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Abstract: In the era of precision medicine, survival outcome data with high-throughput predictors are rou-

tinely collected. Models with an exceedingly large number of covariates are either infeasible to fit or likely

to incur low predictability because of overfitting. Variable screening is key in identifying and removing

irrelevant attributes. Recent years have seen a surge in screening methods, but most of them rely on some

particular modeling assumptions. Motivated by a study on detecting gene signatures for multiple myeloma

patients’ survival, we propose a model-free Lq-norm learning procedure, which includes the well-known

Cramér–von Mises and Kolmogorov criteria as two special cases. The work provides an integrative frame-

work for detecting predictors with various levels of impact, such as short- or long-term impact, on censored

outcome data. The framework naturally leads to a scheme which combines results from different q to reduce

false negatives, an aspect often overlooked by the current literature. We show that our method possesses sure

screening properties. The utility of the proposal is confirmed with simulation studies and an analysis of the

multiple myeloma study.
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1. Introduction

The emergence of high-throughput data arising from genomic, genetic, and clinical stud-
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ies has presented unique opportunities for discovering relevant information on patients’ sur-

vival from massive databases. As the scientific investigation often focuses on discerning

lower-dimensional presentations of a high-dimensional feature space that preserve the neces-

sary information to predict survival outcomes, new efficient and reliable methods are needed

to select relevant variables. In ultrahigh-dimensional settings where the number of predictors

grows exponentially with the sample size, feature screening has become a key analytical step

in ensuring computational expediency, statistical accuracy and algorithm stability (Fan et al.,

2010). For example, in a motivating clinical study (Avet-Loiseau et al., 2009) on multiple

myeloma patients, understanding the molecular etiology of this disease, such as detecting the

gene signatures that are relevant to survival, would lead to a more accurate risk classification

system and personalized treatment (Mulligan et al., 2007). However, with gene expression

measurements on more than 40,000 probe sets, this dataset challenges the existing statistical

tools for dimension reduction.

Despite the success of many screening approaches, such as the sure independence screen-

ing (Fan and Lv, 2008) and its follow-up works, limited progress has been achieved in de-

veloping ultrahigh-dimensional screening tools for survival outcomes. Some related works

include a sure screening procedure for proportional hazards models (Fan et al., 2010), a

Cox univariate shrinkage estimator (Tibshirani, 2009), a marginal maximum partial likeli-

hood estimator (Zhao and Li, 2012), and a general class of single-index hazard rate statis-

tics (Gorst-Rasmussen and Scheike, 2013). Going beyond marginal regressions, Hong et al.

(2018) proposed a conditional screening approach when prior information is available on

which variables should be included in the models. However, the validity and usability of

these methods often hinge upon some restrictive modeling assumptions.
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Model-free screening procedures have recently emerged as a useful tool to avoid these

restrictions. Some representative works include a censored rank independence screening

method (Song et al., 2014) and a quantile adaptive method (He et al., 2013). These methods

are typically robust against outliers in predictors and are applicable to a wide range of survival

models. However, they are often computationally intensive and are not designed to handle

discrete predictors, which often appear in practice.

The Kolmogorov screening statistic, which compares distribution functions across covariate-

defined strata, has been proposed for screening nominal predictors (Mai and Zou, 2015; Zhu

et al., 2012). When the outcome data are censored, it is unclear how the method would fare in

terms of implementation, interpretation and theoretical justifications. On the other hand, the

Cramér–von Mises statistic was developed for detecting distribution differences across vari-

ous subpopulations in the presence of censoring. For example, Schumacher (1984) demon-

strated that the Cramér–von Mises test is superior to log-rank tests when the proportional

hazards assumption fails to hold; see also Koziol and Green (1976); Stute (1997); Tamura

et al. (2000); Li and Feng (2005) in various contexts. Several authors have also shown that,

under general situations such as when a covariate has a long lasting impact on the survival, the

Cramér–von Mises statistic may be more powerful than the Kolmogorov statistic in detecting

such an impact (Conover and Conover, 1980; Razali et al., 2011; Woodruff and Moore, 1988;

Arnold and Emerson, 2011; Chiu and Liu, 2009). However, none of these works explored

the Cramér–von Mises statistic for variable screening with censored outcome data.

As the goal of nonparametric screening is to detect the difference between survival

functions for the subpopulations or strata defined by each candidate variable, both the Kol-

mogorov and the Cramér–von Mises statistics are applicable. An often overlooked fact, how-
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Figure 1: Comparisons of the Cramér–von Mises and Kolmogorov screening statistics in two hypo-

thetical scenarios when only X1 has an impact. Survival curves for X1 = 0 and X1 = 1 are shown

as solid and dashed curves in Figure 1(a): Group X1 = 0 has a constant hazard h(t) = 1, and Group

X1 = 1 has h(t) = 4 for t ∈ (1.0, 1.4) and h(t) = 1, elsewhere. Figure 1(b) shows the density curves

of the Cramér–von Mises statistics on the active variable (solid curves) and 100 independent noise

variables (dashed curves), based on 100 simulations. Figure 1(c) presents the Kolmogorov statistics.

