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Abstract

Forward regression, a classical variable screening method, has been widely used for model building when the number
of covariates is relatively low. However, forward regression is seldom used in high-dimensional settings because
of the cumbersome computation and unknown theoretical properties. Some recent works have shown that forward
regression, coupled with an extended Bayesian information criterion (EBIC)-based stopping rule, can consistently
identify all relevant predictors in high-dimensional linear regression settings. However, the results are based on the
sum of residual squares from linear models and it is unclear whether forward regression can be applied to more general
regression settings, such as Cox proportional hazards models. We introduce a forward variable selection procedure
for Cox models. It selects important variables sequentially according to the increment of partial likelihood, with an
EBIC stopping rule. To our knowledge, this is the first study that investigates the partial likelihood-based forward
regression in high-dimensional survival settings and establishes selection consistency results. We show that, if the
dimension of the true model is finite, forward regression can discover all relevant predictors within a finite number
of steps and their order of entry is determined by the size of the increment in partial likelihood. As partial likelihood
is not a regular density-based likelihood, we develop some new theoretical results on partial likelihood and use these
results to establish the desired sure screening properties. The practical utility of the proposed method is examined
via extensive simulations and analysis of a subset of the Boston Lung Cancer Survival Cohort study, a hospital-based
study for identifying biomarkers related to lung cancer patients’ survival.

Keywords: Forward selection, partial likelihood, sure screening properties, extended Bayesian information criteria,
high-dimensional predictors

1. Introduction

New biotechnologies have generated a vast amount of high-throughput data. In the Boston Lung Cancer Survival
Cohort study, a hospital-based study for lung cancer patients, identifying high-throughput predictors such as molecular
profiles that are associated with patients’ survival is a major research goal for understanding disease progression
processes and designing more effective gene therapies. When the number of covariates (p) is less than the sample
size (n), the Cox proportional hazards model has been routinely used for modeling survival data in many practical
settings. When p > n, penalized partial likelihood methods have been proposed by various authors [1, 2] and the
oracle properties and statistical error bounds of estimation have been established [3]. However, when p � n, these
methods often fail because of serious challenges in “computational expediency, statistical accuracy, and algorithmic
stability” [4]. Recently, [5] established the oracle properties of the regularized partial likelihood estimates under a
high-dimensional setting. However, the results require the estimates to be unique and global optimizers, which is, in
general, difficult to verify, especially when the dimension of covariates is exceedingly high.
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Forward regression has been widely used for model selection, but it has often been criticized for not achieving
selection consistency as it fails to account for multiple comparisons in the model building process. Recently, some
authors, e.g. [6], [7], [8], [9], [10] and [11], have revamped forward regression in the context of linear regression or
varying-coefficient linear models. The advantages can be summarized as follows. First, these authors have shown that,
with some proper stopping criteria, forward regression can achieve screening consistency even in high dimensional
settings. Second, the variables are sequentially selected into the final model with the entry order determined by the
size of the likelihood increment, which might reflect the relative importance of each selected variable. Third, the
implementation is simple as no cross-validation for tuning parameters is needed. Finally, the method only needs
assumptions on the original model and does not require restrictive faithfulness assumptions, in which the marginal
models reflect the original model. However, to our knowledge, the aforementioned forward regression approaches are
either based on the sum of residual squares from linear models [6, 11] or Lasso estimation [7]. It is unclear whether
forward regression can be applied to more general regression settings, such as the Cox proportional hazards models.

On the other hand, there has been active research in developing high-dimensional screening tools for survival
data. The works include the principled sure screening by [12], the feature aberration at survival times screening by
[13] and the conditional screening by [14], the quantile adaptive sure independence screening by [15], the censored
rank independence screening procedure by [16], and the integrated powered density screening by [17]; see [18] for
an extensive review. However, the screening methods require a threshold to dictate how many variables to retain, for
which unfortunately there are no clear rules. [12] did tie the threshold with false discoveries, but it still needs to prefix
the number of false positives that users are willing to tolerate. Recently, [19] designed a model-free measure, namely,
survival impact index, that sensibly captures the overall influence of a covariate on the survival outcome and can help
guide selecting important variables. However, even this method, like the other screening methods, does not directly
lead to a final model, for which extra modeling steps have to be implemented.

We introduce a new forward variable selection procedure for survival data based on partial likelihood. It selects
important variables sequentially according to the increment of partial likelihood, with a stopping rule based on EBIC.
We show that if the dimension of the true model is finite, within a finite number of steps forward regression can
discover all relevant predictors, with the entry order determined by the size of the likelihood increment.

Our work is novel in the following aspects. It likely registers as the first attempt to thoroughly investigate the for-
ward regression in high-dimensional survival settings, methodologically, theoretically and numerically. Technically
this paper is also novel. First, our work represents technical advances and a more broadened scope compared to the
existing forward regression [6, 7, 11]. This may be the first work that investigates the partial likelihood-based forward
regression in survival models with high-dimensional predictors, and establishes rigorous selection consistency results
when the extended Bayesian information criterion (EBIC) [20] is used. It improves the partial likelihood-based vari-
able selection developed by [21] and [22] for survival data in low dimensional settings. Second, as partial likelihood
is not a regular density-based likelihood, it fails to satisfy the requirements for theories of forward regression. We
revisit partial likelihood and develop some new inequalities, based on which we establish the desired sure screening
properties. The derived theoretical framework and techniques will facilitate the extension of the procedure to other
general likelihood-based settings, such as generalized linear regression models. Finally, we note that forward selec-
tion starts with an empty model or some important variables identified a priori and then sequentially recruits variables
given important variables identified in the previous steps. This may resemble the conditional screening approach [14],
which incorporates prior knowledge into variable screening. However, our method is valid even in the absence of such
information.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed forward regression pro-
cedure. In Section 3, we rigorously establish forward regression’s screening consistency and asymptotic normality
under some regularity conditions. We carry out simulation studies to assess the performance of the proposed method
in Section 4, and apply the method in Section 5 to analyze a subset of the Boston Lung Cancer Survival Cohort study,
our motivating study for identifying biomarkers related to lung cancer patients’ survival. We conclude the paper with
a natural extension of the proposal in Section 6. Technical proofs and all of the lemmas are presented in the appendix.

2. Partial likelihood-based forward regression

Suppose we have n independent subjects with p covariates, where p � n. For subject i, denote by Xi j the jth
covariate for subject i, write Xi = (Xi1, . . . , Xip)>, and let Ti and Ci be the underlying survival and censoring times.
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We, however, only observe Yi = min{Ti,Ci}, and the event indicator δi = I(Ti ≤ Ci), where I(·) is the indicator
function. We assume random censoring such that Ci and Ti are independent given Xi. We assume that (Yi, δi,Xi) are
independently and identically distributed (iid). In particular, we assume that (Yi,Ti, Xi j), i = 1, . . . , n, are iid copies of
(Y,T, X j), the random variables that underlie the observed survival time, true survival time and covariates.

To link Ti to Xi, we consider the following Cox proportional hazards model:

λ(t|Xi) = λ0(t) exp(β>0 Xi), (1)

where λ0(t) is the unspecified baseline hazard function and β0 = (β01, . . . , β0p)> is the vector of regression coefficients.
Without loss of generality, we assume that E(X j) = 0, j = 1, . . . , p. Denote the true model asM = { j : β0 j , 0}. The
overarching goal of variable screening is to estimateM and we let its estimate be M̂.

We introduce more notation. For an index set S ⊂ {1, . . . , p} and a p-dimensional vector A, we use AS = {A j : j ∈
S } to denote the subvector of A corresponding to S . For example, XiS denotes the collection of covariates for the ith
individual corresponding to S . We use |S | to denote the cardinality of S and let S c denote the complement of S .

Now we elaborate on the idea of forward regression under model (1). Initialize S 0 = ∅. We can also start with a
set of given variables according to some prior knowledge, which is in the same spirit as conditional screening [14] but
is followed by a sequential selection process. Specifically, we sequentially select the sets of covariates as follows:

S 0 ⊂ S 1 ⊂ S 2 ⊂ · · · ⊂ S k,

where S k ⊂ {1, . . . , p} is the index set of the selected covariates upon completion of the kth step, with k ≥ 0. Then at
the (k + 1)th step, we need to choose a new candidate variable not in S k and then decide whether we should stop at
the kth step or we should include the new candidate in our selection and proceed to the next step. We emphasize that
our selection criterion is based on the partial likelihood. The framework is much broader than that of the one based
on the reduction in sum of squared residuals proposed by [6] and [11] and can be extended to more general regression
settings.

Now, given S k, we consider estimation of the extended Cox model by adding a new variable index to S k. Specif-
ically, for every j ∈ S c

k, we denote by S k, j = S k ∪ { j}, and fit a Cox model on the variables indexed by S k, j. We then
compute the increment of log partial likelihood for each j ∈ S c

k:

`S k, j (β̂S k, j ) − `S k (β̂S k ).

Here, for a covariate set S , `S (βS ) is the log partial likelihood function given XS :

`S (βS ) =

n∑
i=1

∫ τ

0

β>S XiS − ln

 n∑
l=1

Ȳl(t) exp(β>S XlS )


 dNi(t), (2)

and β̂S maximizes (2), where Ni(t) = I(Yi ≤ t, δi = 1) is the counting process, Ȳi(t) = I(Yi ≥ t) is the at-risk process,
and τ > 0 is the study duration such that P(Y ≥ τ) > 0. Then, the candidate index is chosen as

j∗ = arg max
j<S k

`S k, j (β̂S k, j ) − `S k (β̂S k ).

Upon completion of the (k + 1)th step, update S k+1 = S k ∪ { j∗}.
We are now in a position to decide whether to stop at the kth step or to include variable j∗ in our selection and

proceed to the next step. In the survival setting, the effective sample size is the number of uncensored events, in which
case [21] showed that replacement of the sample size with the number of uncensored events in the penalty term of
EBIC gives a better approximation to the Bayes factor. Therefore, we propose the following as the modified EBIC
criterion for ultrahigh-dimensional survival data:

EBIC(S k+1) = −2`S k+1 (β̂S k+1 ) + |S k+1|(ln d + 2η ln p)
= −2`S k+1 (β̂S k+1 ) + (k + 1)(ln d + 2η ln p), (3)

where d =
∑
δi is the number of events and η is some positive constant.

We stop if EBIC(S k+1) > EBIC(S k) and declare M̂ = S k; otherwise, we proceed to the next step.
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3. Theoretical Properties

We first introduce more notation. Let →p denote convergence in probability. Given iid samples Z1, . . . ,Zn, let
En{ f (Zi)} := n−1 ∑n

i=1 f (Zi) and Gn{ f (Zi)} := n−1/2 ∑n
i=1 ( f (Zi) − E { f (Zi)}). For a column vector v, let v⊗0 = 1, v⊗1 =

v, and v⊗2 = vv>. We denote the lq-norm of v by ‖v‖q for q ≥ 1, and, in particular, denote its l2-norm by ‖v‖. For any
symmetric matrix A, let λmin(A) and λmax(A) represent the smallest and largest eigenvalues. Given an index set S and
an index j ∈ S , we use S \ j to denote the set {r : r ∈ S , r , j}.

