Table 2 presents the estimated cure fractions for the two subpopulations for an analysis based
on Frank’s family. Assuming that the censoring mechanisms correspond to approximately equal
values of Kendall’s τ , the cure fractions for whites are uniformly higher than those for non-whites.
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Table 2. Cure fractions based on Frank’s family of Archimedean copulas

Kendall’s τ Results for whites Results for non-whites

Estimate Standard Estimate Standard
error error

0 0.55 0.015 0.49 0.039
0.01 0.55 0.015 0.48 0.039
0.03 0.50 0.015 0.43 0.039
0.09 0.50 0.015 0.43 0.039
0.12 0.44 0.015 0.37 0.038
0.16 0.39 0.015 0.32 0.035
0.19 0.39 0.015 0.32 0.035
0.32 0.30 0.013 0.25 0.030
0.42 0.22 0.010 0.18 0.023
0.47 0.20 0.010 0.16 0.021
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Fig. 1. Summary of prostate cancer results for Archimedean copulas based on Frank’s family ( ,
whites; - - - - - - -, non-whites): (a) survival curves for Kendall’s τD0:00; (b) survival curves for Kendall’s τD0:32;
(c) latency distributions for Kendall’s τ D0:00; (d) latency distributions for Kendall’s τ D0:32
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Table 3. Results based on Frank’s family of Archimedean copulas

Kendall’s τ Cramér–von p-value Kolmogorov– p-value Wald z p-value 95% credible
Mises test Smirnov test (×10−3) interval for Δ

0 27.79 0.26 15.97 0.06 −3.04 2.365 (0.195,1)
0.01 27.67 0.25 15.94 0.06 −3.04 2.365 (0.195,1)
0.03 23.18 0.26 14.28 0.07 −2.93 3.389 (0.198,1)
0.09 23.18 0.26 14.28 0.07 −2.93 3.389 (0.198,1)
0.12 24.51 0.19 12.53 0.08 −2.94 3.282 (0.198,1)
0.16 30.74 0.09 11.44 0.07 −3.05 2.288 (0.196,1)
0.19 30.74 0.10 11.44 0.09 −3.05 2.288 (0.194,1)
0.32 48.01 0.01 13.04 0.01 −3.47 0.520 (0.177,1)
0.42 66.24 < 0:01 13.47 < 0:01 −4.31 0.016 (0.148,1)
0.47 69.82 < 0:01 13.42 < 0:01 −4.59 0.004 (0.137,1)

Table 2 also indicates that naïvely assuming an independent model may give a misleading result
and that drawing inference does need to take the dependence between the survival and infor-
mative censoring into account. Fig. 1 plots the survival curves and the latency distributions for
the two subpopulations. The graphs indicate that the prostate cancer survival rates are higher
for whites, irrespective of the degree of dependence in the censoring mechanism.

Table 3 displays the results for dependent censoring under Frank’s family for various values of
Kendall’s τ . The second to fifth columns test the null hypothesis (22) that the latency distribution
for whites (F0,1) equals that for non-whites (F0,2). The second and third columns display the
Cramer–von Mises test statistics that are defined in equation (23) with the p-values estimated by
using theorem 4. The fourth and fifth columns present the results for the Kolmogorov–Smirnov
test. For τ � 0:19, there is no strong evidence at the 1% level of significance that the latency
distributions of whites and non-whites are different. In contrast, there is strong evidence of
a difference in the latency distributions if the dependence between the survival time and the
censoring is large (e.g. when τ �0:32).

The sixth and seventh columns present the results for testing whether whites and non-whites
have the same cure fractions. The theory is developed in Section 4.2 and the test statistic is
defined in expression (21). There is strong evidence that the cure fractions are different for the
two subpopulations. Using the theoretical results that were derived in Section 4.1, we tested
whether or not a cure fraction exists for the entire population. For this, we computed a 95%
one-sided confidence interval for Δ=maxt{ST .t/−S0.t/}, using all 91873 cases in the data set.
Expression (17) was used to compute the bounds since the estimated hazard λ̂0.·/ was found to
be non-decreasing. Expression (16) was used to find suitable choices for t0 < t1 by a stochastic
search. These intervals are specified in the last column of Table 3. The lower bounds of the
intervals are all positive, implying that there is significant evidence at the 5% level that a cure
fraction exists for the entire population. Analyses assuming dependent censoring under Clay-
ton’s family of copulas were similar to those obtained under Frank’s family and lead to the same
conclusions.

