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ABSTRACT
The Surveillance, Epidemiology and End Results (SEER) cancer database contains survival data for
US individuals diagnosed with cancer. Semiparametric Bayesian methods are computationally
expensive to fit for such large data-sets. This paper develops a cost-effectiveMarkov chainMonte
Carlo strategy for censored outcomes to fit a semiparametric bayesian analysis of SEER data of
New Mexico. We use an accelerated failure time model, with Dirichlet process random effects
for inter-subject variation, and intrinsic conditionally autoregressive random effects for spatial
correlations. The results offer insights into differences in breast cancer mortality rates between
ethnic groups, tumor grade and spatial effect of counties.

1. Introduction

Large data-sets of censored outcomes have become
commonplace. For instance, the Surveillance, Epidemi-
ology and End Results (SEER) database contains sur-
vival outcome data for US individuals diagnosed with
cancer. Moreover, it has become routine to analyse
survival outcome data-set using Bayesian models that
investigate complex relationships between cancer sur-
vival and covariates such as race, etc.

Ideally, researchers should exploit the richness of
large databases to gain new insights. However, the chal-
lenge of processing massive amounts of data poses a
bottleneck. This paper attempts to tackle some of these
challenges and fits flexible but readily interpretable
semiparametric accelerated failure time (AFT) model
for large censored outcome data-sets such as SEER.

We focus on 26,285 NewMexican women who were
diagnosed with breast cancer between 1973 and 2012,
and were either African American, white, or American
Indian. The data was released by SEER in November
2014. The subject-specific responses was survival time
in months (see SEER Research Data (1973–2012)).

Covariate information for each subject includes (i)
patient race: racei, coded as 1, 2, or 3 if the person is
white, African American, or American Indian, (ii) cal-
endar year of diagnosis: yeari, ranging from 1973 to
2012, (iii) patient age at diagnosis: agei, ranging from 19
to 101 years, (iv) tumor grade: gradei = 1, 2, 3, or 4, cor-
responding to tumors ordered from well-differentiated
to poorly differentiated and (v) Five-digit Federal Infor-
mation Processing Standard (FIPS) county code of resi-
dence at diagnosis, denoted by j= j(i), representing the
33 counties of New Mexico.

CONTACT Chetkar Jha cjfff@mail.missouri.edu

Semiparametric Bayes methods for spatially cor-
related survival data. There is vast literature on
existing methods. For comprehensive discussions,
refer to Ibrahim, Chen, and Sinha (2001), Hanson,
Jara, and Zhao (2011), Nieto-Barajas (2013), Müller,
Quintana, Jara, and Hanson (2015), Zhou and Hanson
(2015). Briefly, the methodological background is as
follows. Cox (1975) introduced proportional hazards
(PH) models. Kalbfleisch (1978), Gelfand and Mallick
(1995), Carlin and Hodges (1999), Hennerfeind,
Brezger, and Fahrmeir (2006), Hanson (2006), Hanson
and Yang (2007), Kneib and Fahrmeir (2007), Zhao,
Hanson, and Carlin (2009) developed various Bayesian
semiparametric approaches to PH models. Frequentist
AFT models for right-censored data were introduced
by Buckley and James (1979). Kuo and Mallick (1997),
Walker and Mallick (1999), Kottas and Gelfand (2001),
Hanson and Johnson (2002), Hanson (2006), Hanson
and Yang (2007), Komárek and Lesaffre (2007),
Komárek and Lesaffre (2008), Zhao et al. (2009) devel-
oped semiparametric Bayes versions of AFT model;
these approaches were based on Dirichlet process (DP)
mixture models, finite mixtures of normal distribu-
tions, approximating B-splines, and Polya tree priors.
Although AFT models are less frequently used than
PHmodels, investigations have demonstrated that AFT
models provide much better fit and interpretability in
applications, e.g. see Hanson and Yang (2007), Hanson
(2006), Kay and Kinnersley (2002). For these reasons,
we fit the SEER breast cancer data using AFT models.