Figure 1(c) indicates a more clear separation than Figure 1(b), meaning that the Kolmogorov statistic

was more powerful than the Cramér–von Mises statistic in this setting. In Figure 1(d), Group X1 = 0

has a constant hazard h(t) = 1, and Group X1 = 1 has h(t) = 0.6 for t ∈ (0.01, 5) and h(t) = 1,

elsewhere. Figures 1(e) and 1(f) represent the Cramér–von Mises and Kolmogorov statistics, respec-

tively, under the setting of Figure 1(d). Figure 1(e) shows a more clear separation between active and

noise variables than Figure 1(f).
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ever, is that the difference patterns may vary across covariates: while some covariates may

be impactful during the entire span of follow-up, some covariates may only have short-term

impacts such as in the case illustrated in Figure 1. For example, the survival differences be-

tween the chemotherapy group and the chemotherapy plus radiation group among childhood

cancer patients may only last a short time period. As opposed to the conventional results, in

this setting, the Kolmogorov statistic is more powerful than the Cramér–von Mises statistic

in detecting such differences; see Figures 1(b) and 1(c). Therefore, given a massive dataset,

screening approaches that rely on a single screening criterion, such as the Cramér–von Mises

or the Kolmogorov criterion, may not be able to capture different heterogeneous patterns,

leading to false discovery as well as false non-discovery.

This paper proposes a class of Lq-norm learning criteria, which include the Cramér–von

Mises and Kolmogorov statistics as two special cases with q = 2 and q = ∞, respec-

tively. The embedded weight q provides a convenient means to detect predictors with short-

or long-term impacts on survival. For example, a larger q, which yields statistics more like

the Kolmogorov statistic, is useful for detecting predictors with short-term impact, while a

smaller q, which generates statistics more like the Cramér–von Mises statistic, is more pow-

erful in other, more general, settings. For a specific dataset, it is unclear which procedure is

more likely to miss important predictors with unknown patterns of impact, including short-

or long-term impacts, on outcomes. Our framework leads to a natural scheme to combine re-

sults obtained from different q in order to reduce false negatives, an aspect often overlooked

by literature. The hybrid method proposed in the paper presents a possible path to conduct

data-driven integration of different screening procedures, the utility of which is verified the-

oretically and numerically. In addition, our method is valid without parametric assumptions
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or other restrictive conditions that stipulate the dependence between the outcome and predic-

tors and, hence, is applicable to a variety of survival models. Our method is invariant under

univariate monotone transformations on survival time or covariates or both. This property is

appealing as variable transformation is widely applied in the data processing stage. Finally,

as the proposed screening statistic is a function of Kaplan–Meier estimators, its computation

is straightforward and scalable for screening ultrahigh-dimensional data.

2. The Lq-norm Learning Criteria

Let (Ω,F , P ) be the probability space that underlies all the random variables mentioned in

this paper, where Ω is the sample space, F is the σ-algebra and P is the probability measure.

Suppose that we have n independent subjects with p covariates, where p � n. Let i and

j index subjects and covariates, respectively. For example, Xi = (Xi1, . . . , Xip)
T denotes

the covariate vector for subject i and Xij denotes covariate j for subject i. Let Ti be the

survival time and Ci be the potential censoring time. We observe that Yi = min{Ti, Ci} and

δi = I(Ti ≤ Ci), where I(·) is the indicator function. As a convention, we assume that

Ti and Ci are independent given Xi. We further assume that (Ti, Ci, Xi) are independently

and identically distributed. In particular, let (Ti, Xij, Xi) (i = 1, . . . , n) be independent and

identically distributed copies of (T,Xj, X), where X = (X1, . . . , Xp).

Denote by S(·) the marginal survival function of T and by S(t | X) the conditional

survival function of T given X . We define the set of active covariates as

M = {j : S(t | X) depends on Xj for some t ∈ (0,∞)}.

We assume that the cardinality ofM is small relative to p, as it is not unreasonable to stip-

ulate that only a small number of biomarkers are relevant to patients’ survival in biomedical
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studies.

The task is to identify M given the vast number of candidate variables, which can be

of mixed types. We propose our method by first considering a categorical variable, say, Xj ,

with Kj categories such that Xj ∈ {1, 2, . . . , Kj}. Later, we will extend the method to cover

continuous covariates.

To proceed, we define the Lq-norm of g(T ), where g is a generic function, as

‖g(T )‖q = {E(|g(T )|q)}1/q =

{
−
∫ ∞

0

|g(t)|qdS(t)

}1/q

, (2.1)

where q ≥ 1 and the last equality holds because −dS(t) = f(t)dt.

In order to quantify the relevance of covariate Xj to the survival time T , we compute

S(t | Xj), the conditional survival function within each category of Xj; afterwards, for every

pair of Xj categories, say, k1 6= k2 ∈ {1, . . . , Kj}, we compute the Lq-norm of S(T | Xj =

k1)− S(T | Xj = k2), and take the maximum over all pairs of (k1, k2). More explicitly,

Ψ
(q)
j = max

k1,k2∈{1,...,Kj}
‖S(T | Xj = k1)− S(T | Xj = k2)‖q. (2.2)

The rationale of using (2.2) as the screening criterion is that it gauges the survival differ-

ences across different subpopulations of Xj , and Ψ
(q)
j = 0 if and only if T is independent of

Xj . Hence, (2.2) measures the relevance of Xj to T . The Lq-norm criteria are general. When

q = 2, (2.2) is the Cramér–von Mises statistic; when q = ∞, it becomes the Kolmogorov

statistic:

Ψ
(∞)
j = max

k1,k2∈{1,...,Kj}
sup
t
|S(t | Xj = k1)− S(t | Xj = k2)| . (2.3)

Denote by t1 < t2 < · · · < td the ordered observed failure times and by Ŝ(t) the

Kaplan–Meier estimate of S(t), the marginal survival function of T at time t. Within each

category of a categorical variable, say, using subsamples {i : Xij = k}, we can compute the
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Kaplan–Meier estimate Ŝ(t | Xj = k) of S(t | Xj = k). Then, Ψ
(q)
j can be estimated by

Ψ̂
(q)
j = max

k1,k2∈{1,...,Kj}

{
−
∫ ∞

0

∣∣∣Ŝ(t | Xj = k1)− Ŝ(t | Xj = k2)
∣∣∣q dŜ(t)

}1/q

= max
k1,k2∈{1,...,Kj}

[
d∑
l=1

∣∣∣Ŝ(tl | Xj = k1)− Ŝ(tl | Xj = k2)
∣∣∣q {Ŝ(tl−1)− Ŝ(tl)

}]1/q

,

(2.4)

where we set t0 = 0 for notational convenience.

Finally, we select the active variables via

M̂ =
{
j : Ψ̂

(q)
j > cn−v, j = 1, . . . , p

}
, (2.5)

where c and v are constants for pre-determined thresholds defined in Condition 1 in Section

3. As the screening criterion is Lq-norm based, this procedure is termed Lq-norm learning.

The empirical version of Ψ
(q)
j in (2.2) is difficult to evaluate when Xj takes infinite val-

ues. However, we can find an approximation of Ψ
(q)
j by slicingXj . Without loss of generality,

we assume that the support of Xj is the real line R. Let X̃j = k if Xj ∈ [Q̂j(k−1), Q̂j(k)),

where Q̂j(k) is the k/Kj×100th percentile of the empirical distribution of Xj . For notational

convenience, we set Q̂j(0) = −∞ and Q̂j(Kj) = ∞. We refer to each [Q̂j(k−1), Q̂j(k)) as a

slice.

Suppose there areN different ways of slicing a continuous covariateXj , denoted by Λju,

u = 1, . . . , N with each slicing Λju containing Kju intervals, i.e.,

Λju =

{
[Q̂ju(k−1), Q̂ju(k)) : k = 1, . . . , Kju and ∪Kju

k=1 [Q̂ju(k−1), Q̂ju(k)) = R
}
.

We then replace Xj with its discretized version X̃ju under each Λju, i.e., X̃ju = k if

Xj ∈ [Q̂ju(k−1), Q̂ju(k)). To ensure there are enough samples within each slice for all slicing

schemes, one may takeKju = 3, . . . , [log(n)], which givesN = [log(n)−2] slicing schemes.
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Now let Ψ
(q)
j,Λjuo

= maxk1,k2∈{1,...,Kj} ‖S(t | X̃ju = k1) − S(t | X̃ju = k2)‖q be the Lq-

norm learning statistic corresponding to the slicing scheme of Λju for a continuous covariate

j. After slicing, Xj is independent of T if and only if Ψ
(q)
j,Λjuo

= 0 for all possible choices of

Λju; see Lemma 1 of Mai and Zou (2015). In addition, although Ψ
(q)
j,Λjuo

is used as a surrogate

of Ψ
(q)
j , Lemma 2 of Mai and Zou (2015) shows that Ψ

(q)
j,Λjuo

could be a better measure for

variable screening than Ψ
(q)
j .

Finally, we combine the information from all Λju using the fusedLq-norm learning statis-

tic

Ψ̃
(q)
j =

N∑
u=1

Ψ̂
(q)
j,Λju

, (2.6)

where

Ψ̂
(q)
j,Λju

= max
k1,k2∈{1,...,Kju}

[
d∑
l=1

∣∣∣Ŝ(tl | X̃ju = k1)− Ŝ(tl | X̃ju = k2)
∣∣∣q {Ŝ(tl−1)− Ŝ(tl)

}]1/q

,

(2.7)

leading to the following screening criterion:

M̃ =
{
j : Ψ̃

(q)
j > c̃n−ṽ, j = 1, . . . , p

}
, (2.8)

where c̃ and ṽ are two positive constants. Due to favorable numerical experiments, we opt

to use the fused method or to use (2.8) as the screening criterion when Xj is continuous.

3. Sure Screening Properties

We establish the sure screening property of the proposed screening method. The following

regularity conditions are needed.

Condition 1. For any q ≥ 1, there exist c > 0 and v ∈ [0, 1/2) such that minj∈MΨ
(q)
j ≥

2cn−v where c and v are the same as those in (2.5).
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Condition 2. There exist c0 > 0 and κ ∈ [0, (1−2v)/3) such thatK = max1≤j≤pKj ≤ c0n
κ

for any n ≥ 1.

Condition 1 stipulates that the minimal signal in the active set should be strong enough.

Such an assumption is standard in feature screening literature; see, for example, Condition 3

in Fan and Lv (2008), and Condition C2 in Li et al. (2012); He et al. (2013); Cui et al. (2015);

Ni and Fang (2016). Moreover, when the censoring rate is 0 and q =∞, the proposed method

includes the Kolmogorov filter in Mai and Zou (2015) as a special case. Indeed, Condition

1 is weaker than condition (C1) of Mai and Zou (2015) and can be satisfied even when the

active set is correlated with the inactive set.

