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Abstract

The last decade has seen a resurgence of statistical methods for the anal-
ysis of spatial data arising from various scientific fields. This chapter reviews
these methodologies, mainly within the geostatistical framework. We con-
sider data measured at a finite set of locations and draw inference about
the underlying spatial process, based on the partial realization over this
subset of locations. Methodologically, we employ linear mixed models and
generalized linear mixed models that enable likelihood inference for fully
observable spatial data. For spatial data subject to censoring, we review a
class of semiparametric normal transformation models for spatial survival
data. A key feature of this model is that it provides a rich class of models,
where regression coefficients have a population-level interpretation and the
spatial dependence of survival times is conveniently modeled using flexible
normal random fields. This would be appealing to practitioners, especially
given that there are virtually no spatial failure time distributions that are
convenient to work with.
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(generalized) linear mixed models; EM algorithm; PQL approximation; spa-
tial survival data; semiparametric normal transformation; conditional Mar-
tingale covariance rate function.

1 Introduction

Spatial data are commonly acquired to serve diverse scientific purposes. For ex-
ample, meterologists are interested in the amount of precipitation over adjacent
tropical forests. Mining engineers are keen to predict the conserve of a new oil field
based on the product of nearing fields. Political geologists link election results to
spatial regions so as to map political power on geographical space. Economists
study economic activities on macro spatial scales, as factors like access to the sea
and to the raw materials tend to impact economic activities at a country level.
Epidemiologists investigate the incidence of a disease and its variations across re-
gions for a better understanding of the etiology. Environmentalists monitor the
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level of PM2.5 (a particulate matter that can travel into a person’s lungs) in air-
pollution monitoring sites and characterize its spatial distributions. The shared
features of data arising from these studies fall into the following two categories: (a)
geostatistical (or point-referenced) type, where the outcomes are random variables
indexed by locations that vary continuously over a subset of a Euclidean space. (b)
areal type, where the locations are finite number of areal units with well-defined
boundaries and the data are typically summary statistics over these units. Some
spatial data sets even feature both geostatistical and areal types. For example,
in the NCI Surveillance Epidemiology and End Results (SEER) data, the out-
come for each individual was measured, while the location information was only
available at the county (areal unit) level. As individual-level or point-referenced
data have become increasingly common in public health studies with the use of
the Geographic Information System (GIS) technology and geocoding of individua
addresses, this chapter focuses on the statistical analysis of geostatistical data,
while necessary modifications for analysis of the areal data will be discussed.

Spatial data analysis is challenged by the presence of spatial dependence
among observations. We give a simple example to illustrate the effect of corre-
lation on analysis. First consider independent samples Y7, --- .Y, from a normal
distribution with mean g and known variance o2. The most efficient unbiased
estimator of p is the sample average Y = >, Yi/n, which follows a normal dis-
tribution with mean u and variance o2/n, yielding a two-sided 95% confidence
interval for u

(Y —1.960/y/n,Y +1.960//n).

Now instead of independent data, suppose that the data exhibit a spatial corre-
lation in R' that decreases exponentially as the separation between data points
increases

cov(Y;, Y;) = opli=il, (1.1)

Under (1.1), Y will still follow a normal distribution with mean u, but with vari-
ance

var(Y) = o/nlL+2{p/(1 - p)}(1 — 1/n) = 2{p/(1 = p)Y*(L = p"Y)/n]. (1.2)

For n = 10 and p = 0.26, var(Y) = ¢2/10 x 1.608, resulting in a two-sided 95%
confidence interval for p

(Y —2.4850/v/10,Y + 2.4850/v/10);

see Cressie (1993). Thus, failure to account for the underlying correlations among
data tends to narrow the confidence intervals. More intuitive explanation of the
impact of spatial correlation can be obtained from (1.2), based on which the ef-
fective sample size can be computed as

n* =n[l4+2{p/(1—p)}(1—1/n) = 2{p/(1 = p)}*(1 = p" ) /n]".

For large n, it follows that n*/n = (1 — p)/(1 + p), hinting that the effect of
correlation is palpable even for large samples.
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Hence, it is important to take into account the spatial correlation for cor-
rect inference. Mixed effects models have provided a convenient means of model-
ing spatial correlations by using random effects, with common spatial correlation
structures including, for example, random fields (for geostatistical data) and au-
toregressive (CAR) structure (for areal data) (Yasui and Lele, 1997; Waller, et
al., 1997). Over the past two decades, spatial statistical methods have been well
established for normally distributed data (Cressie, 1993; Haining, et al., 1989) and
discrete data (Journel, 1983; Cressie, 1993; Carlin and Louis, 1996; Diggle et al.,
1998). Statistical models for such data are often fully parameterized, and inference
procedures are based on maximum likelihood (Clayton and Kaldor, 1987; Cressie,
1993), penalized maximum likelihood (Breslow and Clayton, 1993) and Markov
chain Monte Carlo (Besag, York, Mollie, 1991; Waller et al., 1997).

Further complicate the analysis of spatial data is the presence of censoring for
outcomes as reflected in many epidemiological and social behavioral studies. For
example, in the East Boston Asthma Study on childhood asthma, subjects were
enrolled at community health clinics in the east Boston area, and questionnaire
data, documenting ages at onset of childhood asthma and other environmental
factors, were collected during regularly scheduled visits. Apart from the basic
demographic data, residential addresses were geocoded for each study subject so
that the latitudes and longitudes were available. Residents of East Boston are
mainly relatively low income working families. Children residing in this area have
similar social economical backgrounds and are often exposed to similar physical
and social environments. These environmental factors are important triggers of
asthma but are often difficult to measure in practice. Ages at onset of asthma of
the children in this study were hence likely to be subject to spatial correlation.
The statistical challenge is to identify significant risk factors associated with age
at onset of childhood asthma while taking the possible spatial correlation into ac-
count. Li and Ryan (2002) proposed semi-parametric frailty models for spatially
correlated survival data, where the spatial units are prespecified geographic re-
gions (e.g. census tract). Their approach is to extend the ordinary frailty models
to accommodate spatial correlations and exploit a robust rank likelihood-based
inferential procedure. However, frailty survival models typically do not possess
regression coefficients with population-level interpretations, less appealing to pop-
ulation scientists.

In this chapter, we review the methodologies for the analysis of spatial data,
mainly within the geostatistical framework. That is, the data consist of the mea-
surements at a finite set of locations and the statistical problem is to draw infer-
ence about the spatial process, based on the partial realization over this subset of
locations. The rest of this chapter is organized as follows. We introduce the build-
ing blocks of geostatistical modeling, including stationarity, isotropy and (semi-
Jvariograms. We next discuss statistical models, including linear mixed models
and generalized linear models, that enable likelihood inference for fully observable
spatial data. For spatial data that are subject to censoring, we review a semi-
parametric normal transformation model that was recently developed by Li and
Lin (2006). A key feature of this model is that it provides a rich class of models
where regression coefficients have a population-level interpretation and the spatial
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dependence of survival times is conveniently modeled using flexible normal random
fields. We conclude this chapter with further topics and some open questions.

2 Basic concepts of spatial process

We present the essential elements of geostatistical spatial models, starting with
the fundamental underlying concept of a stochastic spatial process {Y(s),s € D}.
For example, Y (s) represents the level of PM2.5 at monitor site s, and D is a fixed
subset of Euclidean space R", containing all the pollution monitoring sites. In
the spatial context, The dimension of the Euclidean space, r, is often 2 (latitude
and longitude) or 3 (latitude, longitude and altitude above sea level). Assuming
the existence of the first two moments of Y'(s) for every s € D, the first moment
E{Y(s)} = u(s) is often termed trend or drift, while the existence of the second
moment allows the definition of (weak) stationarity.

