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Penalized Deep Partially Linear Cox Models

Composite Holder Class of Smooth Functions

With constants a, M > 0 and a positive integer d, we define a Holder class of smooth

functions as

HID M) = {f DCRISR: Y [0flt 3 sup D ZOTWN gy

vilv|<a vifvl=|a) TYEDEFY |z — ?J||fi5wJ

where D is a bounded subset of R%, |a] is the largest integer smaller than a, 9¥ := 9" ... 9"

with v = (vy,...,v4) € N9 and |v| := E;.lzl v;.
For a positive integer ¢, let a = (ay,...,0,) € R, and d = (dy,...,d, 1) € NI
d=(d,...,d,) € N%. with d; < d;. We then define a composite Holder smooth function

class as

H(q,oz,d,&, M) - {f = fqo"'ofl : fz - (fila-'-afidiH) flj S /H%([aw 2] ) ) ’CL1| |b|
(A1)

where [a;, b;] is the bounded domain for each Holder smooth function.

More Notation

Denote a,, < b, as a, < ¢b, for some ¢ > 0 when n is sufficiently large; a,, < b, if a, < b,

~Y ~Y

and b, < a,. Let n(-,-) = (B7-,9(-)) : R? x R — R? denote the collection of a linear

operator and a nonlinear operator. In this section, denote by v = (x',z")" the random

vector underlying the observed IID data of v; = (x;,z;)", and (T, A) the random vector

underlying the observed IID data of (T;,4;),i =1,...,n. Let N(t) = I(T < t,A =1) and
N;(t) = I(T; < t,A; = 1). To simplify notation, we denote by n(v) = B8'x + g(z). Denote
the truth of n(-,) by m(-,-) = (Bg - go(")). For two operators, say, m(-,-) = (8 -, g1(")) and

n2(-,-) = (By -, g2(+)), define their distance as

(1, m2) = El{m (v) — / (1 () — ma(6)) fu ()t

M},
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and the corresponding norm

Il = Bl ) = [ 12005 (00

For the notational ease, we write n = (3, g) in the following.

With Y (t) = 1(T > t) and Y;(t) = 1(T; > t), define

Son(t,7) 2{:3” Jexp{n(vi)},  Solt,n) = E[Y (t) exp{n(v)}],

and for any vector function h of v define

Sin(t,n, b jijxf (vi)exp{n(vi)},  Si(t;n,h) = E[Y ()h(v) exp{n(v)}],

where the expectation is taken with respect to the joint distribution of 7" and v.

Let

In(t,v,n) = n(v) —log Son(t,n), lo(t,v,n) = n(v) —log So(t,n).

Then the partial likelihood in (2)

can be written as

n

1
= = {Ailu(Tivi,m) — Ailogn}.
6(77) n { zln( zavzan) 7 Ogn}

=1

Since Y"1 | A;logn does not involve unknown parameters and can be dropped in optimiza-
tion, we replace below £(n) by + 3" {AL, (T}, vi,n)}.

Finally, for any function h of (v,A,T), where (A,T) is the random vector underlying
(A;, T;), define

P (h(v. AT} = S hw ALT), P{(v.AT) = B{h(v.AT)),

and in particular, we define L,(n) = P, {AL.(T,v,n)} and Lo(n) = P{Aly(T,v,n)}. Here,

the expectation is taken with respect to the joint distribution of T, A and v.
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Proof of Theorem 1

Define a,, = 7, log>n + a, = 7, + a,. For some D > 0, let RY, .= {3 € R? : ||B|| < D}

and Gp = G(L,p, s, D), and define

np = argmax PL(n).
neRY, xGp

Further, denote by 1 = (B, g) a local maximizer of PL(n) over R? x G, that is, by setting
D = oo in R}, and Gp. As in|Zhong et al.| (2022), it can be shown that if max(||5]], ||g||ec) —
oo, PL(n) — —oo; hence, when D is sufficiently large, 77 = 7p almost surely. Therefore, in
the following, we show that d(7p,n0) = O,(a,,), when D is sufficiently large.