Condition 2 allows the number of categories for each covariate to diverge with a certain

order. A similar assumption was also made in Condition C3 of Ni and Fang (2016).

Theorem 1. When all covariates are categorical, for any q ≥ 1, there exist constants c1 > 0,

c2 > 0, κ and v under Conditions 1–2, for a sufficiently large n, we have that

P (M⊂ M̂) ≥ 1− c2p exp(−c1n
1−3κ−2v + κ log n),

Hence, when log p = c2n
α with α ∈ [0, 1−3κ−2v), Lq-norm learning has the sure screening

property.

We next consider whenXj is continuous for some j. We denote by fXj
(x) the probability

density of Xj , and replace Condition 2 with the following condition.

Condition 3. Suppose that fXj
(x) is continuous and bounded on the support of Xj . There

exist c3 > 0 and ρ ∈ [0, (1− 2v − 3κ)/2), such that min1≤k≤Kj−1 fXj
(Qj(k)) ≥ c3n

−ρ.

This condition implies that the density values among all the slicing points have a lower

bound in the order of n−ρ, ensuring that there are enough samples within each slice of Xj .
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Theorem 2. When covariates include both continuous and categorical types, for any q ≥ 1,

there exist constants c3 > 0, c4 > 0, κ v and ρ under Conditions 1 and 3, for n sufficiently

large, we have that

P (M⊂ M̂) ≥ 1− c4p exp(−c3n
1−3κ−2v−2ρ + κ log n).

Hence, when log p = c4n
α with α ∈ [0, 1 − 3κ − 2v − 2ρ), Lq-norm learning has the sure

screening property.

Fused Lq-norm learning requires additional notations and regularity conditions. Let Λjuo

be the partition using the theoretical k/Kju × 100th percentile of Xj , and denote by Qju(k)

(k = 0, . . . , Kju) the slicing points. Denote the true value of the Lq-norm learning statistic

for the partition Λjuo by Ψ
(q)
j,Λjuo

and let Ψ
(q)
jo =

∑N
u=1 Ψ

(q)
j,Λjuo

. The following Conditions 4–5

are modified from Conditions 1 and 3.

Condition 4. For any q ≥ 1, there exist constants c̃ > 0 and ṽ ∈ [0, 1/2) such that

minj∈MΨ
(q)
jo ≥ 2c̃n−ṽ, where c̃ and ṽ are the same as those in (2.8).

Condition 5. Suppose that fXj
(x) is bounded and continuous with respect to x. There exist

constants c̃0 > 0 and κ̃ ∈ [0, (1−2ṽ)/3) such that K̃ = max1≤j≤p,1≤u≤N Kju ≤ c̃0n
κ̃. There

exist constants c̃1 > 0 and ρ̃ ∈ [0, (1−2ṽ−3κ̃)/2) such that min1≤k≤Kju−1,1≤u≤N fXj
(Qju(k)) ≥

c̃1n
−ρ̃.

Theorem 3. When covariates include both continuous and categorical types, for any q ≥ 1,

there exist c̃2 > 0, c̃3 > 0, κ̃, ṽ and ρ̃ under Conditions 4–5, for n sufficiently large, we have

that

P (M⊂ M̃) ≥ 1− c̃3p log n exp{(−c̃2n
1−3κ̃−2ṽ−2ρ̃/ log n) + κ̃ log n}.
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When log p = c̃3(nα̃/ log n) and α ∈ [0, 1− 3κ̃− 2ṽ − 2ρ̃), fused Lq-norm learning has the

sure screening property.

4. Hybrid Lq-norm learning

The performance of the Lq-norm learning depends on q, with an unknown best q for any

given dataset. Thus, instead of solely relying on a specific q, we propose to combine the

Lq-norm learning results obtained from various q, and show that it has desirable theoretical

properties.

Suppose that we perform screening based on various q, say, 1 ≤ q1 < · · · < qL < ∞.

We define hybrid Lq-norm learning as

M̃h =∪L
l=1M̃(ql), (4.1)

where M̃(ql) =
{
j : Ψ̃

(ql)
j > c̃hn

−vl , j = 1, . . . , p
}

, vl is a positive constant that depends on

ql, and c̃h is a positive constant not depending on l.

In principle, the range of ql should be wide enough and covers the Cramér–von Mises and

Kolmogorov statistics. One possible choice that may satisfy this principle is the Fibonacci

numbers, with every number in the sequence (after the first two) being the sum of the two

preceding numbers. That is, ql = 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . . Since in our numerical

experience the Lq-norm statistic, when q > 30, is very close to the Kolmogorov statistic

(corresponding to q = ∞), we may consider a sub-series of Fibonacci with the maximum

number being 89 as in our later simulation studies.

To show the sure screening property of hybrid Lq-norm learning, we assume the follow-

ing regularity conditions:
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Condition 6. There exist ql ≥ 1, c̃h > 0 and vl ∈ [0, 1/2) such that minj∈MΨ
(ql)
jo ≥ c̃hn

−vl ,

where c̃h and vl are the same as those in (4.1). There exist constants c0,l > 0 and κl ∈

[0, (1− 2vl)/3) such that max1≤j≤p,1≤u≤N Kju ≤ c0,ln
κl . There exist constants c1,l > 0 and

ρl ∈ [0, (1− 2vl − 3κl)/2) such that min1≤k≤Kju−1,1≤u≤N fXj
(Qju(k)) ≥ c1,ln

−ρl .