To be more specific, a spatial process is weakly stationary if p(s) = p (i.e.
the process has a constant mean) and

cov{Y(s),Y(s+h)} = C(h)

for all h € R" such that s,s + h € D, where C(h) is termed the covariance
function. In contrast, a spatial process is termed strongly stationary if, for any
given n > 1 and any given sy, -+ ,s, and any h € R" (as long as s; + h € D),
(Y(s1), - ,Y(sy)) has the same joint distribution as (Y (s; +h),--- ,Y (s, +h)).
Of course, strong stationarity implies weak stationarity, but not vice versa.

Apart from these two stationary types, there indeed exists a third type of
stationarity called intrinsic stationarity. Here, we assume E(Y (s)) = u and define
intrinsic stationarity if E(Y (s+h)— Y (s))? depends only on h. If that is the case,
we write 2y(h) = E(Y (s+h) — Y (s))? and call 2y(h) the variogram and v(h) the
semivariogram. In the following, we use |- | to denote the Euclidean norm for a
vector.

The behavior of y(h) near |h| = 0 is informative about the continuity prop-
erties of Y(+). Specifically, (i) if y(h) — 0 as |h| — 0, then Y(-) is Ly continuous,
namely, |Y (s 4+ h) — Y(s)|r, — 0 for any s as |h| — 0. For example, a Brownian
motion in R! is Ly continuous; (ii) if y(h) does not approach 0 as |h| — 0, then
Y (:) is not Lo continuous and termed irregular. The discontinuity of v(h) at 0
is called the nugget effect reflecting microscale variation, which will be discussed
later; (iii) if v(h) is a positive constant, then Y (s1) and Y (s2) are uncorrelated for
any si # so, regardless of their proximity.

If the semivariogram ~(h) depends on vector h only though its length, we call
the underlying process isotropic, reflecting that the pairwise correlations among
subjects depend only on their distances; otherwise, it is called anisotropic. Isotrop
ic processes are popular in spatial data analysis for their interpretability and avail-
ability of parametric functions for the semivariogram, which can be simply written
as y(|h|). The Matérn model has recently emerged as a powerful model for v(|h|)
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in practice, which is given by

_ [+ 0% —m(o® (v, ) if ] >0,
(b)) = { 0, otherwise, (2.1)
where )
m(o?, v, d) = s (20V/rd) K, (2 /7d) (2.2)

2v=1D(v)

is the Matern function. Here, { measures the correlation decay with the distance
and v is a smoothness parameter, T'(+) is the conventional Gamma function, &, (+)
is the modified Bessel function of the second kind of order v (see, e.g. Abramowitz
and Stegun, 1965). While v(0) = 0 by definition, hm|h\~0+ = 72, termed nugget,
which characterizes local variations; in addition, lim|h|_>Oo =724 02 is called sill;

finally, sill minus nugget is termed partial sill, which is o2 in this case. Model
(2.2) is rather general, special cases including the exponential function o2 exp(—d)
when the smoothness parameter v = 0.5 and the “decay parameter” ( = 1, and
the “Gaussian” correlation function o2 exp(—d?) corresponding to v — oo and
¢ = 1. In cases like these, { characterizes the effective range, the distance at
which there is practically no lingering spatial correlation. Other common choices
of semivariogram functions can be found in Cressie (1993) and Banerjee et al.
(2003).

Given a variety of choices of semivariogram function, a natural question, of
course, is to decide which best fits a given data or whether the data can distinguish
them. It is customary to empirically estimate the semivariogram, with the goal of
comparing it to the theoretical shapes. Under the constant mean assumption, a
straight-forward estimator, due to Matheron (1962), would be

1

23((h) = i 2 (V6 = Y (s:)) (2.3
N(h)
where N(h) = {(s;,s;) : |s; —sj| = |h|} denotes the collection of pairs that

are distanced by |h| and |N(h)| is the number of distinct pairs in N(h). In
practice, however, Matheron’s estimator is of limited value unless the observations
fall on a regular grid. Instead, we would partition the half-line into distance
bins I1 = (0,h1),Is = [ha,h3) and up to Ix = [hx_1,hk) for some prespecified
0 < hy <--- < hg. Then we can alter the definition of N(h) by

N(hi) = {(si,85) : |si —sj| € Ik}, k=1,--- | K.

For the choice of hj, and K, see Journel and Huijbregts (1979). Moreover, as (2.3)
is sensitive to outliers, a more robust fourth-root-of-squared-difference estimator
can be constructed; see Cressie and Hawkins (1980).

We close this section by noting the relationship between the semivariogram
~(h) and the covariance function C'(h). Apparently,

7(h) = C(0) - C(h). (2.4)
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Hence, given C, we can recover . But how about recovering C' from ~? It turns
out that we need to add more condition, i.e. C(h) — 0 when |h| — 0. This
condition is sensible as it regulates that the covariance between two observations
diminishes as they become farther apart. Taking the limit of both sides of (2.4),
we have C'(o0) = limyp oo ~(h). Thus, we have that

Clw = im () () (2.5)

In general, such limit may not exist; but if it does, the process is weakly stationary
with covariance function C'(h).

2.1 Spatial regression models for normal data

In many spatial studies, also observed along with the outcomes are exploratory
variables, measuring for example the characteristics of each individual at given
locations. Within the framework of spatial process, we denote such covariate
process by (X(s),s € D). The spatial linear mixed model of Y(s) given X(s) can
be written as

Y(s) =X(s)'B+ Z(s), (2.6)

where X(s) is a ¢ x 1 covariate vector, 3 is a vector of regression coeflicients in some
open subset of R?, say, B, and Z(s) is a mean zero (weakly stationary) Gaussian
process with spatial covariance function

cov{Z(s), Z(s')} = C(s,s’;0) (2.7)

where 0 is a k x 1 vector of spatial dependence parameters in some open subset
of R*, say, A. The parameter 3 characterizes the deterministic part of the spa-
tial data and is sometimes called the trend parameter, while @ characterizes the
variability of the underlying spatial field through the spatial covariance function
C(s,s’;0). A common practice is to further assume Z(s) is isotropic so that the
covariance function C(-) depends on s and s’ only through their distance |s — /.
In this case, we write C(s,s’;0) as C(|s—s'[; 8), which can be easily specified from
the semivariogram =, e.g. the Matern model (2.1), via relationship (2.5).

We are in a position to draw inference based on model (2.6). Given a finite
number of locations si,---,sy,, then the n x n matrix X, = [C(|s; — s;[;0)]
is positive-definite. Let Y,, = (Y (s1), --,Y(sn)) denote the outcome data and
X, = (X(s1), -+, X(s,))" denote the design matrix. Let ® = (3',0’)" denote the
(¢ + k) x 1 parameter vector. Then the log likelihood is

L,(®) = —n/2log(2m) — 1/21og(|=])
~1/2(Y, — X,,8)%, (Y, — X,.8) (2.8)

The maximum likelihood estimator @ = (ﬁ/, é/)’ satisfies

L, (©) = sup{L,(0) : ® € B x A}.
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Computational details are given in Cressie (1993). However, the MLE of
0 can be seriously biased, especially when the sample size is small. A common
remedy is the restricted maximum likelihood estimation (REML) approach that
filters the data so that the joint distribution of the filtered data is free of 3. To
proceed with the REML, we need to introduce a new concept, error contrast.
Specifically, we call a linear combination of outcome, say, a’Y,,, where a € R™, an
error contrast if F(a’Y,) = 0 for all 8 and 6; hence, a'Y,, is an error contrast if
and only if a’X,, = o;, where o, is a ¢ x 1 zero vector.