When censored outcomes are spatially corre-
lated, the spatial dependence is analysed after adjust-
ing for other covariate effects. There are two main
approaches for incorporating spatial dependence in
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semiparametric models: frailty and copula. See Li and
Ryan (2002), Banerjee, Carlin, and Gelfand (2015),
Zhou and Hanson (2015). For areal level data, such
as SEER datasets which have individual counties of
residence at diagnosis, intrinsic conditionally autore-
gressive (ICAR) model of Besag, Mollie, and York
(1991) is often applied (Banerjee, Wall, & Carlin, 2003;
Pan, Cai, Wang, & Lin, 2014; Zhao et al., 2009).

There is an increasing number of approaches for
modelling spatially correlated survival data using semi-
parametric methods (Banerjee et al., 2015; Banerjee
et al., 2003; Diva, Banerjee, & Dey, 2007; Li & Ryan,
2002; Pan et al., 2014; Zhou&Hanson, 2015; Zhao et al.,
2009; Zhou & Hanson, 2017). Most approaches have
proposed spatially varying frailties in the conditional
PH set up. For instance, Diva et al. (2007) models the
baseline hazard function as mixtures of beta distribu-
tions and models spatially varying frailities by putting a
multivariate conditionally autoregressive prior on spa-
tial frailties. Zhao et al. (2009) models the baseline haz-
ard function for every region as mixture of polya tree
prior and the dependence is induced between base-
line hazard function of neighbouring regions. Recently,
Zhou and Hanson (2017) proposed a method, in
which, they put a Transformed Bernstein Polynomial
(TBP) prior on the baseline survival function of AFT
model.

In the light of preceeding discussions, we take a dif-
ferent approach. This paper proposes an AFT model
in semiparametric framework to analyse spatially cor-
related survival data. Fixed effects account for subject-
specific covariates such as age and race. We apply
the approach of Kuo and Mallick (1997) for cen-
sored outcomes, the residual individual variation in
mortality rate is modeled using DP mixture random
effects (Antoniak, 1974; Blackwell & MacQueen, 1973;
Ferguson, 1973; Freedman, 1963; Ghosal, Ghosh, &
Ramamoorthi, 1999; Ishwaran & Zarepour, 2002; Neal,
2000; Sethuraman, 1994; Sethuraman & Tiwari, 1982).
Additionally, the spatial correlation in responses is
modelled using ICAR model Besag et al. (1991). The
novelty of our approach lies in relaxing the assump-
tion of AFT model by incorporating random inter-
cept for residual individual variation and including spa-
tial frailties. The advantage of our approach is that
model parameters are easier to interpret but at the
same time our model is more flexible compared to AFT
model. Furthermore, we also propose a fast sampling
methodwhich can reduce the computational cost of our
method.

The computational cost of Big Data. The poste-
rior distribution of proposed model, see Section (2),
is analytically intractable. Since the model is condi-
tionally conjugate in the DP random effects, we could
potentially apply aGibbs sampler (Bush&MacEachern,
1996; Escobar, 1994; Escobar & West, 1995; MacEach-
ern, 1994; West, Müller, & Escobar, 1994). However,

Gibbs samplers forDP random effects are computation-
ally expensive for large data-set.

To fit flexible Bayesian models on large data-sets,
we require efficient strategies. Several data squash-
ing strategies have been developed over the years. For
instance, Blei and Jordan (2005) introduced a vari-
ational inference method for DP models; and Pen-
nell and Dunson (2007) developed an empirical Bayes
approach for DP models. Guha (2010) proposed a gen-
eralMCMC technique capable of quickly and accurately
investigating the posterior in a large class of Bayesian
semiparametric models.

However, the above data-squashing techniques are
not directly applicable to survival datasets. To fill this
gap, we adapt the ideas of Guha (2010) to devise a
MCMC algorithm designed for the Bayesian analyses of
large censored outcome data-sets. The resultant infer-
ences are from the exact posterior distribution rather
than an approximation.

The rest of the paper is organised as follows.
Section 2 specifies the proposed model and Section 3
describes a fast inference strategy for large censored
databases. Section 4 analyses simulated survival data
to demonstrate the reliability of Section 3 strategy.
Section 5 presents the results for the NewMexico breast
cancer data. Finally, Section 6 ends the paper with
discussion.