Theorem 4. When covariates include both continuous and categorical types, there exist con-

stants ql ≥ 1, c2,l > 0, c3,l > 0, κl, vl and ρl under Condition 6, for n sufficiently large, we

have that

P (M⊂ M̃h) ≥ 1− c3,lp log n exp{(−c2,ln
1−3κl−2vl−2ρl/ log n) + κl log n},

when log p = c3,l(n
α/ log n) with α ∈ [0, 1− 3κl − 2vl − 2ρl), hybrid Lq-norm learning has

the sure screening property.

Hybrid Lq-norm learning allows covariates chosen by any ql (l = 1, . . . , L) to be in-

cluded in the selected active set, which guarantees the recovery of the true active set or re-

duces the false negatives to the extent possible. This may fit the overarching goal of variable

screening.

5. Simulation Studies

We performed simulations to compare the finite sample performance of the proposed Lq-

learning and competing methods, such as principled sure independence screening (Zhao and

Li, 2012), censored rank independence screening (Song et al., 2014), independent screening

for single-index hazard rate models (Gorst-Rasmussen and Scheike, 2013), quantile adaptive

screening (He et al., 2013), and conditional sure independence screening (Hong et al., 2018).

For the proposed Lq-norm learning approach, we considered q = {1, 2, 5, 13, 89,∞} over its
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domain. Our preliminary analysis shows that large values of q (≥ 30) give results similar to

those of the Kolmogorov statistic, while small or moderate values of q (< 10) resemble the

Cramér–von Mises criterion. In practice, the values of q would depend on users’ research

goals: if the focus is on finding predictors with long-term impact, q should be chosen to be

close to 1, whereas if the focus is on finding predictors with short-term effect, large values of

q would be preferable.

Binary, categorical, and continuous variables were considered in our simulations. The

censoring times Ci were independently generated from a uniform distribution U [0, c0], with

c0 chosen to give censoring proportions of approximately 20% and 40%.

Example 1. The underlying random vector x∗ = (x∗1, . . . , x
∗
p) was generated from a multi-

variate normal distribution with a mean vector of 0 and an exchangeable correlation structure

with an equal correlation of 0.5. For each j, x∗j was further dichotomized by its median value

and the obtained binary variable Xj = 0 if x∗j is in the lower half, and Xj = 1 otherwise. The

survival times were generated from an accelerated failure time model with a baseline hazard

function h0(t) = 0.1(t− 2)2, i.e.,

h(t | X) = h0{exp(βTX)t} exp(βTX),

where β = (−0.5,−0.5,−0.5,−0.5,−0.5, 0T
p−5)T. A similar model was considered by

Zhang and Peng (2009).

Example 2. The underlying random vector x∗ was generated as in Example 1. For each j,

x∗j was further quarterized by its quartile values: the obtained quarterly variable Xj = 1 if x∗j

is less than the lower quartile, 2 if between the lower quartile and the median, 3 if between

the median and the upper quartile, and 4 otherwise. The survival times were generated from
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the proportional hazards model,

h(t | X) = 0.1 exp

{
p∑
j=1

βjI(Xj ∈ {2, 3})

}
,

where β = (1.2, 0, 1, 0, 0.8, 0, 1, 0T
p−5)T.

Example 3. The survival times were generated with the following hazard,

h(t | X) = 2t(|X1|+ |X2|),

where all covariates Xj (j = 1, . . . , p) were generated from an independent standard normal

distribution. In this case, the marginal correlation between each of the active variables, X1

and X2, and the survival time is 0.

Example 4. For each j, the observed discrete covariate Xj was generated as in Example 1.

The survival times were generated with the following hazard,

h(t | X) =


1 + 4(X1 +X2), for t ∈ (1.3, 1.9]

1, for t ∈ (0, 1.3] ∪ (1.9,∞).

For each example, 500 simulated datasets were generated. We considered n = 400 and

n = 600 to explore how the performance of the proposed nonparametric method improved

with the sample size. The performance was assessed using the criteria of minimum model

size (MMS), probability to include the true model (PIT), and true positive rate (TPR). In

Examples 1–4, X1 was used as the true conditioning set for the conditional screening method

(Hong et al., 2018).

Tables 1-4 demonstrate that the proposed Lq-norm learning achieves reasonable mini-

mum model size, probability to include the true model, and true positive rate in the consid-

ered scenarios. Its performance improves as the sample size increases, which may not be



16

true for competing methods. When variables are categorical as in Example 2, the results

for the competing methods were poor since these methods were not developed for screening

categorical variables. In particular, the B-spline based quantile adaptive method (He et al.,

2013) is not applicable to binary covariates. On the other hand, in Example 3, when the

marginal correlation between each active variable and the survival time is 0, all the compet-

ing methods, including the conditional screening method that assumed one active variable

was known, had difficulty in identifying active variables. As we conjectured, the optimal q in

Lq-norm learning tends to be data-specific. For example, the minimum model size decreases

as q decreases in Example 2, whereas it decreases as q increases in Example 4.