We assume that the design matrix X,, is full rank, i.e. rank(X,) = ¢. Hence,
the kernel space of X,, has dimension n — ¢. That is, we can find an n x (n — q)

full rank matrix A (i.e. rank(A) = n — ¢)such that A'X,, = 0, yielding a vector

of n — ¢ linearly independent error contrast A'Y, def W,,. Under the normality

assumption, W,, ~ MV N(o0,,A’S,(0)A), which does not depend on 3. Here,
MV N(p,X) denotes a multivariate normal distribution with mean vector g and
variance-covariance matrix X.

The choice of A is not unique; however, Harville (1974) showed that the log
likelihood function would differ each other only by an additive constant for various
A’s that form the n — ¢ linearly independent contrasts. Indeed, for the A that
satisfies AA’ =T — X, (X!, X,,) "X/ and AA’ = I, the log likelihood function for
W, =AY, is

Lr(0) = —(n — q)/2log(2m) — 1/2log |X}, Xp| + 1/210g |2, (6)]
+1/2log X, =1 (0)X,,| +1/2Y.,T1(0)Y ,, (2.9)
where T1(8) = 3,(0) — =, 1(0)X,.(X, 2. 1(0)X,,) "' X/ 2 (). A REML esti-

n n n n
mator Orparr, would satisfy

LR(éREML) = Sup{LR(g) 10 € A}

A Basyesian justification has been provided by Harville (1974), which showed the
marginal posterior density for @ is proportional to (2.9) with a noninformative
prior on 3.

Estimation is also feasible based on (2.6) without imposing normality as-
sumption on the spatial component Z(s). Instead, we assume the existence of the
first two components of Z(s) such that E(Z(s)) = 0 and Z(s) has spatial covari-
ance function C(-;0) as defined in (2.7). Assuming for now that 6 is known, we
can obtain the best linear unbiased estimator of 8 by minimizing the quadratic
“loss” function”

(Yo = X0B)2,1(0) (Yo — X 8)
where 33,(0) = [C;;(0)] and C;;(0) = C(s; —s;;0),i,5 =1,--- ,n, leading to

B=[X,2,"(0)X,] X, %, (0)Y,. (2.10)

In reality, @ is most likely unknown, necessitating an iterative reweighted least
squares estimation:
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where 8 is a variogram-based estimate (see Cressie, 1993) based on the current

estimate of @(k). Write B = limg_ oo B(k) and 0 = limy_, o 0%). It can be shown
that this procedure yields an asymptotically efficient and consistent estimate for
B, whose variance matrix is subsequently

cov(B) = [XQLE?(O)Xn]*l-
Further details of statistical properties can be found in del Pino (1989).

Though our models, along with the inferential procedures, are framed within
the geostatistical context, they can easily accommodate areal data with a proper
3,. A popular choice of 3, for the areal data is the conditional auto-regressive
(CAR) structure, possessing both appealing theoretical properties and attractive
interpretation (Cressie, 1993). The CAR structure assumes that the full condi-
tional distribution of the Z(s;) [or Y (s;)] on the rest of data depends only on its
“neighbors”. In particular, for the normal data, the CAR model states that

Z(si)|Z(sj),j #i~N (GZQijZ(Sj)/qi+>7-2/qi+) ;

where ¢;; = 0, iy = Zj gi; and the nonnegative g;; controls the strength of
connection between areas i and j, and often takes value 0 when areas i,j are
not neighbors, —1 < 6 < 1 is the spatial dependence parameter controlling the
amount of information in an area provided by its neighbors, and 72 is the nugget,
measuring local variations. When areas ¢+ and j are neighbors, a common choice
of ¢;; is g;; = 1, reflecting equal weights from neighboring areas. Brook’s lemma
(Brook, 1964) suggests a multivariate normal distribution for Z(s1),---, Z(sy)
with mean 0 and variance matrix (Yasui and Lele, 1997)

S, ="M -0Q) 1, (2.11)

where Q = {g;;} is an n x n symmetric matrix; M is an n x n diagonal matrix
with diagonal elements 1/¢;+. It is worth noting that the flexibility of the CAR
structure allows for a more general neighborhood concept than a mere geographical
proximity (Cressie, 1993).

2.2 Spatial prediction (Kriging)

Having estimated the trend parameter 3 and the spatial correlation parameter 8,
we are ready to discuss geostatistical techniques to predict the value of a random
field at a given location from nearby observations. Such techniques are termed
kriging, developed by a French mathematician Georges Matheron and named after
Daniel Gerhardus Krige, a mining engineer who developed a distance-weighted
average method for determining gold grades based on nearby samples.
Specifically, kriging is about interpolating the value Y (sg) of a random field
Y (s) at a prespecified location sg from observations V; = Y (s;), i =1,--- ,n. In
essence, it is a minimum-mean-squared-error method of prediction that depends
on the second-order properties of Y(+), via computing the best linear unbiased
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estimator Y (sg) for Y (sg), given by

Yic(so) = co + Zin(si) =cg+wY,.
=1

The weights w def (wq, -+ ,wy,)" are chosen in such a way that the prediction error
variance (also called kriging variance or kriging error)

o2 (20) = var (Yfk(so) - Y(so))
= var(Y(sg)) — 2w'k(sg) + w' X, w, (2.12)

where k(sg) = (C(so —s1;0),--- ,C(s0 — sn;0))" and X,, = [C(s; —8;;0)]nxn, is
minimized subject to the unbiasedness condition:

E[Vi (so) — Y (s0)] = 0. (2.13)

This optimization problem can be solved by using the Lagrange multipliers,
yielding a closed-form kriging estimator

~ ~t ~
Yi(so) = B X(so) + k(s0)' 2, (Y, — X,.8), (2.14)
where B is obtained from (2.10), with prediction error variance given by

o2 (s0) = [var(Y (so)) — k(so)'S;, "k(so)]
+(X(s0) — X}, 3, "k(s0)) (X, 2,1 X,) " H(X(s0) — X, 2, K(s0)).-

Refer to Ripley (1981) for detailed derivations.

Several issues merit attention. First, 3,, is an n X n matrix, presenting much
difficulty for inverting it, especially when n is large. An attractive solution is to
use a subset of (s, - ,sy), say, (k1, -+ ,KK), where K << n, as representative
knots and perform low rank kriging as proposed by Kammann and Wand (2003).
This subset can be obtained while an efficient space filling algorithm (e.g. Nychka
and Saltzman, 1998).

Secondly, the development so far needs the covariance function C(+; 0) or the
spatial variance component 8 is known. When 6 is unknown (which is often the
case), one needs to replace @ that involves in (2.14) by its consistent estimate 0
(discussed in the previous section), but it remains an open problem to derive the
prediction error variance that also accounts for the variability of 8. A kriging
method that blends prediction and nonparametric estimation of the covariance
function C(-) was given by Opsomer et al. (1999), though the estimate of the
prediction error that fully accounts variations from all sources, e.g. owing to
estimation of 8 and variance function, is still elusive.

Thirdly, equation (2.14) reveals that the classical kriging uses the linear com-
bination of the observed values to approximate that of a new location, with larger
weights assigned to more nearby locations. However, in many situations, e.g. for



Modeling and Analysis of Spatially Correlated Data 81

non-normal data, such linearity assumption is too strict and may not be plau-
sible. 'We therefore consider an optimal predictor that minimizes the following
conditional-mean-squared-error function

E[{p(Yn;s0) = Y(s0)}*[Y ], (2.15)
where p(Y,,;80) is a predictor at sg based on the observed Y,,. In view of
E[{p(Yniso) = Y(s0)}*[ Y] = var{Y (so)|Yn} + [p(Ynis0) — E{Y (s0)| Y. }]*,
it is obvious that the optimal predictor is
Y,(s0) = E{Y (s0)[Yn}.