Given an index set S ⊂ {1, . . . , p}, for k = 0, 1, 2, define

R(k)
S (βS , t) = En

{
Ȳi(t)X⊗k

iS exp
(
β>S XiS

)}
, r(k)

S (βS , t) = E
{
R(k)

S (βS , t)
}
,

V (k)
S (t) = En

{
Ȳi(t)X⊗k

iS λ0(t) exp(β>0 Xi)
}
, v(k)

S (t) = E
{
V (k)

S (t)
}
.

In addition, we use β∗S to denote the least false value, which is the unique root of∫ τ

0

v(1)
S (t) −

r(1)
S (βS , t)

r(0)
S (βS , t)

v(0)
S (t)

 dt = 0. (4)

We use FT (t; XM), fT (t; XM) and S T (t; XM) to denote the conditional cumulative distribution function (cdf),
probability density function (pdf), and survival function of T given the true model XM, respectively. Likewise, the
conditional cdf, pdf, and survival function of C given XMA are denoted by FC(t; XMA ), fC(t; XMA ), and S C(t; XMA ),
respectively, where XMA is the collection of covariates that are related to the censoring time C. LetMO =M∪MA.

3.1. Regularity conditions
We posit the regularity conditions, followed by explanations. The assumptions are, in general, mild, well justified

and follow the same lines as suggested by the existing literature.

(A) The study has a finite duration τ such that ω := Pr(Y ≥ τ) > 0.

(B) The X j are time-independent and bounded by a constant K > 1 with E(X j) = 0 and E(X2
j ) = 1 for all 1 ≤ j ≤ p.

(C) There exist two positive constants 0 < κmin < κmax < ∞, such that

κmin < λmin

{
E

(
X⊗2

S

)}
≤ λmax

{
E

(
X⊗2

S

)}
< κmax,

uniformly in S ⊂ {1, . . . , p} satisfying |S | ≤ ρ for some ρ > |M|.

(D) sup|S |≤ρ ‖β
∗
S ‖1 ≤ L, for some constant L.

(E) For some constant 0 < α < 1/2,

inf
j∈M

∣∣∣∣∣∫ τ

0
E
{
X j fT (t; XM)S C(t; XMA )

}
dt

∣∣∣∣∣ ≥ Kn−α.

(F) There exists a ζ > 0, such that for all 0 < t,

κmin ≤ inf
‖βS−β∗S ‖∞≤ζ,|S |≤ρ

λmin


∫ τ

0

 r(2)
S (βS , t)

r(0)
S (βS , t)

−
(r(1)

S (βS , t))⊗2(
r(0)

S (βS , t)
)2

 v(0)
S (t)dt


≤ sup
‖βS−β∗S ‖∞≤ζ,|S |≤ρ

λmax


∫ τ

0

r(2)
S (βS , t)

r(0)
S (βS , t)

v(0)
S (t)dt

 ≤ κmax.

(G) E
{
X jS T (t; XM) fC(t; XMA )|XMO\ j

}
and E

{
X jS T (t; XM)S C(t; XMA )|XMO\ j

}
have the same sign across t, for any

j ∈ M.
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Condition (A) is standard in survival models with censored data [see, e.g., 23]. Conditions (B) and (C) are commonly
assumed in the literature for variable selection and screening [see, e.g., 6, 7, 11, 24]. The boundedness of X is adopted
to simplify our theoretical development and can be relaxed to the Cramer condition as in [5]. Condition (D) replaces
the Lipschitz assumption in [25] and has a similar flavor to the conditions in [12], and [23]. Condition (E) is introduced
in [12], which is an adapted version of the conditions in [26] to survival data. Condition (F) is analogous to Condition
2 considered in [5] for regularized Cox models. The condition essentially requires that the concavity of the log partial
likelihood is well bounded in a neighborhood of β∗S . We invoke Condition (G) in order to analyze the least false value
β∗S . The condition often holds in practice; for example, Lemma 1 shows that it is satisfied ifM∩MA = ∅.

Since the log partial likelihood function in (2) is the sum of non-iid random variables, we consider its asymptoti-
cally equivalent version, which can be expressed as the sum of iid terms:

˜̀S (βS ) =

n∑
i=1

∫ τ

0

{
β>S XiS − ln r(0)

S (βS , t)
}

dNi(t). (5)

According to [23], the log partial likelihood function (2) can then be viewed as a “working” model of (5), and the
corresponding loss function becomes

γS (βS ; Xi,Yi, δi) := −
∫ τ

0

{
β>S XiS − ln r(0)

S (βS , t)
}

dNi(t)

with the expected loss ΓS (βS ) = E
[
γS (βS ; Xi,Yi, δi)

]
.

To validate the replacement of the log partial likelihood (5), a commonly assumed condition in the literature is
that there exists a neighborhood B of β0 such that for k = 0, 1, 2,

sup
t∈[0,τ],β∈B

∥∥∥R(k)
M

(β, t) − r(k)
M

(β, t)
∥∥∥→p 0.

See, for example, [5, 12]. Under Conditions (B) and (D), Lemma 3 shows that the above condition holds uniformly
for all S ⊂ {1, . . . , p} satisfying |S | ≤ ρ.

We note that the proportional hazards assumption is made only on the true (and sparse) model. At each step of
the screening procedure, we treat the misspecified Cox proportional hazards model as a working model following
[27] and [28]. Our theoretical derivations depend on the least false value, which helps us characterize the asymptotic
behavior of our estimator at each step even without the proportional hazards assumption. Specifically, similar to [27]
and [28], the proposed estimator will converge to the least false value at each step under the working model, and when
the second derivative of the log partial likelihood is bounded in a neighborhood of the least false value, adding an
active variable will increase the partial-likelihood, even if a mis-specified model is under consideration.

3.2. Main results
Theorem 1. Under Conditions (A) – (G), if ρ4 ln p/n→ 0, then with probability of at least 1 − 8 exp (−3ρ ln p),

min
S :|S |<ρ,M1S

max
j∈S c

{
`S∪{ j}(β̂S∪{ j}) − `S (β̂S )

}
≥ c1n1−2α − c2

√
nρ2 ln p,

for some 0 < α < 1/2.

Theorem 1 shows that ifM 1 S k and |S k | < ρ, then the increment of the log likelihood at the (k + 1)th step is at
least c1n1−2α−c2

√
nρ2 ln p. Since the maximum increment is bounded by |`S 0 (0)|, we naturally obtain an upper bound

on the number of steps for the forward selection, which is stated in the following corollary.

Corollary 1. Suppose the same conditions as in Theorem 1 hold. If
√
ρ2 ln p/n = o(n−2α) and

M := 2E
{∫ τ

0
ln

(
nr(0)

S 0
(0, t)

)
dNi(t)

}
n2α < ρ

for some 0 < α < 1/2, thenM ⊂ S k, for some k ≤ M, with probability of at least 1 − 11 exp(−3ρ ln p).
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Corollary 1 establishes the screening consistency of the forward selection procedure. However, the upper bound
M is not sharp, as it is calculated based on the lower bound of the increment of the log likelihood. The following
corollary establishes an upper bound of the number of steps by evaluating how likely a signal variable will be selected
at each step.

Corollary 2. Under the same conditions as in Corollary 1, if the XMc are independent of XM, thenM ⊂ S c3 |M|, for
some c3 > 1, with probability of at least 1 − 8 exp(−2ρ ln p).

The condition that the XMc are independent of XM stems from the assumption imposed in [12], and is similar
to the partial orthogonality assumption introduced in [29]. It ensures that selecting a noise variable would bring less
of an increment of the log likelihood compared to choosing a signal variable. Thus, it is much more likely for our
procedure to select a signal variable at each step.

The following corollary follows from Corollary 2. We expect the proposed forward procedure to stop early with
M ⊂ S k for some k.

Corollary 3. Under the same conditions as in Corollary 2, ifM 1 S k−1 andM ⊂ S k, then with probability going to
1,

(i) (screening consistency) the procedure stops at the kth step andM ⊂ M̂ = S k,

(ii) (false discovery rate control) |M̂ ∩Mc|/|M̂| ≤ c3 − 1.

By Corollary 3, our proposed forward selection procedure will stop at a final step, denoted by k̂, which is at most
c3|M|. The final model M̂ not only achieves screening consistency, but also has well-controlled false discoveries.

4. Numerical Studies

Simulations were conducted to compare the performance of the proposed forward regression (FR) with two partial
likelihood based screening methods, the principled sure independence screening (PSIS) by [12], and the conditional
screening (CS) by [14]. The size of the models selected by the PSIS and CS was initially set to be [n/ ln n] as
suggested by [26]. To further reduce false positives, we applied Lasso [30], SCAD [31], and MCP [32] penalties
to further reduce the sizes of models selected by each method. In the tables, we used screening method+penalty to
denote the corresponding procedure. Although FR could start from a null model, we tried different initial sets for FR,
including active or inactive variables. Particularly, we chose {X1} and {X10} to represent the active and inactive initial
sets, respectively. When computing the model size for both FR and CS, we included the given initial set.

In this paper, we considered η as a fixed constant, which is analogous to the constant “a” parameter in the SCAD
penalty function [31]. This distinguishes this from the other screening approaches that typically require data-driven
thresholding tuning parameters and may incur more of a computational burden for finding them. To further justify
the use of a fixed η, we considered various values of η between 0 and 1, the theoretical range of η in EBIC [20]. The
BIC is a special case of EBIC when η = 0. We explored using BIC as the stopping criterion, but it incurred too many
false positives compared to EBIC. This may cause overfitting of the Cox proportional hazards model with unreliably
estimated regression coefficients and spuriously detected associations [33]. Thus, we elected not to use BIC.

We next considered three different values of η, 0.5, 1 − ln d/(3 ln p), and 1; see Tables 1-3. Essentially, a larger
η gives more penalty to a complicated model, which may incur more false negatives, while a smaller η less penalizes
the complexity of models and may lead to more false positives. Based on Tables 1-3, it seems that under all of the
scenarios considered, the choice of η = 1 − ln d/(3 ln p) strikes a good balance between false negatives and false
positives.

We considered p = 1, 000 and varied sample size n = 200 and 400. The survival time was generated from a Cox
model λ(t|X) = λ0(t) exp(β>X) with a Weibull baseline hazard. Specifically, λ0(t) = αγtγ−1, with α = 1 and γ = 1.5.
We considered various models for X and different parameter configurations for β in the following four examples. The
censoring time was independently generated from a uniform distribution over [0, c). We varied c for each example in
order to yield mild (around 25%) and heavy censoring proportions (around 50%). For each configuration, a total of
500 simulated datasets were generated.
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Example 1: We chose β = (1, 0.5,−1, 0, 1, 0p−5) and generated X from a multivariate normal distribution where the
mean was 0, the variance 1, and cor(X j, X j′ ) = 0.5| j− j′ |.
Example 2: We set β = (1>5 ,−2.5, 0>p−6) and generated X from a multivariate normal distribution with mean 0,
variance 1, and cor(X j, X j′ ) = 0.5. In this case, since cov(T, X6) = 0, X6 has a lower marginal utility than all of the
noise variables with cov(T, X j) = 1.25 for j ∈ Mc.
Example 3: We let β = (1,−1, 1,−1, 1,−ν+ ν2 − ν3 + ν4 − ν5, 0>p−6) with ν = 0.5. We generated X from a multivariate
normal distribution with mean 0, variance 1, and cor(X j, X j′ ) = 0.5| j− j′ |. In this case, since cov(T, X6) = 0, X6 is an
active but hidden variable. Furthermore, the signals of the active variables are weak due to signal cancellation.