6. Simulation study

We investigated by simulation the finite sample behaviour of the cure fraction estimator, i.e.
p̂ = 1 − ŜT .Xn/, where ŜT is defined in equation (5). Theorem 2 shows that this estimator is
consistent and asymptotically normal, with expression (14) specifying its asymptotic variance.
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We simulated the survival data by generating independent censoring times Ui, where i =
1, . . . , n, from the exponential distribution with hazard rate r (mean 1=r). Conditional on the
censoring times, the failure times Xi were generated for dependent censoring under Frank’s cop-
ula model with various correlation parameters a=0, 2:1, 5:7, corresponding roughly to Kendall’s
τ = 0, 0:2, 0:47. The latency distribution of the failure times was exponential with mean 1 and
truncated at τF0 =2. The true cure fraction of the failures was p=0:3. The rate r in the censoring
distribution was chosen to be 1, 0.5 and 0:2, resulting in roughly 60%, 40% and 20% censoring
among ‘non-cured’ patients. For each simulated data, the estimate p̂ = 1 − ŜT .Xn/ was then
computed and its asymptotic variance was computed using expression (14).

These steps were repeated for 3000 replications to obtain estimates of p based on the 3000
different data sets. The empirical variance of p̂ was computed and compared with the average
asymptotic variance. Table 4 presents the results for various combinations of sample size, Frank
family parameter a and censoring rate r.

For any given .a, r/ pair, estimate p̂ is found to approach the true value as the sample size
n increases. Additionally, the difference between the empirical and asymptotic standard errors
tends to 0, and the empirical coverage probabilities of the 95% confidence intervals approach
the nominal value of the confidence level. These results verify the validity of theorem 2. For
a given value of dependence parameter a and sample size n, the standard errors decrease with

Table 4. Summary of simulation results investigating the asymptotic behaviour of estima-
tor p̂ D 1 � ŜT .Xn/, where ŜT .�/ is defined in equation (5) and Xn are the largest observed
times†

a r n p̂ Empirical Asymptotic 95% credible
standard error standard error interval coverage

0 1 50 0.311792 0.1140858 0.0981302 0.865
0 1 100 0.3035328 0.08593271 0.07637336 0.903
0 1 500 0.3013318 0.03856888 0.03702753 0.936
2.1 1 50 0.3086511 0.1049240 0.09002797 0.878
2.1 1 100 0.3049256 0.07592004 0.06883757 0.908
2.1 1 500 0.3008560 0.03328404 0.0322699 0.939
5.7 1 50 0.3154014 0.1001547 0.08272287 0.882
5.7 1 100 0.309741 0.06823369 0.06206997 0.910
5.7 1 500 0.3025891 0.02880224 0.02869691 0.949
0 0.5 50 0.2999443 0.08688357 0.08017418 0.908
0 0.5 100 0.2985752 0.06125795 0.05896112 0.935
0 0.5 500 0.2998565 0.02743993 0.02707487 0.942
2.1 0.5 50 0.3032127 0.07910919 0.07369643 0.919
2.1 0.5 100 0.2989564 0.0569155 0.05332041 0.924
2.1 0.5 500 0.3007000 0.0242311 0.02439310 0.953
5.7 0.5 50 0.3027497 0.06907557 0.06668318 0.938
5.7 0.5 100 0.3011927 0.04985439 0.04809085 0.935
5.7 0.5 500 0.3003604 0.0215772 0.02184662 0.950
0 0.2 50 0.3001357 0.07285168 0.06916037 0.927
0 0.2 100 0.3006226 0.0506231 0.0501023 0.942
0 0.2 500 0.2998538 0.02258296 0.02277172 0.952
2.1 0.2 50 0.2996179 0.06919427 0.06588285 0.932
2.1 0.2 100 0.2985278 0.04925562 0.04750322 0.936
2.1 0.2 500 0.2995015 0.02154124 0.02160814 0.946
5.7 0.2 50 0.3028895 0.06584249 0.06286433 0.930
5.7 0.2 100 0.2988817 0.04722508 0.04532081 0.931
5.7 0.2 500 0.2993998 0.02109654 0.02064824 0.943