When Y(-) is a Gaussian process, the optimal predictor Y,(sg) coincides with
the classical kriging Yi(so) in (2.14). For non-normal data, we will consider a
generalized linear mixed model, based on which the optimal predictor will be non-
linear and often requires numerical approximations.

Finally, as we have been confined to use a fully parametric form to model
the trend surface, i.e. the deterministic part of the spatial process, as in (2.6), one
possible alternative is to estimate the trend surface by nonparametric regression.
This would produce enough flexibility to absorb the signal almost completely into
the trend, effectively diminishing spatial dependence. Mueller (2000) considered
the following model in the spirit of Hastie and Tibshirani (1993),

Y(s) = n(X(s),B(s)) + Z(s)

where 7 is assumed to be a smooth function and Z(s) is a white noise with
cov(Z(s), Z(s')) = 0 if s # s’ and var(Z(s)) = o2(s). By allowing B to change
smoothly over the location s, one would be able to recover the trend surface of the
underlying spatial process. A unified approach that encompasses both regression
and kriging based on this model is given by Host (1999).

3 Spatial models for non-normal/discrete data

While by far we have focused on the normal outcome data, non-normal data do fre-
quently arise from spatial studies. Sometimes it is possible to transform the data
so that they feature more as realizations from the Gaussian process, but in most
cases, especially for discrete data, such transformation is not possible. Examples
include the forest defoliation study reported in Heagerty and Lele (1998), with
binary outcomes indicating the presence or absence of Gypsy moth egg masses at
given locations, and the sudden infant death (SID) study (Cressie and Read, 1989),
which studied the counts of SIDs cross 100 counties of North Carolina. Statistical
models for independent non-normal data, can be traced back as early as 1934,
when Bliss (1934) proposed the first probit regression model for binary data. It
was not, however, until four decades later did Nelder and Wedderburn (1972) and
McCullagh and Nelder (1983 1st ed., 1989 2nd ed.) propose Generalized Linear
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Models (GLMs) to unify the models and modeling techniques for analyzing more
general data (e.g. count data and polytomous data). Several authors (Laird and
Ware, 1982; Stiratelli et al., 1984; Schall, 1991, among others) considered a nat-
ural generalization of the GLMs to accommodate correlated non-normal data by
incorporating random terms into the linear predictor parts. The resulting models
are termed generalized linear mixed models (GLMMSs), providing a convenient and
flexible way to model multivariate non-normal data. In particular, GLMMs consti-
tute a unified framework for modeling geostatistical non-normal data, using mixed
terms to model the underlying spatial process. We call the special application of
GLMDMs to the geostatistical data as spatial generalized linear mixed models (see
e.g. Diggle et al., 1998; Zhang, 2002), which is to be discussed in the next section.

3.1 Spatial generalized linear mixed models (SGLMMs)

Consider a simple illustration of a spatial logistic regression for binary data:

Y (s)|X(s), Z(s) i Bernoulli(us);
logit(us) = X(s)'B+ Z(s) (3.1)

where Y(s) denotes the binary outcome (e.g. 1 corresponds to the presence of
Gypsy moth egg masses and 0 to the absence) at location s, X(s) is a vector of
additional individual-level covariates of interest and Z(s) are unobserved spatially
correlated random effects indexed by s. In practice, we posit a random field
structure on Z(s), with covariance structure specified as in Section 2. This class
of logistic regression model was originally designed for prospective studies, but is
also applicable to case-control studies. Inference based on (3.1) has been detailed
in Paciorek (2007).

It is straightforward to generalize (3.1) to accommodate more general data
beyond binary outcomes. Specifically, conditional on unobserved spatial random
variables Z(s), the Y (s) are assumed to be independent and follow a distribution
of the exponential family:

Y (s)|X(s), Z(s) ' f(Y()|X(s), Z(s)), (3.2)
F(Y(8)|X(s), Z(s)) = exp{[Y(s)as — h(as)]/7° = (Y (s),7)}.
(3.3)

The conditional mean of Y (s)|X(s), Z(s), denoted by us, is related to as through
the identity us = Oh(as)/Oas. It is to be modeled, after a proper transformation,
as a linear model in both the fixed and spatial random effects:

9(us) = X(s)'B + Z(s). (3-4)

Here, g(-) is coined a link function, often chosen as an invertible and continuous
function, and Z(s) is assumed to have a random field structure, whose covariance
function is characterized by a finite dimensional parameter 8, termed the spatial
variance components.
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Model (3.4) is comprehensive and encompasses a variety of models, including
the aforementioned spatial logistic regression model as a special case. Specifically,
for binary outcome data, let

h(a) = log{1 +exp(a)}, 7 = 1, ¢y, 7%) = 0.

Choosing g(1) = logit(p) yields spatial logistic regression model (3.1), while choos-
ing g(u) = ®~(p), where ®(-) is the CDF for a standard normal, gives a probit
random effects model. On the other hand, for continuous outcome data, by setting

1 1 1
h(Oé) = 70‘270(3/37_2) = 7y2/7_2 Y 10g(27{'7’2)
2 2 2
and ¢(-) to be an identity function, model (3.4) reduces to a linear mixed model.
For count data, putting

ha) =e* 7=1, c(y,7'2) =logy

and choosing g(u) = log(p) results in a Poisson regression model.
Given data (Y(s;),i = 1,---,n), (3.2) and (3.3) induce the following log
likelihood that the inference will be based on:

£ =tog [ T[ 10 ()X (s:). Z(5:):8) (21X, ).
i=1

where the integration is over the n-dimensional random effect Z = (Z(s;),- -,
Z(sn)).

We can further reformulate model (3.4) in a compact vectorial form. With
Y ,,, X,, defined as in the previous section, we write

g E(YnX,,2)} = X,,8+ AZ, (3.5)

where A is a non-random design matrix, compatible with the random effects Z.
The associated log likelihood function can be rewritten as

Y010 8,6) =10z L(Y,,|X,1 6,6) = log [ F(Yo[X,.2:)f (2IX:6)dZ,
(3.6)
where f(Y,|X,,Z;0) is the conditional likelihood for Y,, and f(Z|X,;8) is the
density function for Z, given the observed covariates X,,.

Model (3.5) is not a simple reformat - it accommodates more complex data
structure beyond spatial data. For example, with properly defined A and random
effects Z it encompasses non-normal clustered data and crossed factor data (Bres-
low and Clayton, 1993). When A is defined as matrix indicating membership of
spatial regions (e.g. counties or census tracts), (3.5) models areal data as well.
Model (3.5) accommodates a low-rank kriging spatial model, where the spatial
random effects Z will have a dimension that does not increase with the sample
size n and, in practice, is often far less than n. Specifically, consider a subset of
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locations (s1,- - ,Sn), say, (K1, -+ ,KK), where K << n, as representative knots.
Let

A = (C(si — ki 0))1<i<n,1<k<K

Q = (Ckr — k3 0)) 1<k k<K

and Z be a K x 1 vector with covariance 2 '. Then (3.5) represents a low-kriging
model by taking a linear combination of radial basis functions C(s — ky;80)),1 <
k < K, centered at the knots (k1, -+ ,Kkk), and can be viewed a generalization
of Kammann and Wand’s (2003) linear geoadditive model to accommodate non-
normal spatial data.

