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Composite Hölder Class of Smooth Functions

With constants a,M > 0 and a positive integer d, we define a Hölder class of smooth

functions as

Ha
d(D,M) = {f : D ⊂ Rd → R :

∑
υ:|υ|<a

∥∂υf∥∞ +
∑

υ:|υ|=⌊a⌋

sup
x,y∈D,x ̸=y

|∂υf(x)− ∂υf(y)|
∥x− y∥a−⌊a⌋

∞
⩽ M},

where D is a bounded subset of Rd, ⌊a⌋ is the largest integer smaller than a, ∂υ := ∂υ1 . . . ∂υr

with υ = (υ1, . . . , υd) ∈ Nd, and |υ| :=
∑d

j=1 υj.

For a positive integer q, let α = (α1, . . . , αq) ∈ Rq
+, and d = (d1, . . . , dq+1) ∈ Nq+1

+ ,

d̃ = (d̃1, . . . , d̃q) ∈ Nq
+ with d̃j ⩽ dj. We then define a composite Hölder smooth function

class as

H(q, α,d, d̃,M) = {f = fq◦· · ·◦f1 : fi = (fi1, . . . , fidi+1
)⊤, fij ∈ Hαi

d̃i
([ai, bi]

d̃i ,M), |ai|, |bi| ⩽ M},

(A.1)

where [ai, bi] is the bounded domain for each Hölder smooth function.

More Notation

Denote an ≲ bn as ab ⩽ cbn for some c > 0 when n is sufficiently large; an ≍ bn if an ≲ bn

and bn ≲ an. Let η(·, ·) = (β⊤·, g(·)) : Rp × Rr → R2 denote the collection of a linear

operator and a nonlinear operator. In this section, denote by v = (x⊤, z⊤)⊤ the random

vector underlying the observed IID data of vi = (x⊤
i , z

⊤
i )

⊤, and (T,∆) the random vector

underlying the observed IID data of (Ti,∆i), i = 1, . . . , n. Let N(t) = I(T ⩽ t,∆ = 1) and

Ni(t) = I(Ti ⩽ t,∆i = 1). To simplify notation, we denote by η(v) = β⊤x + g(z). Denote

the truth of η(·, ·) by η0(·, ·) = (β⊤
0 ·, g0(·)). For two operators, say, η1(·, ·) = (β⊤

1 ·, g1(·)) and

η2(·, ·) = (β⊤
2 ·, g2(·)), define their distance as

d2(η1, η2) := E[{η1(v)− η2(v)}2] =
∫
{η1(t)− η2(t)}2fv(t)dt,
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and the corresponding norm

∥η∥2 := E[η2(v)] =
∫

η2(t)fv(t)dt.

For the notational ease, we write η = (β, g) in the following.

With Y (t) = 1(T ⩾ t) and Yi(t) = 1(Ti ⩾ t), define

S0n(t, η) =
1

n

n∑
i=1

Yi(t) exp{η(vi)}, S0(t, η) = E[Y (t) exp{η(v)}],

and for any vector function h of v define

S1n(t, η,h) =
1

n

n∑
i=1

Yi(t)h(vi) exp{η(vi)}, S1(t, η,h) = E[Y (t)h(v) exp{η(v)}],

where the expectation is taken with respect to the joint distribution of T and v.

Let

ln(t,v, η) = η(v)− logS0n(t, η), l0(t,v, η) = η(v)− logS0(t, η).

Then the partial likelihood in (2)

can be written as

ℓ(η) =
1

n

n∑
i=1

{∆iln(Ti,vi, η)−∆i log n}.

Since
∑n

i=1∆i log n does not involve unknown parameters and can be dropped in optimiza-

tion, we replace below ℓ(η) by 1
n

∑n
i=1{∆iln(Ti,vi, η)}.

Finally, for any function h of (v,∆, T ), where (∆, T ) is the random vector underlying

(∆i, Ti), define

Pn{h(v,∆, T )} =
1

n

n∑
i=1

h(vi,∆i, Ti), P{h(v,∆, T )} = E{h(v,∆, T )},

and in particular, we define Ln(η) = Pn{∆ln(T,v, η)} and L0(η) = P{∆l0(T,v, η)}. Here,

the expectation is taken with respect to the joint distribution of T,∆ and v.
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Proof of Theorem 1

Define αn = γn log
2 n + an = τn + an. For some D > 0, let Rp

D := {β ∈ Rp : ∥β∥∞ < D}

and GD := G(L,p, s,D), and define

η̂D = argmax
η∈Rp

D×GD

PL(η).