†The true cure fraction was assumed to be p=0:3.
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Table 5. Summary of simulation results verifying the covariance expres-
sion (12) for cov{ŜT .1/, ŜT .2/}, where ŜT .�/ is defined in equation (5)†

a r n ŜT (t1 =1) ŜT (t2 =2) Empirical Asymptotic
coverage coverage

0 1 50 0.4970387 0.3155806 0.004653271 0.005108764
0 1 100 0.4872239 0.2907100 0.001973786 0.002541864
0 1 500 0.4904664 0.3000590 0.000481298 0.000543318
2.1 1 50 0.4914768 0.2936169 0.004572677 0.004072854
2.1 1 100 0.4904447 0.3107039 0.001998270 0.002214692
2.1 1 500 0.4949633 0.3044195 0.000530253 0.000436514
5.7 1 50 0.5033339 0.3184996 0.002683341 0.003344544
5.7 1 100 0.4854107 0.3039750 0.002001305 0.001674436
5.7 1 500 0.4882282 0.3029674 0.000385107 0.000323667
0 0.5 50 0.4856533 0.2982809 0.003532756 0.003786317
0 0.5 100 0.4885342 0.3023957 0.001884913 0.001975122
0 0.5 500 0.4871333 0.3004378 0.000432969 0.000403036
2.1 0.5 50 0.4933665 0.3090195 0.003304896 0.003379181
2.1 0.5 100 0.4914137 0.2998028 0.001809866 0.001710108
2.1 0.5 500 0.4852423 0.3003169 0.000367073 0.000354900
5.7 0.5 50 0.4997257 0.3082358 0.003449204 0.002844627
5.7 0.5 100 0.4870287 0.3060905 0.001472245 0.001519335
5.7 0.5 500 0.5007257 0.3022358 0.000324920 0.000294462
0 0.2 50 0.4902883 0.3038794 0.003792067 0.003259159
0 0.2 100 0.4833 0.2938062 0.001939279 0.001637402
0 0.2 500 0.4873104 0.2995824 0.000296443 0.000340456
2.1 0.2 50 0.4880728 0.2976328 0.003246520 0.00301053
2.1 0.2 100 0.4860294 0.2979742 0.001349038 0.001563168
2.1 0.2 500 0.4853753 0.2998419 0.000429316 0.000322165
5.7 0.2 50 0.4862388 0.2987405 0.003476443 0.002784509
5.7 0.2 100 0.4871271 0.3011671 0.001435091 0.001484796
5.7 0.2 500 0.4897375 0.3021698 0.000309732 0.000308627

†The true values are ST .1/=0:4882 and ST .2/=0:3.

censoring rate r. This is reasonable because a smaller rate of censoring implies stochastically
greater censoring times and a smaller proportion of censored observations, resulting in a more
precise estimate of the cure fraction.

Simulations were also performed to verify the covariance structure that was derived in expres-
sion (12). In particular, Table 5 uses the simulated data to verify expression (12) for the covariance
between survival function estimates at t1 =1 and t2 =2. For any given .a, r/ pair, the empirical
covariance matches well the asymptotic value, especially as n grows.

7. Discussion and future work

This paper proposes a mixture cure model which allows dependent censoring. In particular, we
have considered the parameter estimation, the cure detection and the comparison of latency
distributions in the presence of dependent censoring when a proportion of patients is deemed
cured. The dependence between the survival time and its potential censoring time is modelled
by using a class of Archimedean copula models with a known φ-function. This allows us to vary
the degree of dependence smoothly and to investigate the effect of the degree of such dependence
on cure detections and comparisons. In practice, however, selecting a right φ-function in the
copula is often hampered by the fact that, with the current data on .X, δ/, the copula model is
not identifiable (Tsiatis, 1978). In some applications where both the censoring and the failure
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times were observed for a subsample (Bartholomew, 1957), a suitable copula function could be
identified with this additional information. Indeed, recent literature has focused on imposing
additional assumptions and models on the dependence structure between the failure time and
the dependent censoring variable to make the problem identifiable. For example, Moeschberger
and Klein (1995) proposed models for dependent competing risks, whereas Hogan and Laird
(1997) and Little (1995) proposed joint likelihood methods that simultaneously model the out-
come of interest and the missing data process with both longitudinal and failure time outcomes.
Scharfstein et al. (2001) and Scharfstein and Robins (2002) conducted sensitivity analyses based
on unmeasured factors, and Siannis et al. (2005) considered sensitivity analysis for informative
censoring in parametric survival models. In contrast, Kalbfleisch and Prentice (2002), page 262,
noted that time-dependent covariates (e.g. the information about the time of prostate cancer
progression and heart failure) will help in estimating the interrelation between the censoring
and failure times. None have considered cure models. Hence, model diagnostics and choices of
copulas in the presence of cures is a promising research area which may be pursued in the frame-
work that has been established in this paper and along with the lines of these aforementioned
references

Additionally, on the basis of the established analytical framework in this paper, it would be
feasible to conduct bias analysis when the dependence structure between survival and censoring
times is misspecified. In particular, we can quantify the biases in the estimates of cure fractions
for such misspecifications.