2. Model

For individuals indexed by i= 1,… , n, let yi denote the
survival time. Let δi = 0 (1) indicate whether time yi is
right-censored (not censored). Writing zi = log yi, and
assuming that the censoring and failure times are inde-
pendent, the likelihood contribution of subject i in an
AFT model is

[
zi, δi | μi, σ

2] =
{

φ(zi | μi, σ
2) if δi = 1,

S(zi | μi, σ
2) if δi = 0,

where σ−2 ∼ gamma(ε, ε), (1)

where φ( · �μi, σ 2) denotes normal density with mean
μi and variance σ 2, and S( · �μi, σ 2) denotes survivor
function. A small value of ϵ results in a vague prior for
parameter σ 2.

An equivalent approach relies on possibly latent log-
failure times, ti, and independently distributed log-
censoring times, ci:[

ti | μi, σ
2] = φ(ti | μi, σ

2), i = 1, . . . , n, (2)
zi = min{ti, ci}, and
δi = I(ti < ci). (3)

Subject-specific normal means. Suppose all covariates
except the areal units are contained in a vector xi of
length p � i = 1,… , n. Let the areas be labelled {1,… ,
J}, with j= j(i) denoting the area associated with subject
i at diagnosis. Then, subject-specific mean μi is given



196 C. JHA ET AL.

as

μi = β′xi + η j + θi (4)

where β is a vector of p fixed effects, ηj is jth area’s ran-
dom effect, and θ i denotes the residual individual vari-
ability. Vague normal priors are assumed for the fixed
effects.

NewMexico breast cancer analysis. For SEER appli-
cation, mean μi is assumed to be a linear function of
covariates such as age etc, as shown below:

μi = β0 + β1 · agei + β2 · yeari + ζracei

+ χgradei + η j + θi (5)

where β0 is intercept, β1 is the effect of age at diagno-
sis, β2 is the effect of calendar year of diagnosis, ζracei is
the factor effect of race (with whites as reference group),
and χgradei is the factor effect of tumor grade at diagno-
sis (with well-differentiated tumors as reference group).

Area-specific randomeffects.Letη = (η1, . . . , ηJ )
′ be

vector of area-specific random effects in expressions (4)
and (5). The ICARmodel of Besag et al. (1991) generally
defines ‘neighbours’ as areal units that share a nontriv-
ial border containing more than one point on the map.
Let the symbol s � t indicate that counties s and t are
neighbours. Letms be the number of spatial neighbours
of county s. Define J by Jmatrix R with elements

Rs,t =
{
ms, if s = t ,
−I(s � t ), if s �= t

for s, t= 1,… , J, with I( · ) denoting the indicator func-
tion.

The model η ∼ ICAR(σ 2
η ) assumes that vector of

areal random effects, η = (η1, . . . , ηJ )
′, has amultivari-

ate normal prior with mean 0 and covariance matrix
D whose Moore-Penrose generalised inverse is D− =
R/σ 2

η . Parameter σ 2
η is given an inverse gamma prior.

Although the ICAR prior is improper, the posterior
is proper, and valid Bayesian inferences are therefore
obtained.

Individual random effects. Let DP
(
M · H)

repre-
sent the DP with base distribution H and mass param-
eter M > 0. Assume the following prior for subject-
specific random effects appearing in Equations (4) and
(5):

θi | P i.i.d.∼ P, i = 1, . . . , n, (6)
P ∼ DP

(
M · H)

, where the base distribution
H = N(0, τ 2) with

τ−2 ∼ gamma(α, α)

Hyperparameter α is given a vague prior.
Applying the stick-breaking representation (Sethu-

raman, 1994; Sethuraman & Tiwari, 1982), the random
distribution P in Equation (6) is written as

∑∞
j=1 p j δθ∗

j

where the distinct atoms θ∗
j are iid N(0, τ 2). Fur-

thermore, the probability weights have the expression:

p1 = V1, and pj = Vj �k < j(1 − Vk) for j > 1, where
Vj

iid∼ beta(1,M). In particular, random distribution P
is almost surely discrete.

Another representation of DP prior was given by
Blackwell andMacQueen (1973). The representation of
the prior distribution of θ i is given in terms of succes-
sive conditional distributions, which is given as below.