Further, denote by η̂ = (β̂, ĝ) a local maximizer of PL(η) over Rp × G, that is, by setting

D = ∞ in Rp
D and GD. As in Zhong et al. (2022), it can be shown that if max(||β||, ||g||∞) →

∞, PL(η) → −∞; hence, when D is sufficiently large, η̂ = η̂D almost surely. Therefore, in

the following, we show that d(η̂D, η0) = Op(αn), when D is sufficiently large.

To do so, it suffices to show that for any ϵ > 0, there exists a C such that

P

{
sup
η∈Nc

PL(η) < PL(η0)

}
⩾ 1− ϵ, (A.2)

where Nc = {η ∈ Rp
D × GD : d(η, η0) = Cαn}. If it holds, it implies with probability at least

1− ϵ that there exists a C > 0 such that a local maximum exists and is inside the ball Nc.

Hence, there exists a local maximizer such that d(η̂, η0) = Op(αn).

Without loss of generality, we assume that η satisfies E{η(v)} = E{η0(v)}, implying

E{g(z)} = 0; if not, we can always centralize it. To see this, consider any η = (β, g) in the

ball BC = {η ∈ Rp
D × GD : d(η, η0) ⩽ Cαn}, its centralization η′ = (β, g − E{η(v)− η0(v)})

is also in the ball BC , satisfying E{η′(v)} = E{η0(v)} and PL(η′) = PL(η).

Because of the sparsity of the β-coefficients, we arrange the indices of the covariates

(x1, . . . , xp) so that βj0 = 0 when j > sβ. We consider

PL(η)− PL(η0)

= {Ln(η)− Ln(η0)} −
p∑

j=1

{pλ(|βj|)− pλ(|βj0|)}

⩽ {Ln(η)− Ln(η0)} −
sβ∑
j=1

{pλ(|βj|)− pλ(|βj0|)}, (A.3)
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where the inequality holds because pλ(|βj|)− pλ(0) > 0 when j > sβ.

We first deal with

Ln(η)− Ln(η0) ={L0(η)− L0(η0)}

+ {Ln(η)− L0(η)} − {Ln(η0)− L0(η0)}.
(A.4)

According to Lemma 2 in Zhong et al. (2022), we know that

L0(η)− L0(η0) ≍ −d2(η, η0).

Since d(η, η0) = Cαn, the first term in the right hand side of A.4 is of the order C2α2
n.

After some calculation,

(Ln − L0)(η)− (Ln − L0)(η0) =(Pn − P){∆l0(T,v, η)−∆l0(T,v, η0)}

+ Pn

{
∆ log

S0(T, η)

S0(T, η0)
−∆ log

S0n(T, η)

S0n(T, η0)

}
=I + II.

(A.5)

According to the proof of Theorem 3.1 in Zhong et al. (2022), withAδ = {(β, g) ∈ Rp
D×GD :

δ/2 ⩽ d(η, η0) ⩽ δ}, it follows that

sup
η∈Aδ

|I| = O(n−1/2ϕn(δ)),

sup
η∈Aδ

|II| ⩽ O(n−1/2ϕn(δ)),

where ϕn(δ) = δ
√

s log U
δ
+ s√

n
log U

δ
and U = L

∏L
l=1(pl+1)

∑L
l=1 plpl+1.Then by Assumption

1, when δ = C(τn + an), we can show that n−1/2ϕn{C(τn + an)} ⩽ C(τn + an)
2 = Cα2

n.

By the Taylor expansion and the Cauchy-Schwarz inequality, the second term on the right-

hand side of (A.3) is bounded by

√
sβan∥β − β0∥+

1

2
bn∥β − β0∥2.

Since d(η, η0) = Cαn, and therefore ∥β − β0∥ is of the order Cαn. Hence, this upper bound

is dominated by the first term in (A.4) as bn → 0 by the assumption.