Because of the generality of (3.5), the ensuing inferential procedures in Sec-
tion 3.2 will be based on (3.5) and (3.6), facilitating the prediction of spatial ran-
dom effects and, hence, each individual’s profile. Two routes can be taken. The
best predictor of random effects minimizing the conditional-mean-squared-error
(2.15) is E(Z|Y ), not necessarily linear in Y,,. But if we confine our interest to
an unbiased linear predictors of the form

ZZC+QYHJ

for some conformable vector ¢ and matrix Q, minimizing the mean squared er-
ror (2.12) subject to constraint (2.13) leads to the best linear unbiased predictor
(BLUP)

Z = E(Z) + cov(Z,Y,){var(Y,)} {Y, - E(Y,)}. (3.7)

Equation (3.7) holds true without any normality assumptions (McCulloch and
Searle, 2001).

For illustration, consider a Dirichlet model for binary spatial outcomes such
that

Y (s)|Z(s) ~ Bernoulli(Z(s))

and the random effect Z = (Z(s1),---,Z(sp)) ~ Dir(aq,- - ,ap), where a; > 0.
Using (3.7), we obtain the best linear predictor for Z(s;),

Q; —
2(s0) = 2+ €351 (Y — o)

where ag = Zfil A, oy = (al/ao,"' ;an/aO)/7 Yo = [Cij}nXm Cij = —Otiaj/a%
(ag + 1) for i # j, ci; = (g — ;) /a3 (ag + 1) and &, is the i-th column of Xy.
As a simple example, when n = 2,
. i+ Y
Z(s;) = u,
a1 +as+1

where Yy = (Y (s1) + Y(s2))/2.
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3.2 Computing MLEs for SGLMMs

A common theme in fitting a SGLMM has been the difficulty of computation of
likelihood-based inference. Computing the likelihood itself actually is often chal-
lenging for SGLMMs, largely due to high dimensional intractable integrals. We
present below several useful likelihood-based approaches to estimating the coeffi-
cients and variance components, including iterative maximization procedures, such
as the Expectation and Maximization (EM) algorithm, and approximation proce-
dures, such as the Penalized Quazi-likelihood method and the Laplace method.

The EM algorithm (Dempster et al., 1977) was originally designed for likeliho
od-based inference in the presence of missing observations, and involves an iterative
procedure that increases likelihood at each step. The utility of the EM algorithm in
a spatial setting lies in treating the unobserved spatial random terms as ‘missing’
data, and imputing the missing information based on the observed data, with the
goal of maximizing the marginal likelihood of the observed data.

Specifically, if the random effects Z were observed, we would be able to write
the ‘complete’ data as (Y, Z) with a joint log likelihood

E(Yna Z|Xn§/870) = log f(Yn|Xn7 Z;B) + log f(Z|Xn§ 0)- (3'8)

As Z is unobservable, directly computing (3.8) is not feasible. Rather the EM
algorithm adopts a two-step iterative process. The Expectation step (‘E’ step)
computes the expectation of (3.8) conditional on the observed data. That is,
calculate

0= E{U(Y 1, Z|X,,; 3,0)[Y 0, X, By, 60},

where 8, 0¢ are the current values, followed by a Maximization step (M step),
which maximizes ¢ with respect to 3 and 8. The E step and M step are iterated
until convergence is achieved; however, the former is much costly, as the conditional
distribution of Z|X,,,Y,, involves the distribution f(Y,|X,), a high dimensional
intractable integral. A useful remedy is the Metropolis-Hastings algorithm that
approximates the conditional distribution of Z|X,,,Y, by making random draws
from Z|X,,,Y, without calculating the density f(Y,|X,) (McCulloch, 1997).

Apart from the common EM algorithm that requires a full likelihood anal-
ysis, several less costly techniques have proved useful for approximate inference
in the SGLMMSs and other nonlinear variance component models, among which
the Penalized Quasi-likelihood (PQL) method Penalized Quasi-likelihood (PQL)
method is most widely used.

The PQL method was initially exploited as an approximate Bayes procedure
to estimate regression coefficients for semiparametric models; see Green (1987).
Since then, several authors have explored the PQL to draw approximate inferences
based on random effects models: Schall (1991) and Breslow and Clayton(1993) de-
veloped iterative PQL algorithms, Lee and Nelder (1996) applied the PQL directly
to hierarchical models.

We consider the application of the PQL for the SGLMM (3.5). For notational
simplicity we write the integrand of the likelihood function

f(Yn|Xna Z,ﬂ)f(zlxn, 0) = eXp{—K(YT“ Z)}a (39)
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where, for notational simplicity, we do not list X,, as an argument in function K.
Next evaluate the marginal likelihood. Temporarily we assume that @ is known.
For any fixed 8, expanding K (Y, Z) around its mode Z up to the second order
term, we have

L(Y [ X,: B.6) = / exp{—K(Y,.Z)}dZ

= [127{K® (Y., Z)}7H|V? exp{~K (Y, 2)},

where K(?)(Y,,,Z) denotes the second derivative of K(Y,,Z) with respect to Z,
and Z lies in the segment joining 0 and Z. 1t K@ (Y, Z) does not vary too much
as Z changes (for instance, K(?(Y,,, Z) = constant for normal data), maximizing
the marginal likelihood (3.6) is equivalent to maximizing

e KY0Z) _ 1y, X0, 2, B) [(ZXn: 0).

This step is also equal to jointly maximizing f(Y,|Xn,Z;8)f(Z]|X,;0) wr.t 3
and Z with 0 being held constant. Finally, only 6 is left to be estimated, but it
can be estimated by maximizing the approximate profile likelihood of 8,

120 {K® (Y., 2(6))}H|I'? exp{—K (Y, 2(6)) };

refer to Breslow and Clayton (1993).

As no close-form solution is available, the PQL is often performed through
an iterative process. In particular, Schall (1991) derived an iterative algorithm
when the random effects follow normal distributions. Specifically, with the current
estimated values of 3, 8 and Z, a working ‘response’ Y, is constructed by the first
order Taylor expansion of g(Y) around p?, or explicitly,

Y, =g(p) + gV () (Y — p*) = XB + AZ + gD (p*)(Y, — p*),  (3.10)

where g(!)(-) denotes the first derivative and g(-) is defined in (3.4).

When viewing the last term in (3.10) as a random error, (3.10) suggests
fitting a linear mixed model on Y,, to obtain the updated values of 3,7 and 0,
followed by a recalculation of the working ‘responses’. The iteration shall continue
until convergence. Computationally, the PQL is easy to implement, only requiring
repeatedly invoking existing macros, for example, SAS ‘PROC MIXED’. The PQL
procedure yields exact MLEs for normally distributed data and for some cases
when the conditional distribution of Y,, and the distribution of Z are conjugate.

Several variations of the PQL are worth mentioning. First, the PQL is ac-
tually applicable in a broader context where only the first two conditional mo-
ments of Y,, given Z are needed, in lieu of a full likelihood specification. Specif-
ically, f(Yn|Xn,Z;03) in (3.9) can be replaced by the quasi-likehood function
exp{ql(Yn|Xn, Z; B)}, where

Y —t
GU(Y 01X, Z: B) = / it
(Y| ) ; . VO

Here i = B(Y (s:)[X,., 2 8) and V(s17) = var(Y ()| X0, Z: B).
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Secondly, the PQL is tightly related to other approximation approaches, such
as the Laplace method and the Solomon-Cox method, which have also received
much attention. The Laplace method (see, e.g. Liu and Pierce (1993)) differs from
the PQL only in that the former obtains Z(,@,O) by maximizing the integrand
e~ K2 with B and 6 being held fixed, and subsequently estimates (B,é) by
jointly maximizing

127 {K® (Y, 2)}7H[V2 exp{~K (Y, Z)}.