[Table 1 about here.]

[Table 2 about here.]

Tables 1–2 report the average of the estimated probabilities of including the true models (PIT), the average num-
bers of true positive (TP) and false positive (FP), and their standard deviations in parenthesis, under mild and heavy
censoring. We use p0 to denote the number of true signals. We have observed the competing performance of the
proposed method as detailed below.

First, Example 1 was designed in such a way that all of the true signals have nonzero marginal correlations with the
outcome and are detectable by marginal screening methods. In particular, the dependence among the active variables
in Example 1 can further strengthen the marginal correlations between them and the outcome. Even under these
situations, FR was found to perform better than the marginal screening methods, including the conditional screening
method, with larger PIT, TP and smaller FP. When the sample size decreases to 200 or with more censored events,
FR’s performance was still decent with, for example, a PIT around 0.8. In contrast, the performances of PSIS and CS
deteriorated quickly with smaller sample sizes or with more censoring.

Second, Examples 2 and 3 were designed so that X6, though active, has a 0 marginal correlation with the outcome
and, therefore, is not detectable by marginal screening methods. As a result, PSIS and CS failed in this challenging
situation. In contrast, FR remained competent by being able to detect the hidden variable. It even outperformed the
conditional screening that used the prior information.

Third, even using penalties such as Lasso, SCAD, and MCP to further reduce false positives, the screening methods
still incurred many false positives. The final models selected by the different penalties vary a bit. However, compared
to FR, all of these penalties still perform similarly. On the other hand, with the EBIC-based stopping rule, the proposed
FR caused much fewer false positives without the help of Lasso.

Finally, the simulation results hint that the performance of FR is quite robust toward the choice of the initial set.
Even if the “wrong” set was employed as the initial set, the TP is almost the same as the one that starts from the null
set.

We further explored the robustness of the method to the violation of the independence censoring assumption. We
considered Examples 1∗–3∗, which have the same setup as Examples 1–3, except that the underlying survival times
and censoring times have a common latent variable b which was generated from the standard normal distribution and
the censoring times Ci were covariate-dependent. That is,

λ(t|X) = exp(b + β>X),

and
λC(t | X) = c exp(b + α>X),

where α = (0.75, 0.75, 0p−2) and c was chosen to censor approximately 25% of the observations. The results are
documented in Table 3.

[Table 3 about here.]

We found that, with dependent censoring, the performance of all of the methods deteriorated a bit across the board.
However, our proposed method still outperformed all the other methods, hinting at the usability of the proposal under
dependent censoring. More work is warranted.
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5. Analysis of the Boston Lung Cancer Survival Cohort (BLCSC) study

Recent studies demonstrate that aberrant methylation may be the most common mechanism of inactivating cancer-
related genes in lung cancer. It occurs in the smoking-damaged bronchial epithelium from cancer-free individuals,
can be reversed in vitro by demethylating agents, and may be a useful biomarker for lung cancer risk assessment [34].
It is thus of substantial interest to identify the methylations that play an important role in the pathogenesis of lung
cancer, which affects patients’ overall survival.

The motivating data represented a subset of the Boston Lung Cancer Survival Cohort (BLCSC) and included 124
samples, each with 442,613 methylations. The median follow up time of the subjects was 6.2 years and during the
follow up, 84 deaths were observed. Each methylation resides within a certain gene. Prior literature has suggested that
the following genes are associated with the development of lung cancer: ROS1, RET, PIK3CA, NRAS, BRAF, ALK,
AKT 1, VGLL2, MET, KRAS, EGFR, KDM4, ST3GAL3, and CDH13. We used the array annotations from the
Bioconductor package FDb.InfiniumMethylation.hg19 (version 2.2.0) to identify methylations that lie within these
genes. A total of 589 methylations were identified. The other available environmental exposure and demographic
variables in the data included lifetime tobacco exposure (SMOK), computed by multiplying the number of packs of
cigarettes smoked per day by the number of years the person has smoked until the beginning of the study; AGE, the
age at diagnosis in years; and SEX (1=male; 0=female).

Our analytical goal was to explore what methylations and their interactions with demographic and environmental
exposure variables might be related to patients’ overall survival. Thus, the outcome was the time to death, while the
dependent variables included the aforementioned variables, consisting of demographic information, environmental
exposures, and methylations and their interactions, for a total of 2,359 variables. We applied FR to the dataset and
identified cg04187088×SEX and cg14363146×SMOK.

To check the model adequacy for the final model obtained by FR, we plotted the Cox-Snell residuals based on the
final model that includes two predictors, cg04187088×SEX and cg14363146×SMOK. Figure 1 shows that the final
model fits the data reasonably well.

[Figure 1 about here.]

Furthermore, we conducted the score test for the scaled Schoenfeld residuals to test the proportional hazards
assumption on each included predictor in the final model. We obtained the p-values of 0.542 and 0.670 for
cg04187088×SEX and cg14363146×SMOK, respectively. It appears that the proportional hazards assumption is not
rejected for either of them.

We also applied competing methods to the BLCSC dataset, including the PSIS, CS, and SII. For each competing
method, we selected the top [n/ ln(n)]=25 genes, and compared them with the genes selected by FR.

In terms of computing time, PSIS, CS, SII, and FR took 2.47, 2.52, 1473.65, and 20.89 seconds, respectively.
Due to the sequential nature of the proposed procedure, FR is understandably more computationally intensive than
the marginal screening approaches such as PSIS and CS. However, FR appears to run faster than SII, a nonparametric
approach.

Table 4 lists the overlapping genes across the four methods. It appears that two genes selected by FR did not
overlap with any genes selected by PSIS, CS and SII.

[Table 4 about here.]

On the other hand, using the SMOK, AGE, and SEX as the initial set, FR further selected cg11704212, in addition
to these identified interactions. Our Pubmed review did not detect any previous literature that discusses these two
SNPs. This may indicate the ability of the proposed FR to identify some novel SNPs, which may not have been
detected by the existing methods. We expect that future studies are warranted to confirm and study the functionality
of these detected biomarkers.

To elucidate the identified effects, we further conducted Kaplan-Meier analysis. We first dichotomized methyla-
tions by using the median values and used “+” or “−” if a subject’s methylation is higher or lower than its median,
respectively. Figure 2 compared survival curves across various subgroups. Figure 2(a) clearly indicated that female
patients with low cg04187088 had a higher survival probability than the other comparison groups, while Figure 2(b)
revealed that heavy smokers with high cg14363146 had a much lower survival probability than the other comparison
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groups. Figure 2(c) also showed that patients with high cg11704212 had a larger survival probability than those with
low cg11704212.

[Figure 2 about here.]

6. Concluding Remarks

This article proposes forward regression with partial likelihood for high-dimensional survival data, and has ob-
tained computationally and theoretically useful results. We envision the established theoretical framework will facili-
tate the extension of the procedure to other general settings, such as generalized linear models.

To further improve the computational efficiency, we can consider a natural extension of the proposed forward
selection in the spirit of boosting [35]. That is, at each step, we use the selected variables and the obtained coefficient
estimates to construct an offset, and search for a variable that will maximize the partial likelihood with such an offset.
The advantage is that we need to maximize the partial likelihood with respect to only one covariate at each step, which
may enhance computational efficiency. Specifically, we denote the log partial likelihood with an offset term O and
covariate j in the model by

`O, j(β) =

n∑
i=1

∫ τ

0

Oi + βXi j − ln

 n∑
l=1

Ȳl(t) exp(Ol + β jXl j)


 dNi(t),

Here Oi refers to the offset term O evaluated at the ith subject. We let O(k) be the offset term evaluated at kth step and
S k be the set of indices of covariates selected up to the kth step. For FR, we initialize S 0 = ∅ and set O(0) = 0. For
j ∈ {1, . . . , p}, compute β̂(1)

j = arg maxβ `O(0), j(β). Then j1 = arg max j∈{1,...,p} `O(0), j(β̂
(1)
j ). Now set O(1) = β̂(1)

j1
X j1 and

S 1 = { j1}. Given O(k) and S k, compute β̂(k+1)
j = arg maxβ `O(k), j(β) for j ∈ S c

k. Then jk+1 = arg max j∈S c
k
`O(k), j(β̂

(k+1)
j ).

Now set O(k+1) = O(k) + β̂(k+1)
jk+1

X jk+1 and S k+1 = S k ∪ { jk+1}. We note this proposal does not require re-estimation of
the coefficients of the covariates selected in the previous steps, which expedites computation. We will explore this
further.

We employed a modified EBIC to select the final models. Although it worked well in our simulations, it tends to
be conservative in real data analysis and recruits too few variables, whereas BIC recruits too many variables. It would
be interesting to investigate the optimal η in the EBIC penalty term to strike a balance between EBIC and BIC.

Appendix

Preliminary lemmas

We present some preliminary lemmas in this section. Given an index set S ⊂ {1, . . . , p}, we use S +r to denote
S ∪ {r} for some r ∈ S c.

Lemma 1. Condition (G) is satisfied ifM∩MA = ∅.

Without loss of generality, we assume that Xr is the last element of XS +r , with β∗r being the corresponding least
false coefficient under the model S +r.

Lemma 2. Given S ⊂ {1, . . . , p} satisfying |S | < ρ and r ∈ S c, under Conditions (B) and (G),

(i) if r ∈ Mc and the XMc are independent of XM, then β∗S +r
= (β∗S

>, 0)>, i.e. the least false coefficient for Xr under
the model S +r is 0.

(ii) if r ∈ M, then β∗S +r
, (β∗S

>, 0)>.

(iii) if r ∈ M and Conditions (E) and (F) are satisfied,
∥∥∥β∗S +r

− (β∗S
>, 0)>

∥∥∥ ≥ Kκ−1
maxn−α.

Lemma 2 quantifies the difference between β∗S +r
and (β∗>S , 0)> when a noise variable or a signal variable is selected

into the model.
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Lemma 3. Under Conditions (B) and (D), if ρ3 ln p/n → 0, then for each S ⊂ {1, . . . , p} satisfying |S | ≤ ρ, we can
find a neighborhood B0

S (c) of β∗S , for some constant c, such that

sup
|S |≤ρ,t∈[0,τ],βS ∈B

0
S (c)

∥∥∥R(k)
S (βS , t) − r(k)

S (βS , t)
∥∥∥→p 0, k = 0, 1, 2.