θi|θ1, ..., θi−1 ∼ 1
i − 1 + M

i−1
i=1δ(θ j) + M

i − 1 + M
P

(7)

The above equation allows θ i to share the same value
as that of any of the previous θk, where k =1…i − 1 or
draw a new value from the discrete distribution P. Thus,
The DP prior allows n subjects to cluster in all possible
ways. Let θ∗

1 , . . . , θ∗
K be the distinct random effects of n

subjects, and let nj be the number of subjects belonging
to jth cluster (i.e. subjects for which θi = θ∗

j ). The joint
distribution of random effects induced by DP prior (6)
is then

[θ1:n] = MK · �(M)
∏K

j=1 �(nj)

�(M + n)

K∏
j=1

φ(θ∗
j | 0, τ 2)

(8)
Define the residual error distribution, F, as the ran-

domdistributionPwith additiveGaussianwhite noise:

F = P ∗ N(0, σ 2) (9)

where ∗ denotes convolution. Then the (possibly latent)
log-failure times ti of the n individuals are iid F, pro-
vided the fixed effects and spatial random effects in
Equations (4) and (5) are equal to 0. The residual
error distribution is interpreted as the variability in log-
survival time that cannot be explained by covariates.
Ghosal et al. (1999) have shown that, as n grows, the
true residual error distribution is consistently estimated
by model (6). This motivates the use of semiparametric
approaches for large datasets.

3. Posterior inference for high-dimensional
censored outcome databases

Guha Guha (2010) proposed a strategy applicable to
generalised Polya urn processes (GPUs), a broad class of
parametric and semiparametric mixture models. The
key idea is to identify ‘δ-neighbourhoods’ of subjects
having similar full conditionals. This results in dras-
tic reductions in the effective number of subjects, and
hence, computational costs of updates. Guha Guha
(2010) proved that this strategy yields unbiasedMCMC
posterior inferences in GPUs. Here, we adapt the tech-
nique to devise an MCMC algorithm for Section 2
model and censored outcomes.
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3.1. Fast MCMC algorithm for DP random effects

Suppose that failure times t1,… , tn, fixed effects β,
ICAR random effects η, and other hyperparameters are
equal to their current MCMC values. Conditional on
these parameters, we efficiently generate the DP ran-
dom effects of n individuals.

For an integer q, vectors v1, . . . , vq and index
set I�{1,… , q}, let symbol vI denote the set of vectors,

{vi}i∈I . Let ϒ = {θ∗
1 , . . . , θ∗

K} denote the K distinct
atoms, θ1:n. For i = 1,… , n, define a discrete random
variable ci taking values 1,… , K, and having probabil-
ity mass function πi given by

πi(c) =
{
bi nc φ

(
ti | β′xi + η j + θ∗

c , σ 2
)

if c = 1, . . . ,K,
0 otherwise,

(10)

where bi is the normalising constant.Mass function (10)
is designed to closely approximate the full conditional of
θ i when n is large; see Guha (2010). Furthermore, they
have lower computational cost than full conditionals.

MCMC updates of θ1:n Let δ be a user-
specified input parameter controlling the size of δ-
neighbourhoods. For our analysis, we fixed the value of
δ as 0.1. The MCMC update proceeds as follows:

(1) Initialise set R = {1, 2,… , n}.
(2) Repeat following steps until set R is empty:

(a) Let θ1:n be the current random effects of n
individuals.

(b) Randomly pick a subject i from R.
(c) For k � R, compute the mass functions πk

using definition (10). For fixed i, evaluate |R|
squaredHellinger distances between the dis-
crete distributions πi and πk for k � R:

�ik = 1 −
K∑
c=1

√
πi(c) πk(c).

Recall that squared Hellinger distances
belong to the interval [0, 1].

(d) Identify a δ-neighbourhood of subjects, D,
as follows:

D = {k ∈ R : �ik ≤ ωuser}
The remaining sub-steps jointly update the
vector θD consisting of the random effects
for the entire δ-neighbourhood.