On the other hand, with the assumption of E(Z|X,,) = 0, the Solomon-Cox tech-
nique approximates the integral [ f(Y,|X,,Z)f(Z|X,)dZ by expanding the in-
tegrand f(Y,|X,,Z) around Z = 0; see Solomon and Cox (1992).

In summary, none of these approximate methods produce consistent esti-
mates, with exception in some special cases, e.g. normal data. Moreover, as
these methods are essentially normal approximation-based, they typically do not
perform well for sparse data, e.g. for binary data, and when the cluster size is rel-
atively small (Lin and Breslow, 1996). Nevertheless, they provide a much needed
alternative, especially given that full likelihood approaches are not always feasible
for spatial data.

4 Spatial models for censored outcome data

Biomedical and epidemiological studies have spawned an increasing interest in
and practical need for developing statistical methods for modeling time-to-event
data that are subject to spatial dependence. Little work has been done in this
area. Li and Ryan (2002) proposed a class of spatial frailty survival models.
A further extension accommodating time-varying and nonparametric covariate
effects, namely geoadditive survival model, was proposed by Hennerfeind et al.
(2006). However, the regression coefficients of these frailty models do not have
an easy population-level interpretation, less appealing to practitioners. In this
section, we focus on a new class of semiparametric likelihood models recently
developed by Li and Lin (2006). A key advantage of this model is that observations
marginally follow the Cox proportional hazard model and regression coefficients
have a population level interpretation and their joint distribution can be specified
using a likelihood function that allows for flexible spatial correlation structures.
Consider in a geostatistical setting a total of n subjects, who are followed up
to event (e.g. death or onset of asthma) or being censored, whichever comes first.
For each individual, we observe a ¢ x 1 vector of covariates X, and an observed
event time T = min(T,U) and a non-censoring indicator § = I(T < U), where T
and U are underlying true survival time and censoring time respectively, and I(-)
is an indicator function. We assume noninformative censoring, i.e., the censoring
time U is independent of the survival time T' given the observed covariates, and
the distribution of U does not involve parameters of the true survival model.
The covariates X are assumed to be a predictable time-dependent (and space-
dependent) process. Also documented is each individual’s geographic location s;.
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Denote by X(t) = (X(s) : 0 < s < t) the X-covariate path up to time . We
specify that the survival time 7" marginally follows the Cox model

MEX(®)} = Mo(H){X(t), B} (4.1)

where 1{, -} is a positive function, 3 is a regression coefficient vector and Ag(t) is
an unspecified baseline hazard function. A common choice of v is the exponential
function, in which case, ¥{X(t), 3} = exp{B'X(t)}, corresponding to the Cox
proportional hazards model discussed in Li and Lin (2006). This marginal model
refers to the assumption that the hazard function (4.1) is with respect to each
individual’s own filtration, F; = o{I(T < 5,6 = 1), (T > s),X(s),0 < s < t},
the sigma field generated by the survival and covariate paths up to time ¢. The
regression coefficients 3 hence have a population-level interpretation.

Use subscript ¢ to flag each individual. A spatial joint likelihood model
for Ty,--- T, is to be developed, which allows T; to marginally follow the Cox
model (4.1) and allows for a flexible spatial correlation structure among the 7T;’s.
Denote by A;(t) = fot Ai(8|X;)ds the cumulative hazard and Ag(t) = fot Ao(s)ds
the cumulative baseline hazard. Then A;(7;) marginally follows a unit exponential
distribution, and its probit-type transformation

T =o~! {1 - e_A"(T”)} (4.2)
follows the standard normal distribution marginally, where ®(-) is the cumulative
distribution function of the standard normal distribution. We then conveniently
posit a spatial structure on the underlying random fields of T* = {T}*,i = 1,--- ,n}
within the traditional Gaussian geostatistical framework. Hence such a normal
transformation of the cumulative hazard provides a general framework to construct
a flexible joint likelihood model for spatial survival data by preserving the Cox
model for each individual marginally. This also provides a convenient way to
generate spatially correlated survival data whose marginal distributions follow the
Cox model.

Specifically, we assume T* to be a Gaussian random field as specified in
Section 2, such that T follows a joint multivariate normal distribution as

™ ={T/,i=1,--- ,n} ~ MVN(0,,T), (4.3)

where T' is a positive definite matrix with diagonal elements being 1. Denote by
0;; the (i, j)th element of I'. We assume that the correlation §;; between a pair of
normalized survival times, say 17" and T, depends on their geographic locations
s; and s;, i.e.

corr(T}, T?) = b5 = 0i5(si,5) (4.4)

for i #£ 5 (4,7 =1,--- ,n), where 0;; € (—1,1). Generally a parametric model is
assumed for 6;;, which depends on a parameter vector o as 6;;(c).

Since the transformed times T* are normally distributed, a rich class of
models can be used to model the spatial dependence by specifying a parametric
model for 6;;. For instance, 6;;(c) may be parameterized as p(d;;, &), an isotropic
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correlation function which decays as the Euclidean distance d;; between two in-
dividuals increases. A widely adopted choice for the correlation function is the
Matern function m(o?,(,v,d) as defined in (2.2). Recall that o2 is a scale param-
eter and corresponds to the ‘partial sill’, { measures the correlation decay with
the distance and v is a smoothness parameter, characterizing the behavior of the
correlation function near the origin, but its estimation is difficult as it requires
dense space data and may even run into identifiability problems. Stein (1999) has
argued that data can not distinguish between v = 2 and v > 2. Li and Lin (2006)
fixing v to estimate the other parameters and performing a sensitivity analysis by
varying v for data analysis, in which case the unknown a = (02, ¢)’".

4.1 A class of semiparametric estimation equations

As a full likelihood-based inferential procedure, which involves a large dimensional
integral, is difficult, we opt for a class of spatial semiparametric estimating equa-
tions constructed using the first two moments of individual survival times and the
covariance functions of all pairs of survival times.

First derive the Martingale covariance rate function under the semiparamet-
ric normal transformation model (4.2)—(4.3). We denote the counting process
N;(t) = I(T; < t,0; = 1) and the at-risk process Y;(t) = I(T; > t). Next define a
Martingale, adapted to the filtration F; ; = o(V;(s), Yi(s), Xi(s),0 << s < t), as

Mi(t) = Ni(t) - / Yi(s)o{Xi(s), B}do(s).

To relate the correlation parameters a to the counting processes, one needs to
consider the joint counting process of two individuals. Define the conditional Mar-
tingale covariance rate function for the joint counting process of two individuals, a
multi-dimensional generalization of the conditional hazard function, as (Prentice
and Cai, 1992)

Ai’j(dtl,dtg) = E{Mz(dtl)Mj(dtgﬂTl > t1,Tj > tg}.