Define
ZS (βS ) :=

∣∣∣[En{γS (βS ; Xi,Yi, δi)} − ΓS (βS )
]
−

[
En{γS (β∗S ; Xi,Yi, δi)} − ΓS (β∗S )

]∣∣∣ .
Lemma 4. Under the same conditions as in Lemma 3,

Pr

 sup
|S |≤ρ,βS ∈B

0
S (c)

ZS (βS ) ≥ 2
c
K

an + 3
c
√
ρ

K
√

s
an + 6cτ

√
ρ ln p/n + 2K

√
ρζn


≤ 3 exp(−6ρ ln p),

where an =
√

2K2 ln(2p)/n + K ln(2p)/n and ζn = c/(Kn2).

Define DS (βS ) := n−1
∣∣∣∣{`S (βS ) − ˜̀S (βS )

}
−

{
`S (β∗S ) − ˜̀S

(
β∗S

)}∣∣∣∣.
Lemma 5. Under Conditions (A), (B), and (D), we have

Pr

 sup
|S |≤ρ,βS ∈B

0
S (c)

DS (βS ) ≥ A10

√
ρ2 ln p/n

 ≤ 2 exp(−3ρ ln p),

for some constant A10 that does not depend on n.

Lemma 6. Under Conditions (B), (D), and (F), given an index set S satisfying |S | ≤ ρ, then for any βS ∈ B
0
S (c),

1
2
κmin‖βS − β

∗
S ‖

2 ≤ ΓS (βS ) − ΓS (β∗S ) ≤
1
2
κmax‖βS − β

∗
S ‖

2.

Lemma 7. Under Conditions (A) – (F), if ρ4 ln p/n→ 0, there exist two constants A11 and A12 that do not depend on
n such that

(i)

Pr

sup
|S |≤ρ

∥∥∥β̂S − β
∗
S

∥∥∥ ≤ A11

(
ρ2 ln p/n

)1/4
 ≥ 1 − 5 exp(−3ρ ln p) and

(ii)

Pr

sup
|S |≤ρ

n−1
∣∣∣`S (β̂S ) − `S (β∗S )

∣∣∣ ≤ A12

√
ρ2 ln p/n

 ≥ 1 − 5 exp(−3ρ ln p).

Lemma 8. Under Conditions (B) and (D), there exists some constant A14, which does not depend on n, such that

Pr
[

sup
|S |<ρ,r∈S c

∣∣∣∣n−1
{
`S +r (β

∗
S +r

) − `S (β∗S )
}
−

{
−ΓS +r (β

∗
S +r

) + ΓS (β∗S )
}∣∣∣∣

≥ A14
√
ρ ln p/n

]
≤ 3 exp (−3ρ ln p) .
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Proofs of main theoretical results in Section 3.2

In the following, we provide the proofs for the theoretical results in Section 3.2.

Proof of Theorem 1: We prove the theorem for a generic index set S satisfying S ⊂ {1, . . . , p},M 1 S and |S | < ρ.
The change of log likelihood by adding a variable Xr, where r ∈ S c, can be decomposed as

n−1
{
`S +r (β̂S +r ) − `S (β̂S )

}
= n−1

[
`S +r (β̂S +r ) − `S (β̂S ) −

{
`S +r (β

∗
S +r

) − `S (β∗S )
}]

+
[
n−1

{
`S +r (β

∗
S +r

) − `S (β∗S )
}
−

{
−ΓS +r (β

∗
S +r

) + ΓS (β∗S )
}]
−

{
ΓS +r (β

∗
S +r

) − ΓS (β∗S )
}
.

We restrict our attention Ωc
5 ∩Ωc

6, where

Ω5 :=

sup
|S |≤ρ

n−1
∣∣∣`S (β̂S ) − `S (β∗S )

∣∣∣ > A12

√
ρ2 ln p/n

 and

Ω6 :=
{

sup
|S |<ρ,r∈S c

∣∣∣∣n−1
{
`S +r (β

∗
S +r

) − `S (β∗S )
}
−

{
−ΓS +r (β

∗
S +r

) + ΓS (β∗S )
}∣∣∣∣

≥ A14
√
ρ ln p/n

}
.

According to Lemmas 7 and 8, Ωc
5 ∩Ωc

6 holds with probability of at least 1 − 8 exp(−3ρ ln p).
If r ∈ M, then by Lemma 2 (iii),

∥∥∥β∗S +r
− (β∗>S , 0)>

∥∥∥ ≥ Kκ−1
maxn−α. For any βS +r such that ‖βS +r − β

∗
S +r
‖ = Kκ−1

maxn−α,
noting that β∗S +r

is the solution to (4) under model S +r, we apply Taylor’s expansion to obtain

ΓS +r (βS +r ) − ΓS +r (β
∗
S +r

) =
1
2

(
β∗S +r
− βS +r

)>
×


∫ τ

0

r(2)
S +r

(β̃S +r , u)

r(0)
S +r

(β̃S +r , u)
−

{
r(1)

S +r
(β̃S +r , u)

}⊗2{
s(0)(β̃S +r , u)

}2 v(0)(u)du

 (β∗S +r
− βS +r

)
≥ K2κminκ

−2
maxn−2α =: c1n−2α,

where β̃S +r is between βS +r and β∗S +r
, the last inequality follows from Condition (F) and c1 := K2κminκ

−2
max. By the

convexity of ΓS +r (βS +r ), we have ΓS +r {(β
∗
S
>, 0)>} − ΓS +r (β

∗
S +r

) ≥ c1n−2α. Thus,

n−1
{
`S +r (β̂S +r ) − `S (β̂S )

}
≥ −

{
n−1

∣∣∣`S +r (β̂S +r ) − `S +r (β
∗
S +r

)
∣∣∣ + n−1

∣∣∣`S (β̂S ) − `S (β∗S )
∣∣∣}

−

∣∣∣∣n−1
{
`S +r (β

∗
S +r

) − `S (β∗S )
}
−

{
−ΓS +r (β

∗
S +r

) + ΓS (β∗S )
}∣∣∣∣ +

{
ΓS (β∗S ) − ΓS +r (β

∗
S +r

)
}

≥ −2A12

√
ρ2 ln p/n − A14

√
ρ ln p/n + c1n−2α.

Consequently,

sup
|S |<ρ,r∈S c

n−1
{
`S +r (β̂S +r ) − `S (β̂S )

}
≥ c1n−2α − 2A12

√
ρ2 ln p/n − A14

√
ρ ln p/n ≥ c1n−2α − c2

√
ρ2 ln p/n,

for some constant c2 that does not depend on n. Then, we obtain that

max
r∈S c

{
`S +r (β̂S +r ) − `S (β̂S )

}
≥ c1n1−2α − c2

√
nρ2 ln p.
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Withdrawing the restriction on Ωc
5 ∩Ωc

6 completes the proof of Theorem 1. �

Proof of Corollary 1: As shown in Theorem 1, for any S such that |S | < ρ,M 1 S , with probability of at least
1 − 8 exp(−3ρ ln p),

max
r∈S c

`S +r (β̂S +r ) − `S (β̂S ) ≥ c1n1−2α − c2

√
nρ2 ln p.

If
√

nρ2 ln p = o(n1−2α), then ln d + 2η ln p = o(n1−2α), and consequently,

EBIC(S +r) − EBIC(S )

= −2`S +r (β̂S +r ) + (|S | + 1)(ln d + 2η ln p) −
{
−2`S (β̂S ) + |S |(ln d + 2η ln p)

}
≤ c2

√
nρ2 ln p − c1n1−2α + (ln d + 2η ln p) < 0.

Therefore, our forward selection does not stop whenM 1 S and |S | < ρwith probability of at least 1−8 exp(−3ρ ln p).
Noting that S 0 = ∅, ifM 1 S k, then

n∑
i=1

[∫ τ

0
ln

{
nR(0)

S 0
(0, t)

}
dNi(t)

]
− 0

≥ {`S 1 (β̂S 1 ) − `S 0 (β̂S 0 )} + {`S 2 (β̂S 2 ) − `S 1 (β̂S 1 )} + · · · + {`S k (β̂S k ) − `S k−1 (β̂S k−1 )}

≥ kc1n1−2α/2,

when n is sufficiently large such that 2c2
√
ρ2 ln p/n ≤ c1n−2α/2.

As shown in the proof of Lemma 8,

En

{∫ τ

0
ln R(0)

S 0
(0, t)dNi(t)

}
→ E

{∫ τ

0
ln r(0)

S 0
(0, t)dNi(t)

}
,

with probability of at least 1 − 3 exp(−3ρ ln p). IfM 1 S M , then

E
[∫ τ

0 ln
{
nr(0)

S 0
(0, t)

}
dNi(t)

]
c1n−2α/2

> M,

which contradicts the definition of M. Hence, we have some k such thatM ⊂ S k. This completes the proof of Corol-
lary 1. �

Proof of Corollary 2: By Lemma 2 (i), If r ∈ Mc and XMc are independent of XM, then β∗S +r
= (β∗>S , 0)>. Thus,

under Ωc
5 ∩Ωc

6,

n−1
{
`S +r (β̂S +r ) − `S (β̂S )

}
≤ n−1

∣∣∣`S +r (β̂S +r ) − `S +r (β
∗
S +r

)
∣∣∣ + n−1

∣∣∣`S (β̂S ) − `S (β∗S )
∣∣∣ ≤ 2A12

√
ρ2 ln p/n.

If
√

nρ2 ln p = o(n1−2α), we have for any S such that |S | < ρ andM 1 S ,

arg min
r∈S c

EBIC(S +r) − EBIC(S ) ∈ M,

when n is sufficiently large.
Withdrawing the restriction on Ωc

5 ∩ Ωc
6, we obtain that, at each step, the probability of selecting a noise variable

is at most 8 exp(−3ρ ln p).
SinceM 1 S k implies that at more than k − |M| steps, a noise variable is selected, then for k = c3|M|,

P (M 1 S k) ≤
k∑

j=k−|M|

(
k
j

){
8 exp(−3ρ ln p)

} j
≤ |M|k|M|

{
8 exp(−3ρ ln p)

}k−|M|

≤ 8 exp(−3ρ ln p + ln |M| + |M| ln k) ≤ 8 exp(−2ρ ln p).
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Therefore,M ⊂ S c3 |M| with probability of at least 1 − 8 exp(−2ρ ln p). This completes the proof of Corollary 2. �

Proof of Corollary 3: By Corollary 2, we know thatM ⊂ S k, for some k ≤ c3|M|. Thus, both S k ⊂ S k+1 ∈ A0, where

A0 :=
{
S :M ⊂ S , |S | ≤ c3|M|

}
.

(i): It can be shown that EBIC(S k+1) < EBIC(S k) if and only if 2`S k+1 (β̂S k+1 ) − 2`S (β̂S k ) ≥ ln d + 2η ln p. Following
the same arguments used to show Equation (14) in [36], we can show that with probability tending to 1,

2`S k+1 (β̂S k+1 ) − 2`S (β̂S k ) < ln d + 2η ln p,

for all η > 0. Therefore, with probability tending to 1, the procedure stops at the kth step andM ⊂ M̂ = S k.
(ii): From Corollary 2 and Part (i), we have |M̂ ∩Mc| = |M̂| − |M| as well as |M̂| ≥ |M| with probability going to 1.
Hence, the stated result follows. �

Proofs of Lemmas

Proof of Lemma 1: We first show that r ∈ M, E
[
XrS T (t; XM) fC(t; XMA )|XMO\r

]
has the same sign across t > 0. Let

S 0(t) = exp
(
−

∫ t
0 λ0(u)du

)
.