(e) Let set D̃ be the complement of δ-
neighbourhood D. For subjects belonging
to D̃ (i.e., do not belong to the δ-
neighbourhood), inspect their random
effects, θD̃ to compute the following quan-
tities that will be useful in the sequel. Let

set ϒ(D̃) = {θ∗
1

(D̃), . . . , θ∗
K (D̃)

(D̃)} contain the
K (D̃) number of distinct values among the
random effects θD̃. For j = 1, . . . ,K (D̃), let
n(D̃)
j be the number of subjects belonging to

D̃ sharing the common value θ∗
j
(D̃).

(f) Let ξ i be a discrete random variable taking
values in the set {0, 1, . . . ,K (D̃)}:

P (ξi = ξ ) =
{
n(D̃)
j φ

(
ti | β′xi + η j + θ∗

j
(D̃), σ 2) if ξ = 1, ...,K (D̃),

Mφ
(
ti | β′xi + η j, σ 2 + τ 2) if ξ = 0.

(g) Generate allocation variables for δ-
neighbourhood D:

sk
iid∼ ξi, k ∈ D.

(h) Compute the set D0 = {k: k � D, sk = 0}.
This represents the δ-neighbourhood mem-
bers whose random effects do not belong to
the set ϒ(D̃) evaluated in Step 2e.

(i) For δ-neighbourhood members not belong-
ing to the set D0, use their allocation vari-
ables to update the random effects:

θk = θ∗
sk

(D̃)
, k ∈ Dc

0 ∩ D.

(j) If the set D0 is empty, go to Step 2k. Oth-
erwise, let D0 = {q1, …qQ} be the subject
indexes. Generate the random effects θD0 as
follows:
� Let ζ i denote the normal distribution
with mean σ−2(ti − β′xi − η j)/(σ

−2 +
τ−2) and variance (σ−2 + τ−2)−1.

� Generate θq1 ∼ ζi.
� For t = 2,… , Q:

θqt =

⎧⎪⎨
⎪⎩

θqw
w.p.p. 1 where

w = 1, . . . , (t − 1),
∼ ζi w.p.p.M

where ‘w.p.p.’ stands for ‘with probability
proportional to’.

(k) Compute prior density [θD] using rela-
tion (8). Then, compute the joint density of
responses and full set of model parameters.
Compute its ratio with proposal density.
Repeat the calculation for reverse move, and
compute the Metropolis–Hastings accep-
tance probability. Jointly accept or reject the
proposed vector θD.

(l) Set the new value of set R to R − D.

Metropolis–Hastings step 2k guarantees that the sta-
tionary distribution of the Markov chain is the poste-
rior distribution. This implies that empirical averages
based on the post-burn-in MCMC sample are consis-
tent in simulation size.
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Figure . Estimated mean versus true mean of log-survival time for the n= ,  individuals considered in the simulation study.

3.2. Generating the remainingmodel parameters

Conditional on the subject-specific random effects θ1:n,
we can apply standard MCMC techniques to quickly
generate the log-failure times t1,… , tn, fixed effects β,
ICAR random effects η, and the remaining hyperpa-
rameters.

4. Simulation study

We perform simulation to investigate the following (i)
Can our method recover true parameters ? (ii) Is our
proposed data quashing strategy computationally more
efficient?

First, we study the effectiveness of our inference pro-
cedure. We use aforementioned form of the conditional
mean (5) to randomly generate parameter vectorsβ and
η in Equation (5). The individual random effects θ1,… ,
θn were generated assumingmass parameterM= 1 and
standard deviation τ = 0.4 in DP model (6). We used
tcovariates of n = 10, 000 women from SEER to com-
pute true means μ1,… , μn as in Equation (5). Further-
more, we set standard deviation σ = 0.05. Also, log-
failure times and log-censoring times for individuals
were generated as follows:

ti, ci
iid∼ N(μi, σ

2), i = 1, . . . , n,

Finally, log-survival times and censoring indicators
were obtained as zi =min {ti, ci} and δi = I(ti < ci). The
model in Section 2 was fit to the artificial dataset using
the Section 3.1 and 3.2 inference procedure. The accep-
tance rate of the fast Metropolis Hastings procedure of
Section was 35.1%.