Then we have
t1 to
B{M(t) M (t2) — / / Yi(s1)Yj(52) Ai s (ds1, dss)} = 0.
0 0

Denote by S;;j(v1,v2) the joint survival function of A;(T;) and A;(T}), the
exponential transformations of the original survival times. Then

Sij(vl,vg;eij) = P{AZ(TZ) > U17Aj(Tj) > UQ;Hij}. (45)

Following Prentice and Cai (1992), one can show that the covariance rate can be
written as

A; j(dty, dta; 055) = Ao{Ai(t1), Aj(t2); 0ij } As(dtr) A (dta),
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9 - 3 3
+371}15¢j(v1,02;9) + 8v25ij(vl7vz;9)}/Sij(v1,v2;9)-

As a special case, Ag(v1,v2;0 = 0) = 0. Li and Lin (2006) showed that as § — 0+,
Ap(v1,v2;0) converges to 0 uniformly at the same rate as that when (vy,vs) lies
in a compact set. We simultaneously estimate the regression coefficients 8 (a
g x 1 vector) and the correlation parameters e (a k x 1 vector) by considering
the first two moments of the Martingale vector (M, --- , M,). In particular, for a
pre-determined constant 7 > 0 such that it is within the support of the observed
failure time, i.e P(7 < U; A'T;) > 0 (in practice 7 is usually the study duration),
we consider the following unbiased estimating functions for ® = {3, a} for an
arbitrary pair of two individuals, indexed by u and v:

o if u=u,
J; YW, (5 )dM ( )
UW@—MMJ = Iy Ya v

where W, .(s) (a scalar) and vy, (a length-g vector) are non-random
weights.
o if u # v,

’ Vo {Mu(T)My(7) — Ay }

where X, ,(s) = {Xu(s),X,(s5)}, dMy(s) = {dM,(s),dM,(s)}, and

Wiy (8) = {w( ' )}gxg and v, (a length-¢ vector) are non-random weigh
ts and

U, v(@) — |:f07' Xu)v(S)W(u’v) (S)dMu’v(s)]

//Y (8) Ao{ A (5), Ay (£): O A (5) A (1)

Ay (XuNAT)  pAL(XoAT)
:/ / Ao{tl,tg;auu}dtldtz.
0 0

It can be easily shown that U, , is an unbiased estimating function, since
E{U,,(0g)} = 0, where the expectation is taken under the true @9 = (B, o)
and the true cumulative hazard function Ag(-). In fact, the first component of
U,,v, which is the estimating equation for 3, is unbiased even when the spatial
correlation structure is misspecified. Hence the regression coefficient estimator B
is robust to misspecification of the spatial correlation structure.

As Ap(t) in the estimating equations is unknown, a natural alternative is to
substitute it with the Breslow-type estimator

’L ldN()
Zl L Yi(s)v{Xi(s), B}




Modeling and Analysis of Spatially Correlated Data 91

As a result, the parameters of interest @ = (3, ) are estimated by solving the
following estimating equations, constructed by weightedly pooling individual Mar-
tingale residuals and weightedly pooling all pairs of Martingale residuals respec-
tively

G, = n! Z ﬂu,v(g) =0, (46)

uZ=v

where U(-) arises from U(+) by substituting Ag(t) by Ag(t).
With the matrix notation, (4.6) can be expressed conveniently as

1 fOT/X(s)WdM(s) _

M (1)VM(7) — tr(V,A) 0 (47)

where j =1,--- ,k, W and V; are weight matrices, M = (Ml, e ,Mn)’, X(s) =
{X1(s), -+, Xn(s)}, A is an n x n matrix whose uv-th (u # v) entry is Ay,
obtained from A, with Ag(t) replaced by Ag(t), and A, = Jy Yu (5)dAy(s).

The weight matrices W and V1, .-+, V are meant to improve efficiency and
convergence of the estimator of 3 and «. In particular, following Cai and Prentice
(1997) W can be specified as (D™Y2AD™1/2)~1 the inverse of the correlation
matrix of the Martingale vector M(7), where D = diag(A411,- -, Ann). In the
absence of spatial dependence, W is an identity matrix and hence the first set
of equations of (4.7) is reduced to the ordinary partial likelihood score equation
for regression coefficients 8. To specify V; (j = 1,---,¢), one could assume
V,; = A"'(0A/0a;)A~". Under this specification, the second set of estimating
equations in (4.7) resembles the score equations of the variance components « if the
‘response’ M followed a multivariate normal distribution MV N(o,, A) (Cressie,
1993, p483).

To ensure numerical stability, we consider a modification of the spatial esti-
mating equation (4.7) by adding a penalty term,

(©) = G, (0) - %n@

where Q is a (¢ + k) x (¢ + k) positive definite matrix, acting like a penalty term.
This penalized version of the spatial estimating equation (4.7) can be motivated
from the perspective of ridge regression or from Bayesian perspectives by putting
a Gaussian prior MV N (044, Q2" ") on @, and results in stabilized variance com-
ponent estimates of a for example, for moderate sample sizes, and is likely to force
the resulting estimates to lie in the interior of the parameter space (Heagerty and
Lele, 1998). Therefore in practice, especially when the sample size is not large, we
consider using a small penalty, £ = wl, where 0 < w < 1, for numerical stability.
As the sample size n goes to co, we have 1@ — 0. Therefore G,,(©) and G;,(©)
are asymptotically equivalent, and therefore the large sample results of the original
and penalized estimating equations are equivalent.
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4.2 Asymptotic Properties and Variance Estimation

The large sample properties of the estimators can be established, facilitating draw-
ing inference based on the semiparametric normal transformation model. Under
the regularity conditions listed in Li and Lin (2006), the estimators obtained by
solving G,,,(®) = 0 exist and are consistent for the true values of ¢ = (8, o)
and that n'/ 2{(':) — O} is asymptotic normal with mean zero and a covariance
matrix that can be easily estimated using a sandwich estimator. The results are
formally stated in the following Proposition and can be proved along the line of
Li and Lin (2006), which focused on the proportional hazards models.

Proposition 4.1. Assume the true ®q is an interior point of an compact set, say,
B x A€ R1* where q is the dimension of B and k is the dimension of . When
n is sufficiently large, the estimating equation G, (©®) = 0 has a unique solution
in a neighborhood of ®g with probability tending to 1 and the resulting estimator

© s consistent for ©q. Furthermore, /n{Z®}~122{(B,&) — (8,, o)’} A
MV N{og+, 1}, where I is an identity matriz whose dimension is equal to that of
Oy, and

> = % ZE{B%UW(@)}

u=v

1
2(2) = ﬁ Z Z E{Uul,vl (®O)Uu2,122(®0)}~

U121 U2 2V2

It follows that the covariance of © can be estimated in finite samples by

o~ — T o~ o~ — /
-5 's? {= 1} (4.8)

where 3 and E(Z) are estimated by replacing U, (-) by ﬂuv() and evaluated at
©,.

Although each E {fjuw2 (@0)13;27@2(90)} could be evaluated numerically,
the total number of these calculations would be prohibitive, especially when the

sample size m is large. To numerically approximate 2(2 , one can explore the
resampling techniques of Carlstein (1986) and Sherman (1996). Specifically, under
the assumption of

nx E{G,G,} — S,

Y can be estimated by averaging K randomly chosen subsets of size n; (j =
1,--+, K) from the n subjects as

K
~ 1 ~ —~/
S =K' 0 {6, G )
j=1

where énj is obtained by substituting ©® with © in Gy,;. The n; is often chosen
to be proportional to n so as to capture the spatial covariance structure. For
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practical utility, Li and Lin recommended to choose n; to be roughly 1 / 5 of the
total populatlon Given the estimates EOO and E the covariance of ® can be

estimated by & [1/n X Soo] (B 1)’.

To estimate the covariance matrix of the estimates arising | from the penalized
estimator obtained by solving G} (0) = 0, s is replaced by s - Q. A similar
procedure was adopted by Heagerty and Lele (1998) for spatial loglstic regression.

