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We provide detailed proofs for the lemmas presented in the Appendix of the article, as
well as patient characteristics of the Boston Lung Cancer Study Cohort data analyzed in

Section 5.

1 Technical proofs for the lemmas

Lemma Al characterizes the difference between 7,(t; 3°) and ny(t; 8°), which is needed
to prove the asymptotic distribution for the leading term \/ﬁcT@ﬂoén(ﬂo) as well as to

establish the convergence rate for S - 2g0.

Lemma A1l. Under Assumptions 1-3, we have

sup [fio(t; ) — po(t; 8)| = Op(+/log(p)/n),

te[0,7]
S 171(; 8°) — 1 (t; 8°) oo = Op(1/10g(p)/n),
S 17 (t; 8°) = no(t; 8°) |0 = Op(\/log(p)/n).

Proof of Lemma A1. The first two statements in the conclusion are similar to those in
Kong and Nan (2014), but with differing setups. Consider a class of functions of y > 0
and r € RP indexed by ¢, Fo = {1(y > t)exp(z?3°) : ¢t € [0,7]}. For any 0 < € < 1,

consider the cumulative distribution function for Y and take an positive integer m < 2/e
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and a sequence of points 0 = tg < t; < -+ < t_1 < t,, = oo such that P(t; < YV <
tiz1) <€ i=0,1,...,m—1. For each i = 1,---,m, define the bracket [L;, U;], where
Li(z,y) = 1(y > t;) exp(zT8°) and Us(z,y) = 1(y > t;1) exp(xz?3°). We have L;(z,y) <
1(y > t)exp(xT %) < Us(z,y) for t;_1 <t <t;, and

[E{U/(X,Y) — Ly( X, Y)}2Y? = [E{1(ti_1 < Y < t;) exp(2XT°)}/2 < f1 /e,
BlU(X,Y) - Li(X,Y)| = B{1(ti_1 < Y < t;) exp(XT 5"} < e

Then the bracketing numbers van der Vaart (1998) satisfy

N[]<€K1\/Evf07L2<P)) < ) Nﬂ(eKlE?fO’Ll(P)) <

)

ol N
a N

or equivalently,

2¢2K1 2¢f1

N[](E,fo,Ll(P)) S

< Q.

Ny(e, Fo, Lo(P)) < 2 -

By the Glivenko-Cantelli Theorem and the Donsker Theorem (van der Vaart, 1998), the
class of Fy is P-Glivenko-Cantelli and P-Donsker. So sup,c(q . |[fio(t; 8) — po(t; 8°)| %0,
and moreover, by Theorem 2.14.9 of van der Vaart and Wellner (1996) with V' = 2,

p (x/ﬁ sup |fo(t; 8°) — po(t; 5°)] > S) < De™,

te(0,7]

for every s > 0 and a constant D > 0 that only depends on K. Setting s = {/2log(p)
implies that

sup |fo(t; 8°) — po(t; 8°)| = Op(\/log(p) /n).

te(0,7]

For the second statement, we consider the classes of functions of (z,y) = (z1,- -+, 2p, )
indexed by ¢,
Fr={1y>t)e" P ap:tel0,7]}, k=1,--- ,p.

. T 30 . .
Since |e* # x| < KeX1, similarly we have
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By Theorem 2.14.9 of van der Vaart and Wellner (1996) with V' = 2, we have

te(0,7]

P (\/ﬁ sup |z (t; 8°) — pn(t; 8%)] > S) < D's?e™ < Dele

for every s > 0, where D’ is a constant that only depends on K and K7, and fi1; and pqp
are the kth components of 71 and puq, respectively. Thus,

P (x/ﬁ sup |71 (t; 8%) — pa(t; 8°) oo > S>

t€(0,7]
p
<P (U {\/ﬁ Sl[lp] |//Ilk(t§ﬁo) - /Mk(t;ﬁo)‘ > 5})
k=1 te O,T

< pD'e™*.

For example, taking s = \/2log(p) would complete the proof for sup;cp - [[7i1(t; B%) —
1 (t; 8%) [l = Op(y/log(p) /n).

Finally, we rewrite

S a0y oy _ m(8%)  m(tp)
Mt 67) =t ) = Ho(t; B°)  po(t; 8°)
_ (%)l 8°) n fir(t; 8°) (Mo(tsﬁo) _ 1)
po(t; 8%)  po(t; B°)  po(t; B°) \ Fo(t; 8°) '

By Assumptions 1-3, uo(t; 8°) > e 1w > 0 and sup,co [111(t; 8°) e = Op(1). Also,

since

~ _ ~ 1, T
téﬁ)f]’“’( :8%) = po(t; B°) =170 (t; B°)—po(t; B°)] = e Fimp— s 7o (t; B%)—po(t; B°)| > e Klgo
T te|0,7

almost surely, we have

0 e85 )
ti}gﬁr} MO(t’B()) !
TGS #0( _ ’
= 20 ot ) | Sl (ol ) 60) :
< Op(1) S |\o(t; 8%) — Tio(t; 8°)| = Op(V/1og(p) /n).