E
{
XrS T (t; XM) fC(t; XMA )|XMO\r

}
= E

{
XrS T (t; XM)|XM\r

}
E

{
fC(t; XMA )|XMA

}
= E

{
XrS 0(t)exp(β>0MXM)

∣∣∣∣XM\r} E
{
fC(t; XMA )|XMA

}
= E

{
XrS 0(t)exp

(
β>0M\rXM\r

)
exp(β0r Xr)

∣∣∣∣XM\r} E
{
fC(t; XMA )|XMA

}
=

1
β0r

E
[
βrXr

{
S 0(t)exp

(
β>0M\rXM\r

)}exp(β0r Xr) ∣∣∣∣XM\r] E
{
fC(t; XMA )|XMA

}
= −

1
β0r

E
[
−U

{
S 0(t)exp

(
β>0M\rXM\r

)}exp(U) ∣∣∣∣∣XM\r] E
{
fC(t; XMA )|XMA

}
,

where U = β0rXr. Noting that S 0(t) ≤ 1 and exp
(
β>0M\rXM\r

)
> 0, we have S 0(t)exp

(
β>0M\rXM\r

)
≤ 1. Therefore, given

XM/r,

−

{
S 0(t)exp

(
β>0M\rXM\r

)}exp(U)
is monotone increasing with respect to U.

Then by [37],

E
[
−U

{
S 0(t)exp

(
β>0M\rXM\r

)}exp(U) ∣∣∣∣∣XM\r] ≥ 0,

for all t > 0, and hence

E {XrS T (t; XM)}E
{
fC(t; XMA )|XMA

}
= −

1
β0r

E
[
−U

{
S 0(t)exp

(
β>
M\rXM\r

)}exp(U) ∣∣∣∣∣XM\r] E
{
fC(t; XMA )|XMA

}
has the same sign as −1/β0r, for all t > 0.

Next, by the same argument used above, E
{
XrS T (t; XM)S C(t; XMA )|XMO\r

}
has the same sign as −1/β0r across

t > 0. This completes the proof of Lemma 1. �
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Proof of Lemma 2: We first note that β∗S is the root of (4). Let US (βS ) =
∫ τ

0

{
v(1)

S (t) − r(1)
S (βS , t)v

(0)
S (t)/r(0)

S (βS , t)
}

dt.

US (β∗S ) =

∫ τ

0
E

{
1 (Y ≥ u) XS λ0(u) exp

(
β>0MXM

)}
−

E
{
1(Y ≥ u)XS exp

(
β>S XS

)}
E

{
1(Y ≥ u) exp

(
β>S XS

)} E
{
1(Y ≥ u)λ0(u) exp

(
β>0MXM

)}
du = 0. (6)

Part (i): Let SM = S ∩M and SMc = S ∩Mc. By the condition that the XMc is independent of XM, the XSMc is
independent of XSM . Thus, by Condition (B),∫ τ

0
E

{
1(Y ≥ u)XSMcλ0(u) exp

(
β>0MXM

)}
−

E
{
1(Y ≥ u)XSMc exp

(
β∗>SMXSM

)}
E

{
1 (Y ≥ u) exp

(
β∗>SMXSM

)} E
{
1 (Y ≥ u) λ0(u) exp

(
β∗T0MXM

)}
du

=

∫ τ

0
E

(
XSMc

)
E

{
1 (Y ≥ u) λ0(u) exp

(
β>0MXM

)}
−

E
(
XSMc

)
E

{
1 (Y ≥ u) exp

(
β∗>SMXSM

)}
E

{
1 (Y ≥ u) exp

(
β∗>SMXSM

)} E
{
1 (Y ≥ u) λ0(u) exp

(
β>0MXM

)}
du = 0,

where the last equality follows from Condition (B). Combining the result and (6), it can be shown that∫ τ

0
E

{
1 (Y ≥ u) XS λ0(u) exp

(
β>0MXM

)}
−

E
{
1 (Y ≥ u) XS exp

(
β∗>SMXSM

)}
E

{
1 (Y ≥ u) exp

(
β∗>SMXSM

)} E
{
1(Y ≥ u)λ0(u) exp

(
β>0MXM

)}
du = 0.

Therefore, β∗S = (β∗>SM , 0
>)>.

If r ∈ Mc, then by the same arguments, we can show that β∗S +r
= (β∗>S , 0)>.

Part (ii): Suppose β∗S +r
= (β∗>S , 0)>. By the martingale property, β∗S +r

is also the solution to the following equation,∫ ∞

0
E

{
1(Y ≥ u)Xrλ0(u) exp

(
β>0MXM

)}
du

=

∫ τ

0

E
{
1(Y ≥ u)Xr exp

(
β∗>S XS

)}
E

{
1(Y ≥ u) exp

(
β∗>S XS

)} E
{
1(Y ≥ u)λ0(u) exp

(
β>0MXM

)}
du.

On the one hand, it is straightforward to see that∫ ∞

0
E

{
1(Y ≥ u)Xrλ0(u) exp

(
β>0MXM

)}
du

=

∫ ∞

0
E

{
XrS T (u; XM)λ0(u) exp

(
β>0MXM

)
S C(u; XMA )

}
du

=

∫ ∞

0
E

{
Xr fT (u; XM)S C(u; XMA )

}
du = E

{
Xr

∫ ∞

0
FT (u; XM) fC(u; XMA )du

}
= −

∫ ∞

0
E

{
XrS T (u; XM) fC(u; XMA )

}
du = −

∫ ∞

0
E

[
E
{
XrS T (u; XM) fC(u; XMA )|XMO\r

}]
du,
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which has the opposite sign as E
{
XrS T (u; XM) fC(u; XMA )|XMO\r

}
. On the other hand,

E
[
1(Y ≥ u)Xr exp

(
β∗>S XS

)]
= E

[
XrS T (u; XM)S C(u; XMA ) exp

(
β∗>S XS

)]
= E

[
E

{
XrS T (u; XM)S C(u; XMA ) exp

(
β∗>S XS

)
|XMO\r

}]
= E

[
E

{
XrS T (u; XM)S C(u; XMA )|XMO\r

}
exp

(
β∗>S XS

) ]
,

which has the same sign as E
[
XrS T (u; XM) fC(u; XMA )|XMO\r

]
by Condition (G) and the fact that exp

(
β∗>S XS

)
> 0.

Thus,
∫ τ

0 E
{
1(Y ≥ u)Xrλ0(u) exp

(
β>0MXM

)}
du and

∫ τ

0

E
{
1(Y ≥ u)Xr exp

(
β∗>S XS

)}
E

{
1(Y ≥ u) exp

(
β∗>S XS

)} E
{
1(Y ≥ u)λ0(u) exp

(
β>0MXM

)}
du

have the opposite signs. Contradiction! Therefore, β∗S +r
, (β∗>S , 0)>.

Part (iii): Without loss of generality, we assume that Xr is the last element of XS +r . Let er be a vector of length (|S |+1)
with the rth element 1 and all other elements 0. By definition, v(0)

S (u) = v(0)
S +r

(u). Then by the mean value theorem,

∫ τ

0
E

{
1(Y ≥ u)Xrλ0(u) exp

(
β∗>
M

XM
)}

du −
∫ τ

0

E
{
1(Y ≥ u)Xr exp

(
β∗>S XS

)}
r(0)

S (β∗S , u)
v(0)

S (u)du

−

∫ τ

0
E

{
1(Y ≥ u)Xrλ0(u) exp

(
β∗>
M

XM
)}

du +

∫ τ

0

E
{
1(Y ≥ u)Xr exp

(
β∗>S +r

XS +r

)}
r(0)

S +r
(β∗S , u)

v(0)
S +r

(u)du

=

∫ τ

0

E
{
1(Y ≥ u)XrX>S +r

exp
(
β̃>S +r

XS +r

)}
r(0)

S +r
(β∗S +r

, u){
r(0)

S +r
(β∗S +r

, u)
}2

−
E

{
1{Y ≥ u}Xr exp

(
β∗>S +r

XS +r

)}
E

{
1(Y ≥ u)X>S +r

exp
(
β∗>S +r

XS +r

)}
{
r(0)

S +r
(β∗S +r

, u)
}2


×

{
β∗S +r
− (β∗>S , 0)>

}
× E

{
1(Y ≥ u)λ0(u) exp

(
β∗>
M

XM
)}

du

=

∫ τ

0
e>r

 r(2)
S +r

(β̃S +r , u)

r(0)
S +r

(β̃S +r , u)
−

{
r(1)

S +r
(β̃S +r , u)

}⊗2{
r(0)

S +r
(β̃S +r , u)

}2

 (β∗S +r
− β∗S

)
v(0)

S +r
(u)du,

where β̃S +r is between β∗S +r
and (β∗>S , 0)>. Thus,∣∣∣∣∣ ∫ τ

0
E

{
1(Y ≥ u)Xrλ0(u) exp

(
β∗>
M

XM
)}

du
∣∣∣∣∣

≤

∣∣∣∣∣ ∫ τ

0
E

{
1(Y ≥ u)Xrλ0(u) exp

(
β∗>
M

XM
)}

du −
∫ τ

0

E
{
1(Y ≥ u)Xr exp

(
β∗>S XS

)}
r(0)

S (β∗S , u)
v(0)

S (u)du
∣∣∣∣∣

≤ κmax‖er‖

∥∥∥∥β∗S +r
− (β∗>S , 0)>

∥∥∥∥,
where the first inequality follows from the proof of part (ii) that

∫ τ

0 E
{
1(Y ≥ u)Xrλ0(u) exp

(
β>0MXM

)}
du and

∫ τ

0

E
{
1(Y ≥ u)Xr exp

(
β∗>S XS

)}
r(0)

S (β∗S , u)
v(0)

S (u)du
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have the opposite signs, and the second inequality follows from Condition (F). Then, by Condition (E)∥∥∥∥β∗S +r
− (β∗>S , 0)>

∥∥∥∥ ≥ ∣∣∣∣∣∫ τ

0
E

{
Xr fT (u; XM)S C(u; XMA )

}
du

∣∣∣∣∣ ≥ Kκ−1
maxn−α.

This completes the proof of Lemma 2. �

Proof of Lemma 3: We only prove k = 1, as k = 2, 3 can be proved similarly. Given an index set S of size |S | = s ≤ ρ,
let B0

S (c) = {βS : ‖βS − β
∗
S ‖ ≤ c/(K

√
s)}. By Conditions (B) and (D), it can be shown that for any π ∈ Rs satisfying

‖π‖ = 1,

0 ≤ ‖π>X‖ ≤
√

sK, (7)
exp(β>S XS ) ≤ exp((βS − β

∗
S )>XS ) exp(β∗>S XS ) ≤ exp(c + KL). (8)

Define h(βS ,π, t) =
(√

sK exp(c + KL)
)−1

Ȳ(t)π>XS exp
(
β>S XS

)
. Then by (B) and (C), h(βS ,π, u) is bounded between

−1 and 1 uniformly over B0
S (c), ‖π‖ = 1, and u ∈ [0, τ]. Define the function class

HS :=
{
h(βS ,π, u) : βS ∈ B

0
S (c), ‖π‖ = 1, u ∈ [0, τ]

}
.