To do so, it suffices to show that for any € > 0, there exists a C such that

p { suAI; PL(n) < PL(nO)} >1—c¢, (A.2)

where N. = {n € RY, x Gp : d(n,n9) = Cav, }. If it holds, it implies with probability at least
1 — € that there exists a C > 0 such that a local maximum exists and is inside the ball V..
Hence, there exists a local maximizer such that d(n,n9) = Op(aw,).

Without loss of generality, we assume that n satisfies E{n(v)} = E{no(v)}, implying
E{g(z)} = 0; if not, we can always centralize it. To see this, consider any n = (8, g) in the
ball Bc = {n € RY, x Gp : d(n,n0) < Cay,}, its centralization ' = (8,9 — E{n(v) —no(v)})
is also in the ball B¢, satisfying E{n/(v)} = E{ny(v)} and PL(n') = PL(n).

Because of the sparsity of the [-coefficients, we arrange the indices of the covariates

(x1,...,2p) so that ;0 = 0 when j > sg. We consider

PL(n) = PL(10o)

= {Ln(n) = Lu(m0)} — Z{PA(W;‘D — pa(IBj0l) }

< ALa(n) = La(mo)} — Z{PA(WJ'D = 2a[Bl)} (A.3)
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where the inequality holds because p,(|5;]) — pa(0) > 0 when j > sp.

We first deal with

Ln(n) — Lu(no) ={Lo(n) — Lo(no)}

(A4)
+{Ln(n) = Lo(n)} = {Ln(n0) — Lo(10)}-
According to Lemma 2 in |Zhong et al| (2022), we know that
Lo(n) — Lo(10) = —d*(n, o)
Since d(n,no) = Ca,, the first term in the right hand side of is of the order C?a?.
After some calculation,
(Lo = Lo)(n) = (Ln — Lo)(m0) =(Pn — P){AL(T', v,n) — Alo(T, v, m0) }
SO<T7 77) SOn<T7 77)
+ P,y Alog ————= — Alog ———+ A5
{Mlog 7y~ Al g (A9

=I+1I.
According to the proof of Theorem 3.1 in|Zhong et al.[(2022), with As = {(8,9) € RY, xGp :

0/2 < d(n,no) < d}, it follows that

sup || = O(n’l/%n(é)),

neAs

sup |II| < O(n_1/2¢n(5))7

neAs
where ¢, (8) = §4/slog 4+ = log YU andU = LT[, (m+1) X1, pipis1. Then by Assumption
1, when 6 = C(7,, + a,), we can show that n=/2¢,{C(7, + a,)} < O(7, + a,)? = Ca?.
By the Taylor expansion and the Cauchy-Schwarz inequality, the second term on the right-

hand side of (A.3]) is bounded by

V58 = Boll + 5518 ~ Boll.

Since d(n,ny) = Ca,, and therefore |3 — Bo|| is of the order C'av,,. Hence, this upper bound
is dominated by the first term in (A.4)) as b, — 0 by the assumption.

Therefore, for any € > 0, there exist sufficiently large C, D > 0 so that (A.2) holds, and
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hence d(1p,n0) = Op(cv,), which gives d(7,19) = Op(cv,), where we recall 7 is the local

maximizer of PL(n) over R? x G. We note that

d*(,m0) = E[(B = Bo) {x — E(x|2)} + (B8 — Bo) "E(x|z) + {3(2) — g0(2)}]’
= E[(8 - Bo) " {x — E(x|2)}]* + E[{§(2) — 90(2)} + (B — Bo) "E(x|2)]*,
where the second equality holds because, by the definition of d(-,-), E is taken with respect

to the joint density of v = (x",z")T, which is independent of the observed data, and hence,

B and §. By Assumptions 2-4, it follows |3 — Bo| = O,(a) and [|§ — gollz2 = Op(an).

Proof of Theorem 2

For the claims made in Theorem 2, it suffices to show that, with probability tending to 1,
for any given n = (3, ) satisfying that || — 1o|| = O3, log?n), where 1o = (Bo, go), and

some constant C' > 0,

PL{(B{,0") g} = max  PL{(8],8;)", g},

[|B2]|<Cyn log? n

where 81 = (64, ... ,[J’SB)T and B2 = (Bsyt1,--- ,3,)". We only need to show that, for any
J=sg+1,...,p,

OPL(B,g)/0B; <0, for0< B; < Cy,log*n;

OPL(B,g)/0B8; >0, for —Cv, log?n < B < 0.