To check the invariance property of the proposed method, we used X1/3, in lieu of X ,

and the log transformed observed survival times in Example 3. The transformed data yielded

the same Lq-norm learning statistic, supporting the invariance property of the method. Fi-

nally, Table S1 of the Supplementary Material shows that the proposed method is not heavily

impacted by the violation of the independent censoring assumption.

6. Analysis of Multiple Myeloma Data

Multiple myeloma is a progressive blood disease, characterized by excessive numbers of

abnormal plasma cells in the bone marrow and overproduction of intact monoclonal im-

munoglobulin. Myeloma patients’ survival ranges from a few months to more than 10 years,

even within the same stage of cancer. Gene expression profiling offers an effective way to

predict the survival of patients with newly diagnosed multiple myeloma. We applied the

proposed method to study a multiple myeloma trial, which was designed to identify gene

signatures that are relevant to patients’ survival (Avet-Loiseau et al., 2009). The study had
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independent and comparable training and testing sets. The training dataset had 133 patients

with a 56% censoring rate, an average age of 55.2 years, and an average follow-up of 44.2

months. Of them, 45% were female. In the testing dataset, there were 37 patients with a 51%

censoring rate, a mean age of 56.2 years, and a mean follow-up of 40.8 months. Among this

group of patients, 43% were female. Combining both training and testing samples, the study

consisted of 170 patients, each with measurements of 44,280 gene expressions.

As the number of gene expressions overwhelmed the sample size, we first applied the

proposed Lq-norm learning, as well as several competing methods, to the training dataset

with n1 = 133 to screen out irrelevant genes, and reduced the dimension from p = 44, 280

to d = [n1/ log(n1)] = 27.

Since gene expression levels are continuous, we used the fused approach introduced in

Section 2.1. That is, we considered slicing schemes, Λj1,Λj2,Λj3, which contain 3, 4, 5 (=

[log(133)]) intervals, respectively. Then, we combined the information from all Λju, u =

1, 2, 3, using the fused Lq-norm learning statistic in (2.6).

Table 5 reports the numbers of overlapping genes selected by the different methods,

showing that the variables selected by Lq-norm learning with different q values did differ

and the proposed method helped choose novel genes that were not identified by the existing

methods.

We next examined the performance of various methods using the random survival forests

approach, which is an extension of a random forests model to right-censored survival data

and can be implemented using the R package randomSurvivalForest (Ishwaran and

Kogalur, 2007).

First, we randomly generated 10 training/testing splits from the full data set of 170 pa-
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tients, with 133 in the training set and 37 in the testing set. In each training dataset, we

selected top 27 genes by each method and fitted a random survival forests model. When

fitting the random forests, a total of 100 trees were generated for each training dataset. Then

the fitted “forests” were applied to each testing dataset, for which a c-statistic was computed.

The overall c-statistic was the average of c-statistics across all the splits.

Finally, for each method, the average of the c-statistics from all 10 testing datasets was

listed in Table 6. In general, our method improved c-statistics, even though the improvement

may not reach statistical significance.

To evaluate the impact of choosing different numbers of top genes, in the Supplementary

Material, we repeated the same investigation by choosing the top 133 genes selected by each

method, and presented the results in Tables S2-S3.

To address the important biological question of which genes are relevant to multiple

myeloma patients’ survival, we applied hybrid Lq-norm learning to the whole dataset and

chose the top 27 genes. Based on those genes, we further fitted a random survival forests

model and assessed the top 10 genes based on their contributions to the model. Table 7 lists

these genes, which have already been recognized in cancer literature. In particular, probes

213901 x at, 206150 at, and 206662 at have been known to be clinically significant in multi-

ple myeloma. Moreover, our method also highlights some possible novel candidates for mul-

tiple myeloma. For example, though probes 205689 at, 39650 s at, 218058 at, 216860 s at,

206267 s at, and 227894 at have not been identified in multiple myeloma literature, they

have been linked to a variety of other cancers, including prostate, lung, breast, head and neck

cancers. Their roles in multiple myeloma are worth investigating.
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7. Conclusion

This paper proposes a new class of model-free Lq-norm learning approaches for screening

ultrahigh-dimensional survival data. The important problem of how to combine results from

different screening procedures remains open (Liu et al., 2015). To our knowledge, this paper

registers the first attempt to combine the screening results with different q via (4.1). The intu-

ition is that the hybrid learning retains covariates chosen by any of the considered screening

procedures, which may help reduce the false negatives to the extent possible, a desirable prop-

erty of screening procedures. Our framework can facilitate fusion of screening procedures

in other ways, such as M̃∗
h = ∩L

l=1M̃(ql) and M̃∗∗
h =

{
j : Ψ̃

(ql)∗
j > cn−v, j = 1, . . . , p

}
,

where Ψ̃
(ql)∗
j = (Ψ̃

(ql)
j − min1≤l≤L Ψ̃

(ql)
j )/(max1≤l≤L Ψ̃

(ql)
j − min1≤l≤L Ψ̃

(ql)
j ). Here, M̃∗

h

includes common covariates that are selected by all ql (l = 1, . . . , L). This method can

guarantee exclusion of unimportant covariates to the greatest extent, but this rather restrictive

criterion may lead to many false negatives, which may not be ideal for knowledge discov-

ery in the exploratory phase. On the other hand, M̃∗∗
h may be a compromise between M̃h

and M̃∗
h. Through normalization by rescaling between 0 and 1, it makes screening statistics

across q comparable.