Therefore, for any ϵ > 0, there exist sufficiently large C,D > 0 so that (A.2) holds, and
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hence d(η̂D, η0) = Op(αn), which gives d(η̂, η0) = Op(αn), where we recall η̂ is the local

maximizer of PL(η) over Rp × G. We note that

d2(η̂, η0) = E[(β̂ − β0)
⊤{x− E(x|z)}+ (β̂ − β0)

⊤E(x|z) + {ĝ(z)− g0(z)}]2

= E[(β̂ − β0)
⊤{x− E(x|z)}]2 + E[{ĝ(z)− g0(z)}+ (β̂ − β0)

⊤E(x|z)]2,

where the second equality holds because, by the definition of d(·, ·), E is taken with respect

to the joint density of v = (x⊤, z⊤)⊤, which is independent of the observed data, and hence,

β̂ and ĝ. By Assumptions 2-4, it follows ∥β̂ − β0∥ = Op(αn) and ∥ĝ − g0∥L2 = Op(αn).

Proof of Theorem 2

For the claims made in Theorem 2, it suffices to show that, with probability tending to 1,

for any given η = (β, g) satisfying that ||η − η0|| = O(γn log
2 n), where η0 = (β0, g0), and

some constant C > 0,

PL{(β⊤
1 ,0

⊤)⊤, g} = max
∥β2∥⩽Cγn log2 n

PL{(β⊤
1 ,β

⊤
2 )

⊤, g},

where β1 = (β1, . . . , βsβ)
⊤ and β2 = (βsβ+1, . . . , βp)

⊤. We only need to show that, for any

j = sβ + 1, . . . , p,

∂PL(β, g)/∂βj < 0, for 0 < βj < Cγn log
2 n;

∂PL(β, g)/∂βj > 0, for − Cγn log
2 n < βj < 0.

To proceed, we note that ∂PL(β, g)/∂βj = ∂ℓ(η)/∂βj − sign(βj)p
′
λ(|βj|) for j = sβ +

1, . . . , p. Denote by Fj(η) the partial derivative of ℓ(η) w.r.t. βj, i.e.

Fj(η) =
∂ℓ(η)

∂βj

=
1

n

n∑
1=1

∫ τ

0

{
xi,j −

∑n
k=1 Yk(s)xk,j exp(β

⊤xk + g(zk))∑n
k=1 Yk(s) exp(β⊤xk + g(zk))

}
dNi(s),

where xk,j (or xi,j) is the jth element of xk (or xi). As part of η is a functional, we consider a

functional expansion of Fj(η) around its truth, η0. Specifically, for a real number 0 ⩽ e ⩽ 1,
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we define Fj(e) = Fj{η0+e(η−η0)}, a function of the scalar e only. Obviously, Fj(1) = Fj(η)

and Fj(0) = Fj(η0).

Taking the Taylor expansion of Fj(1) around 0 gives

Fj(1) = Fj(0) + F ′
j(0) + F ′′

j (e
∗), (A.6)

where e∗ is between 0 and 1. By some calculation,

F ′
j(e) = − 1

n

n∑
i=1

∫ τ

0

[∑
k Yk(s)ξe(vk)xk,j(η − η0)(vk)∑

k Yk(s)ξe(vk)
−

{
∑

k Yk(s)ξe(vk)xk,j}{
∑

k Yk(s)ξe(vk)(η − η0)(vk)}
{
∑

k Yk(s)ξe(vk)}2
]
dNi(s),

where vk = (x⊤
k , z

⊤
k )

⊤, ξe(vk) = exp({η0 + e(η− η0)}(vk)) and (η− η0)(vk) = (β − β0)
⊤xk +

(g − g0)(zk), and

F ′′
j (e) = − 1

n

n∑
i=1

∫ τ

0

[∑
k Yk(s)ξe(vk)xk,j(η − η0)

2(vk)∑
k Yk(s)ξe(vk)

− 2{
∑

k Yk(s)ξe(vk)xk,j(η − η0)(vk)}{
∑

k Yk(s)ξe(vk)(η − η0)(vk)}
{
∑

k Yk(s)ξe(vk)}2

− {
∑

k Yk(s)ξe(vk)xk,j}{
∑

k Yk(s)ξe(vk)(η − η0)
2(vk)}

{
∑

k Yk(s)ξe(vk)}2

+
2{
∑

k Yk(s)ξe(vk)xk,j}{
∑

k Yk(s)ξe(vk)(η − η0)(vk)}2

{
∑

k Yk(s)ξe(vk)}3
]
dNi(s).