To proceed, we note that dPL(8,g)/08; = 0l(n)/0B; — sign(B;)P\(|5;]) for j = sg +

1,...,p. Denote by Fj;(n) the partial derivative of ¢(n) w.r.t. §;, i.e.

o) I [T o 2kt Ya(8)Thy exp(Bxx + g(2z))\ ;1\ .
R = =52, {ri = SN et ot )

where xy, ; (or z; ;) is the jth element of x;, (or x;). As part of 7 is a functional, we consider a

functional expansion of Fj(n) around its truth, 7. Specifically, for a real number 0 < e < 1,



6 Biometrics, October 2020

we define Fj(e) = Fj{no+e(n—mno)}, a function of the scalar e only. Obviously, F;(1) = F;(n)
and F;5(0) = F;(mo)-

Taking the Taylor expansion of F;(1) around 0 gives
Fj(1) = F5(0) + F5(0) + Ff(e"), (A.6)

where e* is between 0 and 1. By some calculation,

_ = Zk Yi(s)Ee Vk)ﬂfkg(ﬁ 770)(Vk)
a Z/ >k Yi(s)Ee(vi)

1225 Y (8)€e(Va)r, D o Yi(5)Ee (Vi) (1 — 10) (Vi) }
{225 Yi(s)&e(vi) }?

where vi = (x,2;) ", &(vir) = exp({no + e(n —10) }(v&)) and (n—10) (Vi) = (B — Bo) "x1, +

(9 = 90)(zx), and

]dNi(s),

w1 Zk Vi(8)€e(vi)wr, (0 — 10)* (Vi)
7= Z/ RABTACA
C2{D 0, Ya(s)Ee (Vi) (m — mo) (Vi) HD g Ya(8)Ee (Vi) (1 — m0) (Vi) }
{22k Ye(s)Ee(vi) }2
S Ya(s)Ee (Vi) -, Ye(s)Ee(vi) (n — mo)* (Vi) }
{220 Ya(s)Se(vi) 12
2020k Ye(8)€e (Vi) HD g Yi () (Vi) (0 = m0) (VIO F*] 1
! SR ABTATANE Janits)

It follows that F;(0) in (A.6) is equal to

DR =

g5 exp(By X + go(2r)) \ ;rr .
pyees e R LALO

)
Vil
_ 1 v D Ya(8)zr exp(By Xk + go(2r)) A

B nZ/ S ) A () M)

where dM;(s) = dN;(s) — Ao(s)Yi(s) exp(By x; + go(2;))ds is the martingale with respect to
the history up to time s. Hence, n'/2F;(0) converges in distribution to a normal distribution
by the martingale central limit theorem (Fleming and Harrington, 2013)), and therefore,

Fj(0) = Op(n~172).
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We then consider

R | ZkYk )€0(Vie)Zh,5 (1 — 10) (Vi)
50 = Z/ = V(9o (ve)

a0 M Y6 0 = ) v}
R ADELAIE Jani(s)

_ Zk Vi (8)&0(Vie)Zh,i (0 — 10) (Vi)
- Z/ >k Yi(s)€o(vie)

R AL R A ORI AI P
RACEAIE Janits)
_ ZkYk )€ (Vi) kg (1 — 10) (Vi)
Z/ ZkYk< )fo(Vk)
(5 Yel9)6(vi) i, S e (5)o(vi) (7 — o) (vi)}

R {Zk Y5 (8)&o(vi) }2 ]Y;(S)fo(Vi)Ao(S)ds

= Il+[27

where &(vi) = exp(no(vi)) = exp(By Xi + go(z;)). It follows that each summed item in I,

ie.,

/7‘ [Zk Yk(S)fO(Vk).Z'kJ(?] —_ no)(vk)

0 >k Yi(8)&o(vi)

e Ya(s)€o (Vi) HD ok Ya(s)€o (Vi) (1 — mo) (Vi) } .
{220 Ya(s)€o(vi) }? ]dMZ( );

is a square integrable martingale (Fleming and Harrington, |2013). Hence, by the law of large

numbers for martingales (Hall and Heyde, 2014), I; — 0 in probability.