Therefore,

s 170 ) =t ) < s | (3% =l )|
+ o o (e )

= Op(+/log(p)/n).
O

Lemma A2 establishes the asymptotic distribution for the leading term —CT®goén(ﬁ0)

in the decomposition of ¢ (/b\ - 3%).

Lemma A2. Assume p?log(p)/n — 0. Under Assumptions 1-5, for any ¢ € RP such that

llclle =1 and ||c||y < a. with some absolute constant a. > 0,

VAT O00,(8")
\/cT'Opoc

Proof of Lemma A2. Using notation of martingales, we rewrite

> N(0,1).

_\/_c @/goﬁ i c @50 { ﬁl(Yi;ﬁo)}d
/T Ogc \/_ < \/cTOgoc fio(Yi:80) )
B _Z/ CT650 {X o
N \/ﬁ i—1 0 \/CT@/BOC '
1 - C 650
\/ﬁ;/o «/CT@/BOC{ o
1 "0 ,171(75350)}7 P= 1

Let Qi(t) = ————2 X, — &
RN NG T: { olt: 7°)
respect to the filtration F. Then

—/ncT O g0, (3 / Qi) dMi (¢ (S1)

cT®5oc

.,n, which are predictable with




For any t € [0,7], let U(t) =), fo (u), whose predictable variation process is

Z 1(Y; > w)e™ P dHy(u)

110

1~ [t "0 71 (t: 8°) ) ©* XT g0
_ - X, — Lo 1(Y; > w)e™ 7 dH,
i /0 cTOgoc { ﬁo(t;ﬁo)} Opocl(Ys 2 u)e ofv)

IO [ [ fi (u; B°) i (u; B°)"
~ TOgoc [/0 {,ug(u, 7) - Ho(w; 89) }dHO(U)] Spec

Similar to the proof in Lemma Al, we can show that sup,c . [[2(t; 8°) — pa(t; 6°) |l =
Op(+/log(p)/n), and thus

/0 {12 (u; ) — fia(us B”) bho(u)du

< sup (s 8°) — paus 5 oo / ho(u)du

o u€l0] 0
— Op(/108(p) /). (52)
Since P T o~ T 1
fo1 fd joye H1p = m [ m
- — = S (g — flo) + — (A — p) iy A+ (i — )",
[l fo  Hofto fo

by Assumption 1 and Lemma Al,

t (7 (0 QONAT (5. R0 . 30\, T(,. 30
/ {N’l(ul\ﬁ )Ml (()u76 ) _,U/I(uaﬁ )Mlguaﬂ )}ho(u)du
0 io(u; 8°) pio(u; 8°)
Combining (S2) and (S3), we have that, uniformly for all ¢ € [0, 7],

t -~ (A% oN\T
~ oy Ha(w B°) i (u; 8°) }

u; — — dHy(u)—

/0 {m( #) fio(u; £°) ofv)

[ st ) - LTI g

= Op(v/log(p)/n).  (S3)

o0

= Op(y/log(p)/n).

o0

Then

010 = &2 | [ {patus o) - EEICETE R )] 0

TOpoc fio(u; 8°)
<Crin (el ©s011,1)2Op (\/1og(p) /1)
<Cin@2pGh Op(y/10g(p) /1) —p 0




if p?log(p)/n — 0. By Assumption 4, (U)(t) — v(t;c) —p 0.

Now we check the Lindeberg condition. For any € > 0, define the truncated process

- Z [ @il >
with a predictable variation process:
W (e) = Z [ @@ > = we?
- Z [ @ nvaQul > Va2 e by

Let Qmax = SUD;ejp ;) MaXi<i<n |[v/nQi(t)], then 1{|y/nQi(u)| > /ne} < Y{Qmax > /ne}.
By Assumption 1,

TQ .0 = (4. 30

tefo,r] 1i<n | /cT©goc Ho(t; 8°)

and Qmax = O(y/p). When p/n — 0, 1{Qmax > y/ne} = 0 almost surely. Thus (Ue)(t) —p
0. Finally, by the martingale central limit theorem, the asymptotic normality follows. [J

< G el ©pll12K = O(y/p),

Lemma A3 provides the theoretical properties of the lasso estimator in the Cox model.
This is a direct result from Theorem 1 in Kong and Nan (2014), and thus the proof is

omitted.

Lemma A3. Under Assumptions 1-5, for the lasso estimator B\, we have
Hﬁ 5 1 = Op(s0An) Z ‘XT 5 50)‘ OP(SO)\i)>

where so = |[{j : BO #0,7=1,---,p}| is the true model size.