It follows that Fj(0) in (A.6) is equal to

1

n

n∑
i=1

∫ τ

0

{
xi,j −

∑n
k=1 Yk(s)xk,j exp(β

⊤
0 xk + g0(zk))∑n

k=1 Yk(s) exp(β⊤
0 xk + g0(zk))

}
dNi(s)

=
1

n

n∑
1=1

∫ τ

0

{
xi,j −

∑n
k=1 Yk(s)xk,j exp(β

⊤
0 xk + g0(zk))∑n

k=1 Yk(s) exp(β⊤
0 xk + g0(zk))

}
dMi(s),

where dMi(s) = dNi(s) − λ0(s)Yi(s) exp(β
⊤
0 xi + g0(zi))ds is the martingale with respect to

the history up to time s. Hence, n1/2Fj(0) converges in distribution to a normal distribution

by the martingale central limit theorem (Fleming and Harrington, 2013), and therefore,

Fj(0) = Op(n
−1/2).
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We then consider

F ′
j(0) = − 1

n

n∑
i=1

∫ τ

0

[∑
k Yk(s)ξ0(vk)xk,j(η − η0)(vk)∑

k Yk(s)ξ0(vk)

− {
∑

k Yk(s)ξ0(vk)xk,j}{
∑

k Yk(s)ξ0(vk)(η − η0)(vk)}
{
∑

k Yk(s)ξ0(vk)}2
]
dNi(s)

= − 1

n

n∑
i=1

∫ τ

0

[∑
k Yk(s)ξ0(vk)xk,j(η − η0)(vk)∑

k Yk(s)ξ0(vk)

− {
∑

k Yk(s)ξ0(vk)xk,j}{
∑

k Yk(s)ξ0(vk)(η − η0)(vk)}
{
∑

k Yk(s)ξ0(vk)}2
]
dMi(s)

− 1

n

n∑
i=1

∫ τ

0

[∑
k Yk(s)ξ0(vk)xk,j(η − η0)(vk)∑

k Yk(s)ξ0(vk)

− {
∑

k Yk(s)ξ0(vk)xk,j}{
∑

k Yk(s)ξ0(vk)(η − η0)(vk)}
{
∑

k Yk(s)ξ0(vk)}2
]
Yi(s)ξ0(vi)λ0(s)ds

= I1 + I2,

where ξ0(vk) = exp(η0(vk)) = exp(β⊤
0 xi + g0(zi)). It follows that each summed item in I1,

i.e., ∫ τ

0

[∑
k Yk(s)ξ0(vk)xk,j(η − η0)(vk)∑

k Yk(s)ξ0(vk)

− {
∑

k Yk(s)ξ0(vk)xk,j}{
∑

k Yk(s)ξ0(vk)(η − η0)(vk)}
{
∑

k Yk(s)ξ0(vk)}2
]
dMi(s),

is a square integrable martingale (Fleming and Harrington, 2013). Hence, by the law of large

numbers for martingales (Hall and Heyde, 2014), I1 → 0 in probability.

Also, I2 can be shown to be equal to

−
∫ τ

0

1

n

[∑
k

Yk(s)ξ0(vk)xk,j(η − η0)(vk)

− {
∑

k Yk(s)ξ0(vk)xk,j}{
∑

k Yk(s)ξ0(vk)(η − η0)(vk)}∑
k Yk(s)ξ0(vk)

]
λ0(s)ds.