Also, I can be shown to be equal to

_ /OT % [Ek: Yi(8)é0(Vie)zk i (1 — 1m0) (Vi)

_ D Yu(9)eo (Vi) wn ; HO o Yi(s)Eo (Vi) (n —10) (Vi) } s
Zk Yi(5)&0(Vi) ])‘0< )ds.

Define

Szya(8,m = m0) = E[Yi(s)So(Vi)r,i(n — 10) (Vi)], S, (5,m0) = E[Yi(s)&o (Vi) ],

S1(s,m—m0) = E[Yi(s)&o (V) (n — 10) (Vk)], So(s,m0) = E[Yi(s)0(V)]-



8 Biometrics, October 2020

Applying the empirical process arguments (Pollard}, [1990; Wellner, [2005) yields that

P ]% [Z Yi(8)€0 (Vi) 2k (1 — 10) (Vi)

{22k Yi(8)&o (Vi) za HD ok Yie(s)Eo (Vi) (n — UO)(Vk)}}
>k Yi(8)6o(vi)
Se; (8,10)S1(5,m —10)
50(57 770)

ij71<3,7/]_770>+ ‘ —0

in probability, which implies that

7 Sz, (8,m0)51(s,m — no)}
I, — — Se.o1(s,mn— — Xo(s)d
2 /0 { ],1(5 n —1o) So(5,170) o(s)ds

in probability. Collecting all these terms, we thus have that

F0) == [ {5asn—m) - ZEREDZW 010,00,

We now bound F7(0). First note that, for any s € [0, 7],

Sesa(s:m—=1m0) < El&o(Ve)lzk ]| (n = o) (vVi)]]
< max{bavolonsl) | 1= m)Wlfu (V)i
1/2
<G {/(n - no)Q(V)ka(V)dV}
D

= Ol||77 - T]OH?
where C; > 0 is a constant, f, () is the density function of the random vector vy, and the last
inequality stems from the Cauchy-Schwartz inequality, in conjunction with the boundedness

assumptions on the covariates (i.e., I is bounded) and 7y (Conditions 2 and 3 in the main

text). Similarly, we can show that, for any s € [0, 7],

1S1(s,m = no)| < Cafln — ol ‘ij(saﬁo)’ < s, So(s;mo) = C,

where Cy, (3, Cy > 0 are constants. The last inequality holds because at 7, there is at least
probability of § > 0 of observing subjects at risk (Condition 4 in the main text), implying

that min,co - E(Y5(s)|ve) = 6 > 0 as.
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[ et =) = 2Dy

Sz, (5,m0)|[S1(5, 1 — 10)]
Sy 1(s )| Ao ds+/ & Ao(s)ds
< [ HSuatsn=mibas AN

< (Cr+ G050y ) o(T)[In = noll

where Ao(7) = [ Xo(s)ds < oco. Therefore, F;(0) = Op(||n — n0l]).
Similarly, using the explicit form of F7(e), some calculation can show that F7(e*) =

0p(||m — nol|). Then we conclude that

OPL(B,g)/0B; = 0Ll(n)/dB; — sign(B;)p\(15;])

= AATHF;(0) + Fj(0) + Ff'(e")) — sign(B) A pA(16;])]-
With the assumptions of A~v, log®(n) — 0 and A"'n~1/2 — 0, it follows that
ATHFG0) + F(0) + F (")) = 0,(1).

On the other hand, using the condition of liminf, . liminfy o, A7'p}(0) > 0, it follows
that the sign of OPL(3, g)/0/; is the opposite sign of 3; with probability going to 1. Hence,

the claims follow.
[Figure S.1 about here.]
[Figure S.2 about here.]

[Figure S.3 about here.]
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Figure S.1: Selection of A in Penalized DPLC using BIC.
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Gray-scale normalization Tumor Segmentation Feature extraction
Histogram equalization

Figure S.2: Image Preprocessing Pipeline
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Figure S.3: Selection Frequency and Hazard Ratio of Selected Features: The
selection frequency of the most frequently selected five texture features is reported. The
hazard ratio is the average of 100 experiments
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