We envision that this hybrid framework can help address different needs. When the pri-

ority is on controlling the false negatives, we recommend M̃h; when the priority is on con-

trolling false positives, we recommend M̃∗
h; when one needs to control both false negatives

and false positives, we recommend M̃∗∗
h .

A more detailed investigation of the strategy in a broader context or a search for more

efficient hybrid algorithms, though beyond the scope of this paper, is worth pursuing and will

be reported elsewhere.
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Supplementary Material

The online Supplementary Material contains theoretical results, additional simulation

studies, and data analysis results.
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Garcı́a-Piñeres, A. J., A. Hildesheim, L. Dodd, T. J. Kemp, J. Yang, B. Fullmer, C. Harro, D. R. Lowy, R. A. Lempicki, and

L. A. Pinto (2009). Gene expression patterns induced by HPV-16 L1 virus-like particles in leukocytes from vaccine

recipients. The Journal of Immunology 182(3), 1706–1729.

Gorst-Rasmussen, A. and T. Scheike (2013). Independent screening for single-index hazard rate models with ultrahigh

dimensional features. Journal of the Royal Statistical Society: Series B 75(2), 217–245.

Gutiérrez, N. C., E. M. Ocio, J. de Las Rivas, P. Maiso, M. Delgado, E. Fermiñán, M. J. Arcos, M. L. Sánchez, J. M.
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Table 1: Performance of different variable screening methods for Examples 1–2 with 20% CR.

Example 1 Example 2

n = 400 n = 600 n = 400 n = 600

MMS TPR PIT MMS TPR PIT MMS TPR PIT MMS TPR PIT

PSIS 6 1.00 0.99 5 1.00 1.00 910 0.07 0.00 851 0.09 0.00

CRIS 1000 0.00 0.00 1000 0.00 0.00 841 0.06 0.00 829 0.11 0.00

FAST 5 1.00 0.99 5 1.00 1.00 923 0.05 0.00 871 0.06 0.00

QA - - - - - - 39 0.05 0.00 16 0.06 0.00

CS 5 1.00 1.00 5 1.00 1.00 799 0.29 0.00 788 0.30 0.00

L1 9 0.99 0.97 5 1.00 1.00 9 0.97 0.88 4 0.99 0.97

L2 7 1.00 0.99 5 1.00 1.00 10 0.97 0.88 4 0.99 0.97

L5 7 1.00 0.98 5 1.00 1.00 13 0.97 0.87 4 0.99 0.97

L13 7 0.99 0.97 5 1.00 1.00 16 0.96 0.83 4 0.99 0.96

L89 9 0.99 0.95 5 1.00 1.00 11 0.95 0.79 5 0.99 0.95

L∞ 9 0.99 0.94 5 1.00 1.00 11 0.94 0.78 6 0.99 0.95

Hybrid 9 0.99 0.97 5 1.00 1.00 12 0.95 0.81 5 0.99 0.96
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Table 2: Performance of different variable screening methods for Examples 3–4 with 20% CR.

Example 3 Example 4

n = 400 n = 600 n = 400 n = 600

MMS TPR PIT MMS TPR PIT MMS TPR PIT MMS TPR PIT

PSIS 730 0.05 0.00 737 0.06 0.01 110 0.56 0.36 54 0.79 0.66

CRIS 735 0.04 0.00 724 0.06 0.00 455 0.18 0.05 458 0.34 0.12

FAST 722 0.06 0.00 727 0.07 0.01 97 0.61 0.43 47 0.79 0.66

QA 8 0.95 0.90 4 0.01 0.00 - - - - - -

CS 481 0.55 0.09 440 0.56 0.11 52 0.78 0.55 20 0.79 0.66

L1 2 1.00 1.00 2 1.00 1.00 259 0.23 0.07 190 0.42 0.21

L2 2 1.00 1.00 2 1.00 1.00 121 0.42 0.22 60 0.80 0.66

L5 2 1.00 1.00 2 1.00 1.00 38 0.81 0.72 10 0.98 0.98

L13 2 1.00 1.00 2 1.00 1.00 17 0.85 0.78 4 0.99 0.99

L89 2 1.00 1.00 2 1.00 1.00 11 0.87 0.80 3 0.99 0.99

L∞ 2 1.00 1.00 2 1.00 1.00 11 0.88 0.82 3 0.99 0.99

Hybrid 2 1.00 1.00 2 1.00 1.00 16 0.86 0.77 5 0.99 0.98
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Table 3: Performance of different variable screening methods for Examples 1–2 with 40% CR.