Define

Sxj ,1(s, η − η0) = E[Yk(s)ξ0(vk)xk,j(η − η0)(vk)], Sxj
(s, η0) = E[Yk(s)ξ0(vk)xk,j],

S1(s, η − η0) = E[Yk(s)ξ0(vk)(η − η0)(vk)], S0(s, η0) = E[Yk(s)ξ0(vk)].
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Applying the empirical process arguments (Pollard, 1990; Wellner, 2005) yields that

sup
s∈[0,τ ]

∣∣ 1
n

[∑
k

Yk(s)ξ0(vk)xk,j(η − η0)(vk)

− {
∑

k Yk(s)ξ0(vk)xk,j}{
∑

k Yk(s)ξ0(vk)(η − η0)(vk)}∑
k Yk(s)ξ0(vk)

]
− Sxj ,1(s, η − η0) +

Sxj
(s, η0)S1(s, η − η0)

S0(s, η0)

∣∣ → 0

in probability, which implies that

I2 → −
∫ τ

0

{
Sxj ,1(s, η − η0)−

Sxj
(s, η0)S1(s, η − η0)

S0(s, η0)

}
λ0(s)ds

in probability. Collecting all these terms, we thus have that

F ′
j(0) = −

∫ τ

0

{
Sxj ,1(s, η − η0)−

Sxj
(s, η0)S1(s, η − η0)

S0(s, η0)

}
λ0(s)ds+ op(1).

We now bound F ′
j(0). First note that, for any s ∈ [0, τ ],

Sxj ,1(s, η − η0) ⩽ E[ξ0(vk)|xk,j||(η − η0)(vk)|]

⩽ max
vk∈D

{ξ0(vk)|xk,j|}
∫
D
|(η − η0)(v)|fvk

(v)dv

⩽ C1

{∫
D
(η − η0)

2(v)fvk
(v)dv

}1/2

= C1||η − η0||,

where C1 > 0 is a constant, fvk
(·) is the density function of the random vector vk, and the last

inequality stems from the Cauchy-Schwartz inequality, in conjunction with the boundedness

assumptions on the covariates (i.e., D is bounded) and η0 (Conditions 2 and 3 in the main

text). Similarly, we can show that, for any s ∈ [0, τ ],

|S1(s, η − η0)| ⩽ C2||η − η0||, |Sxj
(s, η0)| ⩽ C3, S0(s, η0) ⩾ C4,

where C2, C3, C4 > 0 are constants. The last inequality holds because at τ , there is at least

probability of δ > 0 of observing subjects at risk (Condition 4 in the main text), implying

that mins∈[0,τ ] E(Yk(s)|vk) ⩾ δ > 0 a.s.
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As

|
∫ τ

0

{
Sxj ,1(s, η − η0)−

Sxj
(s, η0)S1(s, η − η0)

S0(s, η0)

}
λ0(s)ds|

⩽
∫ τ

0

|{Sxj ,1(s, η − η0)|λ0(s)ds+

∫ τ

0

|Sxj
(s, η0)||S1(s, η − η0)|

S0(s, η0)
λ0(s)ds

⩽ (C1 + C2C3C
−1
4 )Λ0(τ)||η − η0||,

where Λ0(τ) =
∫ τ

0
λ0(s)ds < ∞. Therefore, F ′

j(0) = Op(||η − η0||).

Similarly, using the explicit form of F ′′
j (e), some calculation can show that F ′′

j (e
∗) =

op(||η − η0||). Then we conclude that

∂PL(β, g)/∂βj = ∂ℓ(η)/∂βj − sign(βj)p
′
λ(|βj|)

= λ[λ−1(Fj(0) + F ′
j(0) + F ′′

j (e
∗))− sign(βj)λ

−1p′λ(|βj|)].

With the assumptions of λ−1γn log
2(n) → 0 and λ−1n−1/2 → 0, it follows that

λ−1(Fj(0) + F ′
j(0) + F ′′

j (e
∗)) = op(1).

On the other hand, using the condition of lim infn→∞ lim infθ→0+ λ−1p′λ(θ) > 0, it follows

that the sign of ∂PL(β, g)/∂βj is the opposite sign of βj with probability going to 1. Hence,

the claims follow.

[Figure S.1 about here.]

[Figure S.2 about here.]

[Figure S.3 about here.]
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(a) Selection of λ for 10 simulated datasets (b) Selection path for the non-zero coefficients

Figure S.1: Selection of λ in Penalized DPLC using BIC.
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Figure S.2: Image Preprocessing Pipeline
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Figure S.3: Selection Frequency and Hazard Ratio of Selected Features: The
selection frequency of the most frequently selected five texture features is reported. The
hazard ratio is the average of 100 experiments
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