Following the arguments used for Lemma 11 in [38] and Lemma 2.6.17 in [39], we can show that there exists some
universal constant A1 such that the class of functions HS has a VC index bounded by A1s (we refer the definitions
of VC index page 85 in [39]). By Theorem 2.6.7 in [39], for any probability measure Q, there exists some universal
constant A2, such that the covering number supQ N[ε‖HS ‖Q,2,HS , L2(Q)] is bounded by (A2/ε)2A1 s for any ε > 0 (we
refer the definition of covering numbers to page 83 in [39]).

Thus, by Theorem 1.1 in [40], there exists some constant A3 that depends on A2 only, such that for all ε > 0,

Pr

 sup
βS ∈B

0
S (c),‖π‖=1,u∈[0,τ]

∣∣∣√nGn
{
h(βS ,π, u)

}∣∣∣ ≥ √nε

 ≤ A3

ε

(
A3ε

2

A1s

)A1 s

exp
(
−2ε2

)
.

By choosing ε = A4
√
ρ ln p for some universal constant A4, we obtain that

Pr

 sup
βS ∈B

0
S (c),‖π‖=1,u∈[0,τ]

∣∣∣Gn
{
h(βS ,π, u)

}∣∣∣ ≥ A4
√
ρ ln p

 ≤ exp (−5ρ ln p) .

Consequently,

Pr

 sup
|S |=s,βS ∈B

0
S (c),u∈[0,τ]

∥∥∥R(1)
S (βS , u) − r(1)

S (βS , u)
∥∥∥ ≥ A4

√
sK exp(c + KL)

√
ρ ln p/n

 ≤ (ep
s

)s
exp (−5ρ ln p) ,

where the inequality follows from the combinatoric inequality
(

p
s

)
≤ (ep/s)s.

Let A5 := A4K exp(c + KL). Then,

Pr

 sup
|S |≤ρ,βS ∈B

0
S (c),u∈[0,τ]

∥∥∥R(1)
S (βS , u) − r(1)

S (βS , u)
∥∥∥ ≥ A5

√
ρ2 ln p/n


≤

ρ∑
s=1

(ep
s

)s
exp (−5ρ ln p) ≤ exp (−3ρ ln p) ,

when n is sufficiently large. Thus, if ρ2 ln p/n→ 0,

sup
|S |≤ρ,βS ∈B

0
S (c),u∈[0,τ]

∥∥∥R(1)
S (βS , u) − r(1)

S (βS , u)
∥∥∥→p 0.
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Similarly, we can show that

Pr

 sup
|S |≤ρ,βS ∈B

0
S (c),u∈[0,τ]

∥∥∥R(0)
S (βS , u) − r(0)

S (βS , u)
∥∥∥ ≥ A6

√
ρ ln p/n

 ≤ exp (−3ρ ln p) and

Pr

 sup
|S |≤ρ,βS ∈B

0
S (c),u∈[0,τ]

∥∥∥R(2)
S (βS , u) − r(2)

S (βS , u)
∥∥∥ ≥ A7

√
ρ3 ln p/n

 ≤ exp (−3ρ ln p) ,

for some constants A6 and A7 that do not depend on n. This completes the proof of Lemma 3. �

Proof of Lemma 4: Given an index set S such that |S | < ρ, it is easy to see that

ZS (βS ) ≤ n−1/2

∣∣∣∣∣∣Gn

[∫ τ

0

{
β>S XiS − β

∗>
S XiS

}
dNi(t)

]∣∣∣∣∣∣
+ n−1/2

∣∣∣∣∣∣Gn

[∫ τ

0

{
ln r(0)

S (βS , t) − ln r(0)
S (β∗S , t)

}
dNi(t)

]∣∣∣∣∣∣
=: I + II.

For the item I, by Conditions (B) and (C), it can be shown that
∣∣∣β>S XiS − β

∗>
S XiS

∣∣∣ ≤ c/
(
K
√

s
)

K
√

s ≤ c, and

var
{(
β>S XiS − β

∗T
S XiS

)
Ni(τ)

}
≤ κmaxc2/(K2s), for any βS ∈ B

0
S (c). Let {εi}

n
i=1 be a Rademacher sequence. Then

we have

E

 sup
βS ∈B

0
S (c)

I

 ≤ 2E

 sup
βS ∈B

0
S (c)

∣∣∣∣En

{
εi

(
β>S XiS − β

∗>
S XiS

)
Nt(τ)

} ∣∣∣∣
≤ 2E

 sup
βS ∈B

0
S (c)
‖βS − β

∗
S ‖1 max

1≤ j≤p

∣∣∣∣En

{
εiXi jNi(τ)

} ∣∣∣∣ ≤ 2
c

K
√

s

√
sE

[
max
1≤ j≤p

∣∣∣∣En

{
εiXi jNi(τ)

}∣∣∣∣] ≤ 2anc/K,

where the first inequality follows from Lemma 2.3.1 in [39], the second inequality is trivial, and the third inequality
follows from Condition (B) and Lemma A.1 in [25]. Applying Bousquet’s concentration theorem [41] yields that for
any r > 0,

Pr

 sup
βS ∈B

0
S (c)

I ≥ 2
c
K

an + ran

√
2
(

c2

K2s
+ 2

c2

K
an

)
+

2r2a2
nc

3

 ≤ exp
(
−nr2a2

n

)
.

Choose r = 2
√
ρ. As ρ

√
ln p/n→ 0, we obtain that, when n is sufficiently large,

Pr

 sup
βS ∈B

0
S (c)

I ≥ 2
c
K

an + 3
c
√
ρ

K
√

s
an

 ≤ exp

−4nρ
{√

2K2 ln(2p)/n + K ln(2p)/n
}2 ≤ exp

(
−8K2ρ ln p

)
. (9)

For the item II, let Rs(c) denote a ball with dimensionality s and radius c/(K
√

s). Then B0
S (c) = Rs(c) + β∗S . Let

Cs := {C(ξl)} be a collection of cubes that cover the ball Rs(c), where C(ξl) is a cube containing ξl with sides of length
c/(K

√
sn2). Then |Cs| ≤ (4n2)s and ‖ξl‖ ≤ C/(K

√
s). For any ξ ∈ C(ξl), ‖ξ − ξl‖ ≤ c/(Kn2) =: ζn.
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Let TS (ξ) := En
∫ τ

0 ln r(0)
S (β∗S + ξ, t)dNi(t). By the mean value theorem,∣∣∣∣∣∫ τ

0
ln r(0)

S (β∗S + ξl, t)dNi(t) −
∫ τ

0
ln r(0)

S (β∗S , t)dNi(t)
∣∣∣∣∣

=

∣∣∣∣∣∣∣
∫ τ

0

1

r(0)
S (β∗S + ξ̃l, t)

E
[
Ȳ(t) exp

{(
β∗S + ξ̃l

)>
XS

}
ξ>l XS

]
dNi(t)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫ τ

0

1

r(0)
S (β∗S + ξ̃l, t)

E
[
Ȳ(t) exp

{(
β∗S + ξ̃l

)>
XS

}]
‖ξl‖1‖X‖∞dNi(t)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫ τ

0

1

r(0)
S (β∗S + ξ̃l, t)

r(0)
S (β∗S + ξ̃l, t)dNi(t)

∣∣∣∣∣∣∣ ‖ξl‖1‖X‖∞ ≤ τc/(K
√

s)
√

sK = cτ,

where ξ̃l is between ξl and 0. Applying Bernstein’s inequality yields that for any r > 0,

Pr
[
n |TS (ξl) − TS (0) − E {TS (ξl) − TS (0)}| > r

]
≤ 2 exp

(
−

1
2

r2

nc2τ2 + 2cτr/3

)
,

and consequently, by choosing r = 6cτ
√

nρ ln p,

Pr
[

max
1≤l≤(4n2)s

|TS (ξl) − TS (0) − E {TS (ξl) − TS (0)}| > 6cτ
√

nρ ln p/n
]

≤ 2(4n2)s exp

−1
2

36c2τ2nρ ln p

nc2τ2 + 12c2τ2
√

nρ ln p

 ≤ 2
(
4n2

)s
exp (−12ρ ln p)

≤ 2 exp(−12ρ ln p + s ln 4 + 2s ln n) ≤ 2 exp(−10ρ ln p), (10)

where n is sufficiently large.
Given any ξ ∈ C(ξl), we can similarly show that∣∣∣∣∣∫ τ

0

{
ln r(0)

S (β∗S + ξ, t) − ln r(0)
S (β∗S + ξl, t)

}
dNi(t)

∣∣∣∣∣ ≤ K
√

sζn.

Therefore,
|TS (ξ) − TS (ξl) − E {TS (ξ) − TS (ξl)}| ≤ 2K

√
sζn ≤ 2K

√
ρζn. (11)

Combining (10) and (11) implies that

Pr

 sup
βS ∈B

0
S (c)

II ≥ 6cτ
√
ρ ln p/n + 2K

√
ρζn

 ≤ 2 exp(−10ρ ln p). (12)

By (9) and (12), we have

Pr

 sup
βS ∈B

0
S (c)

ZS (βS ) ≥ 2
c
K

an + 3
c
√
ρ

K
√

s
an + 6cτ

√
ρ ln p/n + 2K

√
ρζn

 ≤ exp
(
−8K2ρ ln p

)
+ 2 exp(−10ρ ln p).