Using the same argument in lemma 1, we can show that for any φ-function (which satisfies
the regularity conditions 1–5), the estimate based on equation (5) converges uniformly to

SÅ
T .t/=φ−1

[
−

∫ t

0
φ′{π.s/} π.s/ dΛ̃.s/

]
:

When φ is misspecified, SÅ
T may not be equal to ST , the true survival function. Hence the esti-

mate of cure converges to 1 − pÅ = limt→τX{SÅ
T .t/}, which may not be equal to the true cure

fraction 1 − p = limt→τX{ST .t/}. Analogous to corollary 6.1 of Zheng and Klein (1996) and
proposition 2 of Rivest and Wells (2001), we can characterize the asymptotic effect of changing
the level of dependence between T and U on estimating the cure fractions. Specifically, let φ1
and φ2 be two functions used in equation (5). If φ′

1.t/=φ′
2.t/ increases in t then the asymptotic

limit of cure fraction 1 − pÅ
1 � 1 − pÅ

2 , which follows from proposition 2 of Rivest and Wells
(2001) by taking t → τX. Genest and MacKay (1986) showed that φ′

1.t/=φ′
2.t/↑ t implies that φ1

corresponds to less dependence between T and U than φ2 under equation (3). This result is of
substantial interest as it reveals that, under undetected positive dependence between T and U ,
failing to account for such dependence (e.g. the Kaplan–Meier estimate of cure fraction that
was proposed by Maller and Zhou (1992)) will tend to overestimate the true cure fraction. In
contrast, if there is negative dependence between T and U , a naïve Kaplan–Meier estimate will
underestimate the true cure fraction.

We have focused on the strict Archimedean copula model family because it encompasses the
well-known bivariate families, including the Clayton and the Frank families. It remains an open
question whether our results will be valid for non-strict Archimedean copula models, wherein
φ.0/<∞. Our future work also involves generalizing the proposed work beyond the Archime-
dean family to any copula model along the line of Rivest and Wells (2001). Specifically, suppose
that P.T > t, U > u/ = C{ST .t/, SU.u/}, where the copula C does not necessarily belong to the
Archimedean family. Define φC.·/ satisfying

C10[s, SU{S−1
T .s/}] φ′

C.C[s, SU{S−1
T .s/}]/=φ′

C.s/
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with boundary condition φC.1/=0. It can be shown that the estimator (5) that is calculated by
using such φC will be a consistent estimator for ST .t/ (see Rivest and Wells (2001)). However, in
general, no closed form solutions exist for φC if C does not belong to the Archimedean family,
and numerical methods are needed.
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Appendix A: Technical details

A.1. Regularity conditions
We impose the following regularity conditions on ST .t/ (or FT .t/), π.t/ and the copula function φ.

(a) φ is strictly decreasing on .0, 1] and is sufficiently smooth in the following sense: the first two deriva-
tives of φ.s/ and ψ.s/

def= −sφ′.s/ are bounded for s∈ [", 1] where "> 0 is arbitrary. In addition, the
first derivative of φ.s/ is bounded away from 0 on [0, 1] (condition 1).

(b) 0 <
∫ τX

0 ψ{π.s/}k dΛ̃.s/<∞ for k =0, 1, 2, where Λ̃.·/ is defined in equation (10) (condition 2).
(c)

∫ τX
0 |ψ′{π.s/}| dΛ̃.s/<∞ (condition 3).

(d) lim supt→τX

∫ τX
t

[ψ{π.s/}2=π.s/] dΛ̃.s/=0 (condition 4).
(e) ST .t/ and S0.t/ are continuous over [0, τX] if τX <∞. Otherwise, define ST .∞/= limt→∞{ST .t/} (con-

dition 5).
(f) limt→τF0

[{1−F0.t/}=π.t/] < 1 (condition 6).

Condition 1 ensures that estimator (5) is well defined. Note that, when k = 0, condition 2 reduces to
that cumulative crude hazard Λ̃.τX/ is finite, ensuring a non-zero cure proportion. Moreover, condition 2
when k =1, 2 coupled with condition 3 are technical conditions characterizing the bounds of the first and
second derivatives of the copula function φ, facilitating the consistency proof. Condition 4 ensures that a
sufficiently large proportion of subjects are at risk at the end of follow-up, which facilitates the proof of
asymptotic normality. Condition 5 precludes the situation that positive point masses are put on discrete
time points (except on time ∞), which is needed for cure detection. Condition 6 ensures that the tail of the
observed survival times is heavier than that of the latency distribution. Hence, enough information will be
available at the tail for cure estimation. Tedious computations show that the Clayton and Frank copulas
would satisfy these conditions.