The estimated parameter values were compared with
the true values.The estimated means, μ̂i, for subjects
was plotted against true values ofμi in Figure 1. The 45°
line was added for comparison. Approximately 9,976
(about 99.8%) of individual means were contained
within respective 95% credible intervals. All 10,000
μi’s were contained within 98% credible intervals. The

simulation results reveal the high accuracy for our
proposed methodology.

The posterior densities of σ and τ are displayed in
Figure 2. The true values of the fixed effects , ICAR ran-
dom effects and hyperparameters were also inside their
respective 95% credible intervals.

Second, we perform 10,000 MCMC runs of the
model with and without the data quashing strategy
on simulated data. Table 1 compares computational
time incurred under both scenarios. We see that the
model with proposed data squashing strategy is about
3 times as efficient as model without data squashing
strategy.

5. Analysis of SEER breast cancer survival data

We analysed the survival time for n = 26, 285 breast
cancer patients of New Mexico, who were registered
with SEER.For MCMC, we set M =1 and δ=0.1, then
we fitted themodel in Section 2with steps in Section 3.1
and 3.2. We discarded first 10,000 samples and consid-
ered next 20,000 post-burn-in samples for inference.
We left every other sample out in the post-burn-in sam-
ples. The acceptance rate of the fastMetropolisHastings
procedure was 29.21%.

The credible intervals for the model parameter are
tabulated in Table 2. Our findings show that mortality
rate increases with age. Overall, we find that mortal-
ity rate has decreasing linear trend over time. Futher-
more, our findings show that mortality rate is higher
for the African Americans compared to the white pop-
ulation. See Figure 3. We also find that 95% credible
interval forAmerican Indians, is (−0.141, 0.222), which
means, mortality rates of the American Indians are not
significantly different from the whites. Our findings are
in line with other works on SEER database (DeSantis,
Siegel, Bandi, & Jemal, 2011; Jatoi, Chen, Anderson,
& Rosenberg, 2007; Newman et al., 2006; Roesnberg,
Chia, & Plevritis, 2005). For instance, DeSantis et al.
(2011) found that breast cancer death rates decreaed
per year for all ages combined. The decline was larger
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Table . Computational time comparison on simulated data.

Method User time System time Elapsed time

Data quashing strategy applied . sec  sec . sec
No ata uashing trategy applied . sec . sec . sec

Table . % posterior credible intervals of selected parameters for the New
Mexico breast cancer data.

% posterior credible interval

Parameter Interpretation Lower limit Upper limit

β Patient age at diagnosis −. −.
β Calendar year of diagnosis . .
ζ  Race : African American −. −.
ζ  Race : Native American −. .
χ  Tumor grade  −. −.
χ  Tumor grade  −. −.
χ Tumor grade  −. −.
χ  − χ Difference between tumor grade  and  −. .
K Number of latent DP clusters  
σ AFT error s.d. . .
τ DP base distribution s.d. . .
σ

η
CAR s.d. . .
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Figure . Posterior densities of σ (top) and τ (bottom) for the simulation study. The true parameter values are σ = . and τ = ..
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Figure . Posterior densities of the factor effect of black (top) and American Indian (bottom) races for SEER breast cancer NewMexico
data.

for younger women compared to older women. Also,
DeSantis et al. (2011) found that breast cancer mortal-
ity rates were higher for the African Americans whereas
breast cancer mortality rates for the American Indian
were comparable to the whites.

Furthermore, we find thatmortality rate is higher for
patients with less differentiated tumors. See Figure 4.
Evidence for that is provided by the increasingly neg-
ative coefficients of tumor grade in Table 2. Our find-
ings is in line with other peer reviewed articles (Carter,
Allen, & Henson, 1989; Roesnberg et al., 2005). For
instance, Roesnberg et al. (2005) found that higher
grade tumor had large negative effects on survival.
However, we find that the tumor effect flattens out
for higher grades. We see that the 95% credible inter-
val for (χ3 − χ4) is (−0.047, 0.433), which indicates
that grade 3 (poorly differentiated) tumors and grade

4 (undifferentiated/anaplastic) tumors are not signifi-
cantly different.