By the combinatoric inequality
(

p
s

)
≤ (ep/s)s, we obtain that

Pr

 sup
|S |≤ρ,βS ∈B

0
S (c)

ZS (βS ) ≥ 2
c
K

an + 3
c
√
ρ

K
√

s
an + 6cτ

√
ρ ln p/n + 2K

√
ρζn


≤

ρ∑
s=1

(ep/s)s
{
exp

(
−8K2ρ ln p

)
+ 2 exp(−10ρ ln p)

}
≤ 3 exp(−6ρ ln p).
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This completes the proof of Lemma 4. �

Proof of Lemma 5: We first define the following events:

Ω1 :=

 sup
|S |≤ρ,βS ∈B

0
S (c),u∈[0,τ]

∣∣∣R(0)
S (βS , u) − r(0)

S (βS , u)
∣∣∣ ≥ A6

√
ρ ln p/n

 and

Ω2 :=

 sup
|S |≤ρ,βS ∈B

0
S (c),u∈[0,τ]

∥∥∥R(1)
S (βS , u) − r(1)

S (βS , u)
∥∥∥ ≥ A5

√
ρ2 ln p/n

 .
By Lemma 3, we obtain that Pr (Ω1) ≤ exp(−3ρ ln p) and Pr (Ω2) ≤ exp(−3ρ ln p). In the rest of the proof, we restrict
our attention to Ωc

1 ∩Ωc
2. By the arguments in [23], we can show that

DS (βS ) ≤ En

∣∣∣∣∣∣∣
∫ τ

0

ln
R(0)

S (βS , t)

r(0)
S (βS , t)

 − ln

R(0)
S (β∗S , t)

r(0)
S (β∗S , t)


 dNi(t)

∣∣∣∣∣∣∣ ≤ sup
0≤t≤τ

∣∣∣∣∣∣∣ln
R(0)

S (βS , t)

r(0)
S (βS , t)

 − ln

R(0)
S (β∗S , t)

r(0)
S (β∗S , t)


∣∣∣∣∣∣∣

≤ sup
0≤t≤τ

∣∣∣∣∣∣∣∣ r(0)
S (β̃S , t)

R(0)
S (β̃S , t)

(
βS − β

∗
S
)> R(1)

S (β̃S , t)

r(0)
S (β̃S , t)

−
R(0)

S (β̃S , t)r
(1)
S (β̃S , t){

r(0)
S (β̃S , t)

}2


∣∣∣∣∣∣∣∣

= sup
0≤t≤τ

∣∣∣∣∣∣∣(βS − β
∗
S
)> R(1)

S (β̃S , t) − r(1)
S (β̃S , t)

R(0)
S (β̃S , t)

∣∣∣∣∣∣∣ + sup
0≤t≤τ

∣∣∣∣∣∣∣{βS − β
∗
S
)> r(1)

S (β̃S , t)

 1

R(0)
S (β̃S , t)

−
1

r(0)
S (β̃S , t)


∣∣∣∣∣∣∣

=: I + II.

We first consider I. By Condition (B),

r(0)
S (βS , t) = E

{
1(Y ≥ t) exp

(
β>S XS

)]
≥ E

{
1(Y ≥ t) exp

(
− ‖βS ‖1 ‖XS ‖∞

)}
≥ E

[
1(Y ≥ t) exp {−(c + KL)}

]
≥ ω exp {−(c + KL)} ,

for any βS ∈ B
0
S (c). We obtain that

inf
|S |≤ρ,βS ∈B

0
S (c),t∈[0,τ]

r(0)
S (βS , t) ≥ ω exp {−(c + KL)} .

Then,

I ≤ sup
0≤t≤τ

∣∣∣∣∣∣∣ 1

R(0)
S (β̃S , t)

∣∣∣∣∣∣∣
∣∣∣∣(βS − β

∗
S
)> {

R(1)
S (β̃S , t) − r(1)

S (β̃S , t)
}∣∣∣∣

≤

∥∥∥βS − β
∗
S

∥∥∥
inf |S |≤ρ,βS ∈B

0
S (c),t∈[0,τ] r(0)

S (βS , t) − A6
√
ρ ln p/n

sup
|S |≤ρ,βS ∈B

0
S (c),t∈[0,τ]

∥∥∥R(1)
S (β̃S , t) − r(1)

S (β̃S , t)
∥∥∥

≤
1

ω exp {−(c + KL)} − A6
√
ρ ln p/n

×
c

K
√

s
× A5

√
ρ2 ln p/n ≤ A8

√
ρ2 ln p/n,

for some constant A8 that does not depend on n.

We now bound II. By Condition (B),

E
{
1(Y ≥ t)X j exp

(
β>S XS

)}
≤ KE

{
exp

(
β>S XS

)}
≤ K exp (‖XS ‖∞‖βS ‖1) ≤ K exp (c + KL) .
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Thus,

II ≤ sup
|S |≤ρ,βS ∈B

0
S (c),t∈[0,τ]

∥∥∥r(1)
S (βS , t)

∥∥∥ sup
|S |≤ρ,βS ∈B

0
S (c),t∈[0,τ]

∣∣∣∣∣∣∣ 1

R(0)
S (β̃S , t)r

(0)
S (β̃S , t)

∣∣∣∣∣∣∣
× sup
|S |≤ρ,βS ∈B

0
S (c),t∈[0,τ]

∣∣∣R(0)
S (βS , t) − r(0)

S (βS , t)
∣∣∣ ∥∥∥βS − β

∗
S

∥∥∥
≤

K
√
ρ exp (c + KL)

ω exp {−(c + KL)}
[
ω exp {−(c + KL)} − A6

√
ρ ln p/n

] × A6
√
ρ ln p/n × c

K
√

s
≤ A9

√
ρ2 ln p/n,

for some constant A9 that is free of n.
Withdrawing the restriction to Ωc

1 ∩Ωc
2, the above results indicate that

Pr

 sup
|S |≤ρ,βS ∈B

0
S (c)

DS (βS ) ≥ A10

√
ρ2 ln p/n

 ≤ 2 exp(−3ρ ln p),

for some constant A10. This completes the proof of Lemma 5. �

Proof of Lemma 6: Given any index set S satisfying |S | ≤ ρ and βS ∈ B
0
S (c), by Taylor’s expansion,

ΓS (βS ) = E
[
−

∫ τ

0

{
β>S XS − ln r(0)

S (βS , t)
}

dN(t)
]

= E
[
−

∫ τ

0

{
β∗>S XS − ln r(0)

S (β∗S , t)
}

dN(t)
]

+ E

−∫ τ

0

X>S −
r(1)

S (β∗S , t)

r(0)
S (β∗S , t)

 dN(t)

 (βS − β
∗
S )

+
1
2

(βS − β
∗
S )>E


∫ τ

0

 r(2)
S (β̃S , t)

r(0)
S (β̃S , t)

−

{
r(1)

S (β̃S , t)
}⊗2{

r(0)
S (β̃S , t)

}2

 dN(t)

 (βS − β
∗
S ),

where β̃S is between βS and β∗S . Noting that

E

−∫ τ

0

X>S −
r(1)

S (β∗S , t)

r(0)
S (β∗S , t)

 dN(t)

 = 0,

by Condition (F), we have ΓS (βS ) − ΓS (β∗S ) ≥ κmin‖βS − β
∗
S ‖

2/2. Similarly,
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where the last inequality follows from Condition (F). This completes the proof of Lemma 6. �

Proof of Lemma 7: Let

Ω3 :=

 sup
|S |≤ρ,βS ∈B

0
S (c)

ZS (βS ) ≥ 2
c
K

an + 3
c
√
ρ

K
√

s
an + 6cτ

√
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√
ρζn

 and
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|S |≤ρ,βS ∈B

0
S (c)

DS (βS ) ≥ A10

√
ρ2 ln p/n

 .
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We consider Ωc
3 ∩ Ωc

4, which holds with probability of at least 1 − 5 exp(−3ρ ln p), by Lemmas 4 and 5. In the rest of
the proof, we restrict our attention to Ωc

3 ∩Ωc
4.

Given an index set S such that |S | ≤ ρ, for any βS with ‖βS −β
∗
S ‖ = A11(ρ2 ln p/n)1/4 for some constant A11 defined

later, we have βS ∈ B
0
S (c) when n is sufficiently large such that A11(ρ2 ln p/n)1/4 ≤ c/(K

√
ρ), since ρ4 ln p/n → 0.

Therefore, βS ∈ ∂B
0
S (c), where ∂B0

S (c) denotes the boundary of B0
S (c).

Noting that n−1 ˜̀S (βS ) = −En
[
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]
,
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}
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with some constant A11 satisfying κminA2
11 > A10. Therefore,

inf
‖βS−β∗S ‖=A11(ρ2 ln p/n)1/4

n−1 {
−`S (βS ) + `S (β∗S )

}
> 0.

By the concavity of `S ,
∥∥∥β̂S − β

∗
S

∥∥∥ ≤ A11

(
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)1/4
. Withdrawing the restriction to Ωc

3 ∩Ωc
4, we have

Pr
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On the other hand,
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for some constant A12. Similarly, we obtain that

Pr

sup
|S |≤ρ

∣∣∣`S (β̂S ) − `S (β∗S )
∣∣∣ ≤ A12

√
ρ2 ln p/n

 ≥ 1 − 5 exp(−3ρ ln p).

This complete the proof of Lemma 7. �

Proof of Lemma 8: Given any S ⊂ {1, . . . , p} and r such that |S | < ρ, r ∈ S c,[
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) − `S (β∗S )
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Noting that n−1 ˜̀S (βS ) = −En {γS (βS ; Xi,Yi, δi)}, it is easy to check that

|I| ≤

∣∣∣∣∣∣En

[∫ τ

0

{
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We restrict our attention to Ωc
1, where Ω1 is defined in Lemma 5. We consider I1 first.
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where r̃(t) is between R(0)
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ρ ln p/n as well. Therefore,
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Thus,
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Withdrawing the restriction to Ωc
1, we obtain that
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Let A14 = 2A13 + 12KL and we complete the proof of Lemma 8. �
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Table 1: Comparisons of methods under mild censoring

Example Method (n, p) = (200, 1000) (n, p) = (400, 1000)

PIT TP FP PIT TP FP
1 (p0 = 4) FR 3.65 (0.52) 3.61 (0.49) 0.05 (0.21) 3.99 (0.18) 3.98 (0.14) 0.01 (0.12)

FR+Lasso 3.65 (0.52) 3.02 (0.15) 0.63 (0.48) 3.99 (0.18) 3.01 (0.12) 0.98 (0.14)
FR+MCP 3.65 (0.52) 3.02 (0.15) 0.63 (0.48) 3.99 (0.18) 3.01 (0.12) 0.98 (0.14)
FR+SCAD 3.65 (0.52) 3.02 (0.15) 0.63 (0.48) 3.99 (0.18) 3.01 (0.12) 0.98 (0.14)
FRx1 3.65 (0.52) 3.61 (0.49) 0.05 (0.21) 3.99 (0.18) 3.98 (0.14) 0.01 (0.12)
FRx10 4.64 (0.52) 3.60 (0.49) 1.04 (0.20) 4.99 (0.19) 3.98 (0.15) 1.01 (0.12)
FR(η1) 5.04 (1.41) 3.89 (0.32) 1.16 (1.38) 4.53 (0.85) 4.00 (0.00) 0.53 (0.85)
FR(η2) 3.95 (0.62) 3.77 (0.42) 0.18 (0.45) 4.08 (0.33) 3.99 (0.09) 0.09 (0.31)
PSIS 38.00 (0.00) 3.03 (0.55) 34.97 (0.55) 67.00 (0.00) 3.39 (0.49) 63.61 (0.49)
PSIS+Lasso 4.44 (2.71) 2.43 (0.93) 2.01 (2.12) 6.82 (2.70) 3.13 (0.48) 3.69 (2.64)
PSIS+MCP 4.05 (2.14) 2.47 (0.85) 1.58 (1.67) 4.81 (1.60) 3.08 (0.47) 1.74 (1.55)
PSIS+SCAD 4.22 (2.55) 2.36 (0.89) 1.86 (1.98) 5.33 (1.96) 3.06 (0.53) 2.27 (1.85)
CS 38.00 (0.00) 3.08 (0.48) 34.92 (0.48) 67.00 (0.00) 3.23 (0.42) 63.77 (0.42)
CS+Lasso 4.63 (2.49) 2.51 (0.77) 2.12 (2.09) 6.50 (2.45) 2.95 (0.43) 3.54 (2.35)
CS+MCP 4.00 (1.86) 2.44 (0.76) 1.55 (1.47) 4.78 (1.40) 2.92 (0.37) 1.86 (1.33)
CS+SCAD 4.30 (2.23) 2.37 (0.75) 1.93 (1.81) 5.39 (1.82) 2.90 (0.44) 2.48 (1.67)