A.2. Lemmas and proofs

Lemma 1. Let ŜT .t/ be defined in equation (5) and let τX be defined in equation (9). Then φ{ŜT .t/}
converges to φ{ST .t/} uniformly on [0, τX]. Moreover, ŜT .t/ converges to ST .t/ uniformly on [0, τX] and
the Nelson–Aalen estimator ∫ t

0
I{Y.s/> 0}dN.s/

Y.s/

converges to Λ̃.t/ in probability uniformly on [0, τX].

Proof. We give the main steps here and the detailed proof can be found in Li et al. (2006). We first show
that, for any fixed t0 such that π.t0/> 0,

sup
t∈[0, t0]

|φ{ŜT .t/}−φ{ST .t/}| pr→0,

which involves using Lenglart’s inequality (Fleming and Harrington, 1991). We then show that

sup
0�t�τX

|φ{ŜT .t/}−φ{ST .t/}| pr→0,
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which requires examining the behaviour of the involved random quantities near the boundary .τX/ and,
hence, needs more delicate arguments. Finally, we demonstrate the uniform convergence of∫ t

0
I{Y.s/> 0}dN.s/

Y.s/

to Λ̃.t/ on [0, τX] by observing that∫ t

0
I{Y.s/> 0}dN.s/

Y.s/
−
∫ t

0
dΛ̃.s/=

∫ t

0
I{Y.s/> 0}dM.s/

Y.s/
−
∫ t

0
I{Y.s/=0} dΛ̃.s/:

Lemma 2. Let ŜT , Xn, τF0 and τX be as defined in equations (5), (6), (7) and (9) respectively. Then

ŜT .Xn/
pr→1−p

if and only if τF0 � τX.

Proof. By the definition of τX, Xn → τX almost surely. Consider

|φ{ŜT .Xn/}−φ{ST .τX/}|� |φ{ŜT .Xn/}−φ{ST .Xn/}|+ |φ{ST .Xn/}−φ{ST .τX/}|
� sup

0�t�τX

|φ{ŜT .t/}−φ{ST .t/}|+ |φ{ST .Xn/}−φ{ST .τX/}|:

Hence, by the uniform convergence ofφ{ŜT .t/} and continuity of ST .t/ at τX, we have ŜT .Xn/
pr→ ST .τX/.

So ŜT .Xn/
pr→ 1 − p if and only if ST .τX/ = 1 − p. Since τF0 = sup{t : ST .t/ > 1 − p}, it then follows that

ST .τX/=1−p if and only if τF0 � τX.

Lemma 3. Let τX and τU be as defined in equations (9) and (8) respectively. When 0 < p < 1, τX = τU

under equation (3).

Proof. Since π.t/�SU.t/, hence {t :π.t/> 0}⊂{t : SU.t/> 0}, yielding τX � τU .

However, we can also show that τU � τX. Indeed we only need to consider the case when τX < ∞.
Otherwise the inequality holds trivially. Specifically, when τX �∞, π.τX+/=0 and therefore φ{π.τX+/}=
∞. Under equation (3),

φ{ST .τX+/}+φ{SU.τX+/}=φ{π.τX+/},

and, as p<1, ST .τX+/�ST .∞/=1−p>0. So φ{ST .τX+/}<∞. Hence φ{SU.τX+/}=∞, which implies
that SU.τX+/=0. By the definition of τU = sup{t : SU.t/> 0}, it follows that τU � τX.

A.3. Sketchy proof of theorem 1
An outline of the proof is given below, whereas a complete proof is deferred to Li et al. (2006). Using the
same argument as in Rivest and Wells (2001), up to an op.1/ term, we have that

Zn.t/=n1=2

(
− 1

n

∫ t∧Xn

0
I{Y.s/> 0}φ′

{
Y.s/

n

}
dM.s/+

∫ t∧Xn

0
I{Y.s/> 0}

[
ψ

{
Y.s/

n

}
−ψ{π.s/}

]
dΛ̃.s/

)

=Zn, 1.t/+Zn, 2.t/, .24/

where Xn is as defined in equation (6). Rivest and Wells (2001) showed, for any t0 such that π.t0/ > 0,
that Zn.t/ converges weakly to Z.t/ on D[0, t0]. To show the weak convergence of Zn.t/ on D[0, τX], it is
sufficient to show the tightness of Zn.t/ in a small (left) neighbourhood of τX in view of theorems 13.2 and
16.8 of Billingsley (1999). Hence, it suffices to show that for any "> 0

lim
t→τX

lim sup
n

[
P

{
sup

s∈.t,τX ]
|Zn.s/−Zn.t/|>"

}]
=0, .25/

which will be accomplished by using Lenglart’s inequality. We next compute the covariance function for
the limiting process Z.t/, which will be used in computing the asymptotic distributions of the derived
test statistics in Section 4. The derivation of this covariance function is rather involved as Z.t/ is not an
independent increment process; the detail can also be found in Li et al. (2006).
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A.4. Proof of theorem 2
Note that

n1=2{φ.1− p̂/−φ.1−p/}=n1=2[φ{ŜT .Xn/}−φ{ST .Xn/}]+n1=2[φ{ST .Xn/}−φ.1−p/]
=Zn.τX/+n1=2[φ{ST .Xn/}−φ.1−p/]

where ŜT .t/ is defined in equation (5), and Zn.τX/, as defined in equation (11), converges weakly to Z∞ by
theorem 1.