Example 1 Example 2

n = 400 n = 600 n = 400 n = 600

MMS TPR PIT MMS TPR PIT MMS TPR PIT MMS TPR PIT

PSIS 10 0.99 0.94 5 1.00 1.00 861 0.05 0.00 882 0.07 0.00

CRIS 1000 0.00 0.00 1000 0.00 0.00 862 0.06 0.00 879 0.06 0.00

FAST 10 0.99 0.95 5 1.00 1.00 873 0.02 0.00 889 0.04 0.00

QA - - - - - - 250 0.70 0.20 201 0.73 0.29

CS 5 1.00 0.99 5 1.00 1.00 823 0.27 0.00 786 0.28 0.00

L1 14 0.97 0.88 5 1.00 1.00 4 1.00 0.99 4 1.00 1.00

L2 10 0.99 0.93 5 1.00 1.00 4 1.00 0.99 4 1.00 1.00

L5 10 0.99 0.93 5 1.00 1.00 4 1.00 0.99 4 1.00 1.00

L13 11 0.98 0.91 5 1.00 1.00 5 1.00 0.99 4 1.00 1.00

L89 15 0.97 0.86 5 1.00 1.00 7 1.00 0.99 4 1.00 0.99

L∞ 15 0.97 0.86 5 1.00 1.00 7 1.00 0.99 4 1.00 0.99

Hybrid 13 0.98 0.90 5 1.00 1.00 5 0.99 0.97 4 1.00 1.00
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Table 4: Performance of different variable screening methods for Examples 3–4 with 40% CR.

Example 3 Example 4

n = 400 n = 600 n = 400 n = 600

MMS TPR PIT MMS TPR PIT MMS TPR PIT MMS TPR PIT

PSIS 711 0.07 0.01 743 0.06 0.01 532 0.15 0.03 475 0.24 0.08

CRIS 696 0.05 0.00 762 0.04 0.00 531 0.14 0.02 497 0.23 0.06

FAST 705 0.08 0.01 740 0.06 0.01 532 0.16 0.03 473 0.25 0.09

QA 56 0.74 0.55 69 0.01 0.00 - - - - - -

CS 447 0.55 0.10 423 0.55 0.10 381 0.56 0.13 311 0.61 0.23

L1 2 1.00 1.00 2 1.00 1.00 429 0.14 0.02 337 0.26 0.03

L2 2 1.00 1.00 2 1.00 1.00 317 0.21 0.04 202 0.44 0.21

L5 2 1.00 1.00 2 1.00 1.00 189 0.40 0.17 76 0.75 0.58

L13 2 1.00 0.99 2 1.00 1.00 149 0.50 0.27 54 0.83 0.68

L89 2 0.99 0.99 2 1.00 1.00 138 0.54 0.31 43 0.84 0.70

L∞ 2 0.99 0.99 2 1.00 1.00 132 0.54 0.30 46 0.84 0.71

Hybrid 2 1.00 1.00 2 1.00 1.00 174 0.45 0.21 56 0.81 0.65
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Table 5: The numbers of overlapping genes among top 27 genes selected by various screening meth-

ods on the multiple myeloma training dataset.

PSIS CRIS FAST CS QA L1 L2 L5 L13 L89 L∞ Hybrid

PSIS 27 6 4 2 0 2 4 1 2 1 1 2

CRIS 27 1 3 0 4 5 3 2 0 0 2

FAST 27 2 0 1 2 0 0 0 0 0

CS 27 0 3 3 5 6 6 6 6

QA 27 0 0 0 0 0 0 0

L1 27 22 14 8 5 4 12

L2 27 17 11 5 4 13

L5 27 20 15 13 20

L13 27 21 20 21

L89 27 23 17

L∞ 27 16

Hybrid 27

Table 6: Comparisons of the average c-statistics along with its 95% confidence interval based on 10

random testing datasets of multiple myeloma.

PSIS CRIS FAST CS QA Hybrid

0.61 (0.53, 0.68) 0.59 (0.46, 0.72) 0.55 (0.44, 0.66) 0.59 (0.48, 0.70) 0.53 (0.40, 0.66) 0.63 (0.55, 0.72)
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Table 7: The 10 most important genes selected by hybrid Lq-norm learning.

Probes Description

213901 x at
average expression differed by> 2.5-fold comparing Adwt with Adhz60 infection (Rao et al., 2006);

overexpressed in MMCs or in HMCLs compared to normal counterparts (Kassambara et al., 2012)

206150 at
significant in the apoptosis pathway in ER-positive tumors (Yu et al., 2007); genes exclusively deregulated

in PC from MM but with a similar expression profile in WM-PC and NPC (Gutiérrez et al., 2007)

205689 at
concordantly differentially expressed within reported genetic regions of gain or loss in relapses in

favorable histology Wilms’ tumor (Huang et al., 2009)

39650 s at hypomethylated and increased in expression (Andrews et al., 2010)

218058 at
differentially expressed between the dormant SCP6 cell line and related non-metastatic or low-metastatic

cell lines, and highly bonemetastatic PD cell lines (Lu et al., 2011)

206662 at

up-regulated genes expressed at least twofold higher in NCK compared with CVX (Santin et al., 2005);

genes exclusively deregulated in PC from MM but with a similar expression profile in WM-PC and NPC

(Gutiérrez et al., 2007)

216860 s at differentially expressed after vaccination (Garcı́a-Piñeres et al., 2009)

206267 s at
gene expression in monoclonal CD4 T-LGL cells significantly (p < .006) changed after short-term in

vitro hCMV stimulation (Rodrı́guez-Caballero et al., 2008)

207598 x at pathway/response to DNA damage (Del Giudice et al., 2012)

227894 at genes showing expression profiles similar to genes identified as statistically significant (Bayne et al., 2008)

NOTE: The genes selected by hybrid Lq-norm learning were reordered based on variable importance ranking assessed by a random

survival forests model.
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