4.3 A data example: east boston asthma study

Li and Lin reported the application of the proposed method to analyze the East
Boston Asthma study, focusing on assessing how the familial history of asthma
may have attributed to disparity in disease burden. In particular, this study was
to establish the relationship between the Low Respiratory Index (LRI) in the first
year of life, ranging from 0 to 16, with high values indicating worse respiratory
functioning, and age at onset of childhood asthma, controlling for maternal asthma
status (MEVAST), coded as 1=ever had asthma and O=never had asthma, and
log-transformed maternal cotinine levels (LOGMCOT). This investigation would
help better understand the natural history of asthma and its associated risk factors
and to develop future intervention programs.

Subjects were enrolled at community health clinics throughout the east Bost
on area, with questionnaire data collected during regularly scheduled well-baby
visits. The ages at onset of asthma were identified through the questionnaires.
Residential addresses were recorded and geocoded, with geographic distance mea-
sured in the unit of kilometer. A total of 606 subjects with complete information
on latitude and longitude were included in the analysis, with 74 events observed at
the end of the study. The median followup was 5 years. East Boston is a residen-
tial area of relatively low income working families. Participants in this study were
largely white and hispanic children, aging from infancy to 6 years old. Asthma
is a disease strongly affected environmental triggers. Since the children living in
adjacent locations might have had similar backgrounds and living environments
and, therefore, were exposed with similar unmeasured similar physical and social
environments, their ages at onset of asthma were likely to be subject to spatial
correlation.

The age at onset of asthma was assumed to marginally follow a Cox model

A(t) = Xo(t) exp{BL x LRI+ Byy x MEVAST + ¢ x LOGMCOT},  (4.9)

while the Matérn model (2.1) was assumed for the spatial dependence. Evidently,
betar,, By and Bo measured the impact of main covariates and have population-
level interpretations. The regression coefficients and the correlation parameters
were estimated using the spatial semiparametric estimating equation approach,
and the associated standard error estimates were computed using (4.8). To check
the robustness of the method, Li and Lin varied the smoothness parameter v in
(2.1) to be 0.5, 1 and 1.5.

As the East Boston Asthma Study was conducted in a fixed region, to ex-
amine the performance of the variance estimator in (4.8), which was developed
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under the increasing-domain-asymptotic, Li and Lin calculated the variance us-
ing a ‘delete-a-block’ jackknife method (see, e.g. Kott (1998)). Specifically, they
divided the samples into B nonoverlapping blocks based on their geographic prox-
imity and then formed B jackknife replicates, where each replicate was formed by
deleting one of the blocks from the entire sample. For each replicate, the esti-
mates based on the semiparametric estimating equations were computed, and the
jackknife variance was formulated as

B

B-1<S& . . .

valjackknife = T Z((aj - 9)(@J - 9)/ (410)
j=1

where éj was the estimate produced from the jackknife replicate with the j-
th ‘group’ deleted and © was the estimate based on the entire population. In
their calculation, B was chosen to be 40, which appeared large enough to render
a reasonably good measure of variability. This jackknife scheme, in a similar
spirit of Carlstein (1986, 1988), treated each block approximately independent
and seemed plausible for this data set, especially in the presence of weak spatial
dependence. Loh and Stein (2004) termed this scheme as the splitting method and
found it work even better than more complicated block-bootstrapping methods
(e.g. Kunsch, 1989; Liu and Singh, 1992; Politis and Romano, 1992; Bulhmann
and Kunsch, 1995). Other advanced resampling schemes for spatial data are also
available, e.g double-subsampling method (Lahiri et al., 1999; Zhu and Morgan,
2004) and linear estimating equation Jackknifing (Lele, 1991), but are subject to
much more computational burden compared with the simple jackknife scheme we
used.

Their results are summarized in the following table, with the large sample
standard errors (SE,) computed using the method described in Section 4.3 and
the Jackknife standard errors (SE;) computed using (4.10).

v=20.5 v=1 v=15
Parameters Estimate SE, SE; Estimate SFE, SE; Estimate SE, SE;
Br  0.3121  0.0440 0.0357 0.3118 0.0430 0.0369 0.3124 0.0432 0.0349
By 0.2662  0.3314 0.3222  0.2644  0.3289 0.3309 0.2676  0.3283 0.3340
Bc 0.0294  0.1394 0.1235 0.02521 0.1270 0.1063  0.0277 0.1288 0.1083
02 1.68E-3 9.8E-3 0.0127 0.74E-3 5.0E-3 7.1E-3 0.72E-3 5.5E-3 4.8E-3
¢ 2.2977 4.974 3.708 2.1917 4.7945 4.1988 1.8886 6.5005 5.01617

The estimates of the regression coefficients and their standard errors were
almost constant with various choices of the smoothness parameter v and indicated
that the regression coefficient estimates were not sensitive to the choice of v in
this data set. The standard errors obtained from the large sample approximation
and the Jackknife method were reasonably similar. Low respiratory index was
highly significantly associated with the age at onset of asthma, e.g. 8, = 0.3121
(SE, = 0.0440, SE; = 0.0357) when v = 0.5; f1, = 0.3118 (SE, = 0.0430, SE; =
0.0369) when v = 1.0; ﬁL = 0.3124 (SE, = 0.0432, SE; = 0.0349) when v = 1.5,
indicating that a child with a poor respiratory functioning was more likely to
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develop asthma, after controlling for maternal asthma, maternal cotinine levels and
accounting for the spatial variation. No significant association was found between
ages at onset of asthma and maternal asthma and cotinine levels. The estimates
of the spatial dependence parameters, o2 and ¢ varied slightly with the choices
of v. The scale parameter o2 corresponds to the partial sill (Waller and Gotway,
2004, p.279) and measures the correlation between subjects in close geographic
proximity. Thi analysis showed that such a correlation is relatively small. The
parameter ¢ measures global spatial decay of dependence with the spatial distance
(measured in kilometers). For example, when v = 0.5, i.e., under the exponential
model, ¢ = 2.2977 means the correlation decays by 1 — exp(—2.2977 x 1) = 90%
for every one kilometer increase in distance.

5 Concluding remarks

This chapter has reviewed the methodologies for the analysis of spatial data within
the geostatistical framework. We have dealt with data that consist of the mea-
surements at a finite set of locations, where the statistical problem is to draw
inference about the spatial process, based on the partial realization over this sub-
set of locations. Specifically, we have considered using linear mixed models and
generalized linear models that enable likelihood inference for fully observable spa-
tial data. The fitting of such models by using maximum likelihood continues to
be complicated owing to intractable integrals in the likelihood. In addition to
the methods discussed in this chapter, there has been much research on the topic
since the last decade, including Wolfinger and O’Connell (1993), Zeger and Karim
(1993), Diggle et al. (1998), Booth and Hobert (1999).

We have also reviewed a new class of semiparametric normal transformation
model for spatial survival data that was recently developed by Li and Lin (2006). A
key feature of this model is that it provides a rich class of models where regression
coefficients have a population-level interpretation and the spatial dependence of
survival times is conveniently modeled using flexible normal random fields, which
is advantageous given that there are virtually none spatial failure time distribu-
tions that are convenient to work with. Several open problems, however, remain
to be investigated for this new model, including model diagnostics (e.g. examine
the spatial correlation structure for censored data), prediction (e.g. predict sur-
vival outcome for new locations) and computation (e.g. develop fast convergent
algorithms for inference).

Lastly, as this chapter tackles geostatistical data mainly from the frequentist
points of view, we have by-passed the Bayesian treatments, which have been,
indeed, much active in the past 20 years. Interested readers can refer to the book
of Banerjee et al. (2004) for a comprehensive review of Bayesian methods.
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