We only need to show that

n1=2[φ{ST .Xn/}−φ.1−p/]
pr→0:

For a fixed "> 0, consider an increasing sequence an such that

F0.a
−
n /�1− "

n1=2p
�F0.an/:

It follows that an → τF0 , where τF0 is the right extreme of F0. Thus,

P{n1=2|p−F.Xn/|>"}=P{n1=2|p−p F0.X
n/|>"}=P.Xn �an/:

With regularity condition 6, it follows that π.t/�1−F0.t/ when t is sufficiently close to τF0 . Consequently,
when n is sufficiently large

P.Xn �an/={1−π.an/}n �
(

1− "

n1=2p

)n

→0:

Thus, n1=2|p − F.Xn/| converges to 0 in probability and so does n1=2|φ.1 − p/ −φ{ST .Xn/}| to 0 by the
boundedness condition on φ′.·/ (the regularity condition 1). Therefore expression (13) holds, which also
implies expression (14) by the Slutsky theorem. Further note that

sup
[0,τX ]

|F̂ 0.t/−F0.t/|� 1
p̂

sup
[0,τX ]

|ŜT .t/−ST .t/|+ 1
pp̂

|p̂−p|:

Hence the result follows as ŜT .t/ converges to ST .t/ uniformly on [0, τX] coupled with p̂−p
pr→ 0.

A.5. Proof of theorem 3
First observe that

n1=2{F̂ 0.t ∧Xn/−F0.t ∧Xn/}=n1=2

{
F̂ T .t ∧Xn/

p̂
− FT .t ∧Xn/

p

}

=−n1=2[φ{ŜT .t ∧Xn/}−φ{ST .t ∧Xn/}]
pφ′{ST .t ∧Xn/} −1−ST .t ∧Xn/

p2
n1=2.p̂−p/+op.1/:

Now, since

n1=2[φ{ŜT .t ∧Xn/−φ{ST .t ∧Xn/}]
w→Z.t/

on D[0, τX] (theorem 2) in conjunction with

n1=2.p̂−p/
d→ Z∞

−φ′.1−p/

and Xn → τX almost surely, it follows that

n1=2{F̂ 0.t/−F0.t/} w→G.t/

on D[0, τX/, where

G.t/=− Z.t/

pφ′{ST .t/} + {1−ST .t/}Z∞

p2 φ′.1−p/
: .26/
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A.6. Derivation of equation (17)
We need to apply theorem 2, and hence consider the truncated version of ST and its estimator ŜT as defined
in equation (5). Since Xn → τX almost surely, the following inequality holds with probability 1 for any
0 <t0 <t1 < τX:

ST .t1 ∧Xn/−S0.t1 ∧Xn/�ST .t1 ∧Xn/−ST .t0 ∧Xn/t1=t0 def= Δ̂.t0, t1/,

and Δ̂.t0, t1/→Δ.t0, t1/ almost surely.
Consider

Δ̂.t0, t1/= ŜT .t1 ∧Xn/− ŜT .t0 ∧Xn/t1=t0 +ST .t1 ∧Xn/− ŜT .t1 ∧Xn/−{ST .t0 ∧Xn/t1=t0 − ŜT .t0 ∧Xn/t1=t0}:

Using a Taylor series expansion, we have

|ŜT .t0 ∧Xn/t1=t0 −ST .t0 ∧Xn/t1=t0 |= t1

t0
ξt1=t0−1

n |ŜT .t0 ∧Xn/−ST .t0 ∧Xn/|,

where ξn is between ŜT .t0 ∧ Xn/ and ST .t0 ∧ Xn/. Lemma 1 then immediately implies that ξn

p→ ST .t0/.
Hence, with a probability going to 1,

|ŜT .t1 ∧Xn/t1=t0 −ST .t1 ∧Xn/t1=t0 |� .1+ "0/
t1

t0
ST .t0/

t1=t0−1|ŜT .t1 ∧Xn/−ST .t1 ∧Xn/|, .27/

where "0 is any fixed positive number.
Also, the weak convergence of n1=2{ŜT .· ∧ Xn/ − ST .· ∧ Xn/}, coupled with the continuous mapping

theorem, gives

P.n1=2 sup
t

|{ŜT .t ∧Xn/−ST .t ∧Xn/|�Dα}→1−α, .28/

where Dα is the upper 100α-percentile of supt |Z.t/=φ′{ST .t/}| (on the basis of theorem 1). Then, we have
the following asymptotic lower confidence limit for Δ.t0, t1/, and hence, for Δ= sup0<t<τX