Lemma A4. Under Assumptions 1-5, if A, < \/log(p)/n, with probability going to 1, we
have H@,BOZ — [pHoo < Yn » fO’l" Yn < H@ﬁOHLlSO)‘n'

Lemma A4 shows that, unlike linear models with the tuning parameter in the constraint
taking the order of \/log(p)/n, the Cox model requires a potentially larger =, for the



feasibility of © o that depends on ||©4||1,1, as the information matrix involves the regression
coefficients.

I [T
Proof of Lemma A4. Write A, = - Z/ {X; —no(t; 50)}‘82 dN;(t) — Xpo.
i=1 70

30 [T B - =t 0 aito
%i /OT {X; —mo(t; 8°) 7 AN, (t) — Sgo
Z | {x =B} {6 h - e} ave

%Z/O {ﬁn(t; B) — molt; 50)} {X; — ol %)} dNi(2)

o0

+ [ Anll o

oo

Note that for all ¢ € [0, 7], | X; — 7(t: 8)]lco < 2K and || X; — no(t; 8°)]|co < 2K. Then
I£ - Sl < —Z [0 8) = s )0 + Al

S [t 8 =t )iy
_K Z/OT Hﬁn(lf;ﬁo) — no(tSBO)HoodNi(t) + 1|4 |- (54)

By the mean value theorem, for the jth component in 7, (denoted by 7,;), there exists

some $U) lying inside the segments connecting B and (3° such that

-~

Ty (t; B) = Ty (t; 8°) + Oy (1; )

0 ] (B - 8°).

B=p)

Consider 3 in a neighborhood of °, i.e. when || — 8%y < & for some & > 0, X ? <
X8l < (I XTBHES < eSS - and eXiB > o~IXIBl > o~Ki=Kd  Gince {I(Y > t) -

t € [0,7]} is P-Glivenko-Cantelli, supejo |+ > i 1(Y > 1) — P(Y > t)] % 0, and then



uniformly for t € [0,7] and B € {B: |8 — B°||. < '},

~ IEN ~K§' 0% “K1—-K§ - T0 _K-K¢
Mo(tﬁ)ZE;l(Yz‘Zt) S PY 2 t)en TR > en

In this case, uniformly for ¢t € [0,7] and 8 € {8 : ||3 — B°| < &'},

' MH fia(t; B)fio(t; B) — (1 B)jin (15 B)”
BT s A3 (t: B) .
<as. (%‘EKIKJI)_2 {€K1+K6IK2 . €K1+K6l + 62(K1+K5/)K2}
— %64(K1+K(5’)K2 < 0,
o
onu(t; 8)

ie. ‘ H is uniformly bounded almost surely. When so\,, — 0, we have ||7,,(¢; B) -

opT

A (t: 8 oo < Op(18=5"I1)

n(t; 8°) |oadNi(£) = Op(s0An).

For the second term in (S4), we use an argument from Lemma A1 that sup,c (o 7. (t; 8°)—
)

mo(t; 8°)||e = Op(\/log(p)/n

~

= Op(soAn) and the first term in (S4) is 25 31" [T [|7,(¢; 8)—

and then have
AK < [T
72 [ e ) = e 59t

B[ e ) = ms )t

t€[0,7]

=0p(y/log(p)/n).

For the last term A,,, by Hoeffding’s concentration inequality, we have for every ¢t > 0 and

jak: 17 » Dy
P (|Au(j, k)| > t) < 2exp{—nt*/C'},



where C” is a constant only depending on K*. Since A,, is a symmetric matrix,

P(HAnHoo > t) =P < U |An(]7 k)| > t)

=J =P =hv >

<Y D PG R = 1)

=1 k=j
< p(p+ 1) exp{—nt?/C"}.

So ||Anllee = Op ( log(p)/n>. Combining the three terms in (S4), we have ||S — Yp0)|o0 <
Op(soAn + /log(p)/n). Finally, we conclude that

10205 = Llloe < [O0ll11]1E = S
= Op (10011500 + O30 111/ 10(p) /) -
0]

Lemma A5. Assume limsup, .. py. < 1 — € for some € € (0,1). Then, under the

assumptions in Lemma A4, ||© — Op0lloc = Op(VnllOpo]|1,1)-

Proof of Lemma A5. Note that © — Op = C:)(Ip - 5\3650) + (0% — I,)O 40, then on the
event {||§@ﬁo — Ip|lo <}, we have

10 = Opollo < [1Olloooolllp = XOpolloc + [[OF = Lyl Opol11
< MllOllsc.00 + Vnl|Opoll11-