The estimates of ICAR random effects indicate that
county-specific random effects are correlated with ran-
dom effects of the neighbouring counties, demonstrat-
ing spatial correlation in mortality rates among coun-
ties of New Mexico. For instance, counties neighbour-
ing Los Alamos form a cluster of counties with high
spatial random effects. See Figure 5. Our finding that
the mortality rates are spatially correlated concur with
other peer-reviewed articles (Banerjee et al., 2015, 2003;
Diva et al., 2007; Zhao et al., 2009; Zhou & Hanson,
2015). The estimates of ICAR randomeffects are plotted
in Figure 5 with the standard errors in Figure 6.

The posterior densities of several fixed effects
(see Figure 4) appear to be non-normal, demonstrat-
ing the value of finite-sample approaches relative to
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Figure . Posterior densities of the factor effect of tumor grade  at diagnosis (top) and tumor  at diagnosis (bottom).

approaches that rely on asymptotic normality of regres-
sion coefficient estimates. Figure 7 plots the estimated
individual-specific error distribution F, defined as the
convolution of the (discrete) realisationP of theDPwith
iid normal errors:

F = P ∗ N(0, σ 2) (11)

with ∗ denoting convolution. Distribution F represents
the residual variability in individual mortality after
accounting for fixed effects and spatial variation. The
gains associated with the large amount of information
in massive datasets are demonstrated in Figure 7. There
is strong evidence that after accounting for known indi-
cators of disease prognosis, individual variability in
breast cancer survival time is non-normal and multi-
modal.

We ran a nonparametric bayes version of mixed
effects cox regression with independent spatial random
effects (see Zhou & Hanson, 2015) on the data for

Table . Mixed effects cox regression for the New Mexico
breast cancer data.

% posterior credible interval

Risk factor Lower limit Upper limit

Patient age at diagnosis . .
Calendar year of diagnosis − . − .
Race : African American . .
Race : Native American − . .
Tumor grade  . .
Tumor grade  . .
Tumor grade  . .
Difference of Tumor grade  and  . .

comparison. See Table 3 We find that the coefficients
for patient age, African Americans, American Indians,
tumor grade 2, tumor grade 3 and tumor grade 4 are
positive, which implies an increase in log hazard ratio
with unit increase in covariates and therefore, has a
negative effect on survival time. Moreover, coefficients
for calendar year of diagnosis is negative, which implies
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Figure . Estimates of the county-specific random effects for
NewMexico. The labels are the county names.

a decrease in log hazard ratio and therefore has a posi-
tive effect on survival time. Furthermore, we find that
coefficients for American Indians are not significant.
However, we don’t find that difference in tumor grade 3
and grade 4 are not significant, but we do see that tumor
grade 4 effects are flattened out (see Table 3 ). Overall,
we find that general results frommixed effect coxmodel
supports our findings.

6. Discussion

In this paper, we proposed a semiparametric AFT
model for censored outcome survival data that incor-
porates spatial variability. We model the spatial frailty
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Figure . Standard errors of the county-specific random effects
for NewMexico. The labels are the county names.

using ICAR, which helps us capture spatial dependency
in mortality rates across counties. Our model improves
the flexiblity of AFT model by modeling the inter-
subject variation asDPmixture. This enables ourmodel
to adapt to arbitrary features such as skewness and
multimodality. The results further indicate that poste-
rior distribution of several model parameters are non-
normal and that the posterior distribution of residual
individual variability is both non-normal and multi-
modal. Finally,we implemented a fast data squashing
strategy to analyse large survival databases. This makes
a strong case for using semiparametric Bayes methods
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Figure . Posterior density of the individual-specific error distribution F defined in Equation (). See the text for the interpretation of
F. The narrow lines represent margins of  posterior standard deviations.
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for analysing large correlated survival datasets. How-
ever, the proposed model does have limitations. One
drawback is that we have assumed constant variance for
the spatial frailties for all the counties. This is a reason-
able assumption to make when we have enough data
points for every count. However, when the number of
instances per county is low, it might be worth explor-
ing CAR priors or even hierarchical priors on the vari-
ance. Furthermore, future work in this area is needed to
model the temporal variation in a county’s mortality.
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