{ST .t/−S0.t/}
(which is larger than Δ̂.t0, t1/ almost surely). More specifically, some basic probabilistic arguments lead
to equation (17) when n is sufficiently large.

A.7. Derivation of equation (19)
If the hazard

λ0.t/=− d
dt

log{S0.t/}

is a non-increasing function of t, similar arguments lead to S0.t0/�ST .t1/
t0=t1 for any t0 � t1 and that the

upper bound for p is

p̃
def= min

0<t0<t1<τX

{
1−ST .t0/

1−ST .t1/t0=t1

}

which can be consistently estimated by the statistic

ˆ̃p=min

[
min

0<t0<t1<Xn

{
1− ŜT .t0/

1− ŜT .t1/t0=t1
, 1

}]
: .29/

In view of ST .t0/−S0.t0/�ST .t0/−ST .t1/
t0=t1 , we redefine Δ.t0, t1/ such that

Δ.t0, t1/
def= ST .t0/−ST .t1/

t0=t1

and redefine

Δ̂.t0, t1/
def= ST .t0 ∧Xn/−ST .t1 ∧Xn/t0=t1 ,

which can be written

Δ̂.t0, t1/= ŜT .t0 ∧Xn/− ŜT .t1 ∧Xn/t0=t1 +ST .t0 ∧Xn/− ŜT .t0 ∧Xn/−{ST .t1 ∧Xn/t0=t1 − ŜT .t1 ∧Xn/t0=t1}:
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Using the Taylor series expansion, we have

ST .t1 ∧Xn/t0=t1 − ŜT .t1 ∧Xn/t0=t1 = t0

t1
ξt0=t1−1

n {ST .t1 ∧Xn/− ŜT .t1 ∧Xn/},

where ξn is between ŜT .t1 ∧Xn/ and ST .t1 ∧Xn/. Lemma 1 then directly implies that ξn

p→ ST .t1/. Hence,
with a probability going to 1,

|ŜT .t1 ∧Xn/t0=t1 −ST .t1 ∧Xn/t0=t1 |<.1+ "0/
t0

t1
ST .t1/

t0=t1−1|ŜT .t1 ∧Xn/−ST .t1 ∧Xn/|, .30/

where "0 is any fixed positive number.
If ST .t1/ is close to 0, ST .t1/

t0=t1−1 may not be well bounded. However, note that, for any constants
0�x, y, a�1, it is easy to show that |xa −ya|� |x−y|a. It follows that

|ŜT .t1 ∧Xn/t0=t1 −ST .t1 ∧Xn/t0=t1 |� |ŜT .t1 ∧Xn/−ST .t1 ∧Xn/|t0=t1 , .31/

as 0 <t0=t1 < 1. Therefore, combining inequalities (30) and (31) gives

|ŜT .t1 ∧Xn/t0=t1 −ST .t1 ∧Xn/t0=t1 |�min
{

.1+ "0/
t0

t1
ST .t1/

t0=t1−1On, Ot0=t1
n

}
,

where On = sup |ŜT .t ∧Xn/−ST .t ∧Xn/|. Hence, using expression (28) and letting "0 →0, we obtain equa-
tion (19).

A.8. Proof of theorem 4
Denote by Xn =Xn1 ∧Xn2 and define residual processes

"ni
.t/=n

1=2
i {F̂ 0, i.t ∧Xn/−F0.t ∧Xn/}:

The sample paths of stochastic processes "ni
reside in the Skorohod space DR[0,τ ]. Then it follows by

theorem 2 that

"ni
.t/

w→Gi.t/:

Hence by the continuous mapping theorem, when r<∞

Wr
n =
∫ τ

0

∣∣n1=2{F̂ 0,1.t ∧Xn/− F̂ 0,2.t ∧Xn/}∣∣r dF̂
Å
pool.t/

∼
∫ τ

0

∣∣∣∣ 1√
γ

"n1 .t/− 1√
.1−γ/

"n2 .t/

∣∣∣∣
r

dF̂
Å
pool.t/

⇒
∫ τ

0
|G̃.t/|r dF0.t/]