Since [|8]lsc00 < 10 = Opolloc,oc + [1Bp0]|oc.c0 < IO = Opolloo + Op0]l1.1, we can obtain
18 = Oplloe < 1 (PO = Opolloc + [©p0ll1.1 ) + 70Ol
When limsup,, ,.. 7.p < 1 —¢€ < 1, then for n large enough,
18 — Opolloc < 29180 11,1/ (1 = ¥p) = 7| Ooll1.1-

Therefore, by Lemma A4, ||© — Op0lloc = Op(1n]|Os0||1,1)- O



Lemma A6. Under Assumptions 1-3 and 5, for each t > 0,
P ((8") e > 1) < 2pe /65,

Proof of Lemma A6. Noting that || X; — 1,(t; 8°)]lc < 2K uniformly for all 4, then
Lemma A6 is a direct result of Lemma 3.3(ii) in Huang et al. (2013). O

2 Further discussion on Assumption 4

Assumption 4 in the main text is a technical condition that ensures the convergence (in
probability) of the variation process for the application of the martingale central limit
theorem. Unlike the traditional application of the martingale central limit theorem to Cox
models, the dimension of igo (t) is p X p, where p, in our setting, is diverging with n. Also,
the deterministic scalar ¢*©g depends on n through the dimensions of ¢, ©g. To address
the issue, we have formulated our Assumption 4 by designing a limiting function v(¢;¢),
which can be viewed as the “standardized” information number up to time point ¢.

We also examine conditions related to the martingale central limit theorem or other
central limit theorems. For example, similar to van de Geer et al. (2014) and Fang
et al. (2017), we may utilize the Lindeberg-Feller central limit theorem by making an
assumption like [|©4X;|lcc = O(1) uniformly for all ¢ = 1,...,n, which is analogous
to ||X50,—j7207j||oo = O(1) given in Theorem 3.3(iv) of van de Geer et al. (2014) or
SUD;c(0.,] MaXic[n] | X g.q(t)w*| = O(1) given in Assumption 4 of Fang et al. (2017). How-
ever, the assumption that ||©zX;|/cc = O(1) uniformly for all i = 1,...,n is fairly strong.
In addition, such assumptions are effectively a sparse ©go assumption when p diverges with
n and covariates X; are uniformly bounded. A sparse Oz assumption is in fact what we

try to avoid.

3 Additional Simulation Results

We conduct simulations to evaluate the performance of simultaneous inference, using the

criterion of the empirical false discover proportions (FDP) defined as

#false discoveries

FDP =
max(1, #discoveries)’
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where a discovery occurs if the adjusted Benjamini-Hochberg p-value for testing 630 =0is
less than a pre-specified level, i.e., 0.05 and 0.1 in this case. The simulation settings are
the same as those used for Figure 2 and Figure 3 in Section 4 of the main text.

Figures S1 and S2 are related to independent and AR(1) (p = 0.5) covariance matrix
for covariates. All the three debiased lasso methods maintain FDP well-controlled below

the nominal levels and tend to be more conservative when p is large, especially for QP with
an AR(1) covariance matrix.
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Figure S1: Empirical FDP with n = 500 and independent covariance matrix, as () varies

from 0 to 2. The top and bottom panels correspond to nominal false discovery rate levels
of 0.05 and 0.1, respectively.

4 Boston Lung Cancer Study Cohort data

Table S1 shows the patient characteristics for the subset of the Boston Lung Cancer Study
Cohort data analyzed in Section 5.
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Figure S2: Empirical FDP with n = 500 and AR(1) covariance matrix (p = 0.5), as 3}

varies from 0 to 2. The top and bottom panels correspond to nominal false discovery rate
levels of 0.05 and 0.1, respectively.
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Table S1: Characteristics of n = 561 patients in the Boston Lung Cancer Study for survival

analysis
Variable Category / Unit Count (%) / Mean (SD)
Age Years old 60.0 (10.9)
Race Caucasian 528 (94.1%)
Others 33 (5.9%)
Education No high school 79 (14.1%)
High school 141 (25.1%)
At least 1-2 years of college 341 (60.8%)
Gender Male 215 (38.3%)
Female 346 (61.7%)
Smoker Current or recently quit 508 (90.6%)
Never 53 (9.4%)
Histology Adenocarcinoma 360 (64.2%)
Squamous cell carcinoma 115 (20.5%)
Large cell carcinoma 45 (8.0%)
Unspecified 41 (7.3%)
Stage® Early 243 (43.3%)
Late 318 (56.7%)
Surgery No 177 (31.6%)
Yes 361 (64.3%)
Chemotherapy No 300 (53.5%)
Yes 238 (42.4%)
Radiation No 332 (59.2%)
Yes 206 (36.7%)
Treatment record Missing” 23 (4.1%)
& Stages I and II classified as early stage, and stages III and IV as late stage.
P No treatment information on surgery, chemotherapy or radiation available for
these patients.
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