=
∫ ∞

0
|G̃.t/|r dF0.t/,

where ‘∼’ represents pointwise equivalence asymptotically and ‘⇒’ denotes weak convergence.
When r =∞,

Wn = sup
t∈[0,Xn1Å∨Xn2Å ]

∣∣n1=2{F̂ 0,1.t ∧Xn/− F̂ 0,2.t ∧Xn/}∣∣
= sup

t∈[0,τ ]

∣∣n1=2{F̂ 0,1.t ∧Xn/− F̂ 0,2.t ∧Xn/}∣∣
∼ sup

t∈[0,τ ]

∣∣∣∣ 1√
γ

"n1 .t/− 1√
.1−γ/

"n2 .t/

∣∣∣∣
⇒ sup

t∈[0,τ ]
|G̃.t/|:



306 Y. Li, R. C. Tiwari and S. Guha

References

Bartholomew, D. J. (1957) A problem in life testing. J. Am. Statist. Ass., 52, 350–355.
Berkson, J. and Gage, R. P. (1952) Survival curves for cancer patients following treatment. J. Am. Statist. Ass.,

47, 501–515.
Billingsley, P. (1999) Convergence of Probability Measures. New York: Wiley.
Boag, J. W. (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy (with

discussion). J. R. Statist. Soc. B, 11, 15–53.
Fleming, T. R. and Harrington, D. P. (1991) Counting Processes and Survival Analysis. New York: Wiley.
Genest, C. and MacKay, R. J. (1986) Archimedean copulas and bivariate families with continuous marginals.

Can. J. Statist., 14, 145–159.
Hogan, J. and Laird, N. (1997) Model-based approach to analysing incomplete longitudinal and failure time data.

Statist. Med., 16, 259–272.
Kalbfleisch, J. D. and Prentice, R. L. (2002) The Statistical Analysis of Failure Time Data. New York: Wiley.
Klebanov, L. B. and Yakovlev, A. Y. (2005) A new approach to testing for sufficient follow up in cure-rate analysis.

Technical Report. Department of Biostatistics and Computational Biology, University of Rochester, Rochester.
Kuk, A. Y. C. and Chen, C. (1992) A mixture model combining logistic regression with proportional hazards

regression. Biometrika, 79, 531–541.
Li, Y. and Feng, J. (2005) A nonparametric comparison of conditional distributions with non-negligible cure

fractions. Liftime Data Anal., 11, 367–387.
Li, Y., Tiwari, R. and Guha, S. (2006) Technical proofs for “Mixture cure survival models with dependent cen-

soring”. Technical Report. Harvard School of Public Health and Dana–Farber Cancer Institute, Boston.
Little, R. J. A. (1995) Modeling the drop-out mechanism in repeated-measures studies. J. Am. Statist. Ass., 90,

1112–1121.
Maller, R. A. and Zhou, S. (1992) Estimating the proportion of immunes in a censored sample. Biometrika, 79,

731–739.
Maller, R. A. and Zhou, S. (1994) Testing for sufficient follow-up and outliers in survival data. J. Am. Statist.

Ass., 89, 1499–1506.
Maller, R. A. and Zhou, S. (1996) Survival Analysis with Long-term Survivors. New York: Wiley.
Moeschberger, M. L. and Klein, J. P. (1995) Statistical methods for dependent competing risks. Liftime Data

Anal., 1, 195–204.
Peng, Y. and Dear, K. B. (2000) A nonparametric mixture model for cure rate estimation. Biometrics, 56, 237–243.
Rivest, L. P. and Wells, M. T. (2001) A martingale approach to the copula-graphic estimator for the survival

function under dependent censoring. J. Multiv. Anal., 79, 138–155.
Scharfstein, D. O. and Robins, J. M. (2002) Estimation of the failure time distribution in the presence of informative

censoring. Biometrika, 89, 617–634.
Scharfstein, D. O., Robins, J. M., Eddings, W. and Rotnitzky, A. (2001) Inference in randomized studies with

informative censoring and discrete time-to-event endpoints. Biometrics, 57, 404–413.
Siannis, F., Copas, J. and Lu, G. (2005) Sensitivity analysis for informative censoring in parametric survival

models. Biostatistics, 6, 77–91.
Sy, J. P. and Taylor, J. M. (2000) Estimation in a Cox proportional hazards cure model. Biometrics, 56, 227–236.
Tsiatis, A. A. (1978) An example of nonidentifiability in competing risks. Scand. Act. J., 78, 235–239.
Zheng, M. and Klein, J. P. (1995) Estimates of marginal survival for dependent competing risks based on an

assumed copula. Biometrika, 82, 127–138.