2 (p0 = 6) FR 0.91 (0.30) 5.89 (0.40) 1.34 (1.40) 1.00 (0.00) 6.00 (0.00) 1.01 (1.20)
FR 6.16 (0.47) 6.00 (0.00) 0.16 (0.47) 6.02 (0.15) 6.00 (0.00) 0.02 (0.15)
FR+Lasso 6.16 (0.47) 6.00 (0.00) 0.16 (0.47) 6.02 (0.15) 6.00 (0.00) 0.02 (0.15)
FR+MCP 6.16 (0.47) 6.00 (0.00) 0.16 (0.47) 6.02 (0.15) 6.00 (0.00) 0.02 (0.15)
FR+SCAD 6.08 (0.35) 5.91 (0.32) 0.16 (0.47) 6.02 (0.15) 6.00 (0.00) 0.02 (0.15)
FRx1 6.08 (0.33) 6.00 (0.00) 0.08 (0.33) 6.02 (0.15) 6.00 (0.00) 0.02 (0.15)
FRx10 7.13 (0.42) 6.00 (0.00) 1.13 (0.42) 7.01 (0.13) 6.00 (0.00) 1.01 (0.13)
FR(η1) 7.51 (1.78) 6.00 (0.00) 1.51 (1.78) 6.78 (1.16) 6.00 (0.00) 0.78 (1.16)
FR(η2) 6.34 (0.72) 6.00 (0.00) 0.34 (0.72) 6.11 (0.40) 6.00 (0.00) 0.11 (0.40)
PSIS 38.00 (0.00) 3.42 (0.93) 34.58 (0.93) 67.00 (0.00) 4.83 (0.53) 62.17 (0.53)
PSIS+Lasso 8.54 (4.97) 3.71 (0.97) 4.84 (4.66) 8.74 (5.33) 4.82 (0.54) 3.92 (5.21)
PSIS+MCP 5.75 (2.39) 3.34 (1.01) 2.42 (1.97) 9.21 (3.05) 4.80 (0.61) 4.41 (2.77)
PSIS+SCAD 6.73 (3.29) 3.51 (0.95) 3.21 (3.08) 8.80 (4.80) 4.77 (0.63) 4.03 (4.56)
CS 38.00 (0.00) 4.45 (0.83) 33.55 (0.83) 67.00 (0.00) 5.66 (0.53) 61.34 (0.53)
CS+Lasso 8.68 (4.49) 4.55 (0.93) 4.13 (4.07) 11.60 (4.50) 5.67 (0.53) 5.93 (4.22)
CS+MCP 6.41 (2.38) 4.27 (1.09) 2.14 (1.97) 7.44 (2.20) 5.64 (0.63) 1.80 (2.46)
CS+SCAD 6.68 (2.92) 4.34 (0.98) 2.34 (2.69) 6.83 (2.54) 5.63 (0.63) 1.20 (2.71)

3 (p0 = 6) FR 5.24 (0.95) 5.02 (1.03) 0.22 (0.49) 5.75 (0.45) 5.74 (0.44) 0.01 (0.12)
FR+Lasso 5.24 (0.95) 5.19 (0.87) 0.05 (0.25) 5.75 (0.45) 5.74 (0.44) 0.01 (0.09)
FR+MCP 5.24 (0.95) 5.19 (0.87) 0.05 (0.25) 5.75 (0.45) 5.74 (0.44) 0.01 (0.09)
FR+SCAD 5.21 (0.94) 5.16 (0.87) 0.05 (0.25) 5.75 (0.45) 5.74 (0.44) 0.01 (0.09)
FRx1 5.25 (0.85) 5.10 (0.84) 0.16 (0.40) 5.75 (0.45) 5.74 (0.44) 0.01 (0.12)
FRx10 6.05 (1.28) 4.87 (1.28) 1.17 (0.41) 6.75 (0.45) 5.73 (0.44) 1.01 (0.12)
FR(η1) 6.84 (1.87) 5.38 (0.93) 1.45 (1.70) 6.43 (0.87) 5.93 (0.26) 0.50 (0.84)
FR(η2) 5.60 (1.09) 5.18 (1.00) 0.41 (0.73) 5.93 (0.48) 5.85 (0.36) 0.07 (0.33)
PSIS 38.00 (0.00) 2.57 (0.72) 35.43 (0.72) 67.00 (0.00) 3.35 (0.58) 63.65 (0.58)
PSIS+Lasso 3.43 (2.69) 2.06 (1.05) 1.37 (1.96) 6.18 (2.77) 3.22 (0.56) 2.96 (2.59)
PSIS+MCP 3.04 (1.64) 2.21 (0.90) 0.83 (1.16) 3.51 (0.95) 3.11 (0.49) 0.40 (0.79)
PSIS+SCAD 3.64 (2.24) 2.21 (0.99) 1.43 (1.61) 3.91 (1.18) 3.13 (0.49) 0.78 (1.04)
CS 38.00 (0.00) 3.14 (0.68) 34.86 (0.68) 67.00 (0.00) 4.17 (0.62) 62.83 (0.62)
CS+Lasso 4.74 (3.02) 2.67 (1.18) 2.07 (2.21) 7.97 (3.03) 4.05 (0.65) 3.93 (2.77)
CS+MCP 3.76 (1.67) 2.84 (0.80) 0.93 (1.39) 4.31 (0.97) 3.94 (0.58) 0.38 (0.79)
CS+SCAD 4.62 (2.16) 2.86 (0.95) 1.76 (1.69) 4.66 (1.08) 3.95 (0.58) 0.71 (0.98)

NOTE: FR, forward regression; PSIS, the principled sure independence screening; CS, the conditional screening with the given
conditioning variable; PIT, estimated probability of including all true predictors in the selected predictors; TP, average number
of true positives; FP, average number of false positives; p0 denotes the number of true signals; numbers in the parentheses are
standard deviations. We used η1 = .5 and η2 = 1 − ln d/(3 ln p). When it is not noted, η = 1 was used. FRS 0 denotes that FR
was performed with the initial set of S 0. We considered two initial sets x1 and x10.
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Table 2: Comparisons of methods under heavy censoring

Example Method (n, p) = (200, 1000) (n, p) = (400, 1000)

PIT TP FP PIT TP FP
1 (p0 = 4) FR 3.33 (0.54) 3.29 (0.49) 0.04 (0.22) 3.86 (0.39) 3.85 (0.36) 0.01 (0.13)

FR+Lasso 3.33 (0.54) 3.00 (0.16) 0.33 (0.48) 3.86 (0.39) 3.01 (0.10) 0.85 (0.36)
FR+MCP 3.33 (0.54) 3.00 (0.16) 0.33 (0.48) 3.86 (0.39) 3.01 (0.10) 0.85 (0.36)
FR+SCAD 3.33 (0.54) 3.00 (0.16) 0.33 (0.48) 3.86 (0.39) 3.01 (0.10) 0.85 (0.36)
FRx1 3.33 (0.54) 3.29 (0.49) 0.04 (0.22) 3.86 (0.39) 3.85 (0.36) 0.01 (0.13)
FRx10 4.35 (0.55) 3.29 (0.49) 1.05 (0.26) 4.85 (0.39) 3.84 (0.37) 1.01 (0.13)
FR(η1) 5.24 (1.98) 3.62 (0.49) 1.62 (1.88) 4.71 (1.04) 3.98 (0.15) 0.74 (1.02)
FR(η2) 3.64 (0.72) 3.45 (0.51) 0.19 (0.49) 4.02 (0.42) 3.93 (0.26) 0.09 (0.33)
PSIS 38.00 (0.00) 2.93 (0.59) 35.07 (0.59) 67.00 (0.00) 3.37 (0.49) 63.63 (0.49)
PSIS+Lasso 3.58 (2.57) 2.02 (0.92) 1.55 (1.98) 5.92 (2.46) 2.91 (0.58) 3.01 (2.26)
PSIS+MCP 3.56 (2.23) 2.13 (0.87) 1.43 (1.74) 4.70 (1.60) 2.92 (0.53) 1.79 (1.49)
PSIS+SCAD 3.66 (2.48) 2.01 (0.86) 1.65 (1.96) 5.22 (2.17) 2.85 (0.64) 2.37 (1.92)
CS 38.00 (0.00) 2.90 (0.55) 35.10 (0.55) 67.00 (0.00) 3.27 (0.45) 63.73 (0.45)
CS+Lasso 3.60 (2.29) 2.09 (0.83) 1.52 (1.81) 5.69 (2.51) 2.80 (0.56) 2.89 (2.30)
CS+MCP 3.36 (1.91) 2.07 (0.79) 1.28 (1.50) 4.70 (1.66) 2.83 (0.47) 1.87 (1.51)
CS+SCAD 3.67 (2.19) 2.04 (0.78) 1.63 (1.74) 5.21 (2.29) 2.74 (0.56) 2.48 (2.03)

2 (p0 = 6) FR 6.22 (0.65) 5.85 (0.61) 0.36 (0.74) 6.03 (0.18) 6.00 (0.00) 0.03 (0.18)
FR+Lasso 6.21 (0.65) 5.95 (0.23) 0.26 (0.60) 6.03 (0.18) 6.00 (0.00) 0.03 (0.18)
FR+MCP 6.21 (0.65) 5.95 (0.23) 0.26 (0.60) 6.03 (0.18) 6.00 (0.00) 0.03 (0.18)
FR+SCAD 6.07 (0.5) 5.81 (0.45) 0.26 (0.60) 6.02 (0.17) 6.00 (0.06) 0.03 (0.18)
FRx1 6.10 (0.45) 5.94 (0.33) 0.16 (0.46) 6.02 (0.17) 6.00 (0.00) 0.02 (0.17)
FRx10 7.14 (0.58) 5.88 (0.49) 1.25 (0.60) 7.03 (0.17) 6.00 (0.00) 1.03 (0.17)
FR(η1) 8.36 (2.55) 5.97 (0.27) 2.39 (2.56) 6.98 (1.31) 6.00 (0.00) 0.98 (1.31)
FR(η2) 6.5 (0.90) 5.93 (0.44) 0.57 (0.95) 6.14 (0.43) 6.00 (0.00) 0.14 (0.43)
PSIS 38.00 (0.00) 3.13 (0.94) 34.87 (0.94) 67.00 (0.00) 4.61 (0.67) 62.39 (0.67)
PSIS+Lasso 8.17 (4.84) 3.38 (1.05) 4.80 (4.46) 8.98 (5.70) 4.62 (0.70) 4.36 (5.48)
PSIS+MCP 5.34 (2.38) 2.97 (1.09) 2.37 (1.95) 7.82 (2.80) 4.47 (0.82) 3.35 (2.41)
PSIS+SCAD 6.52 (3.31) 3.17 (1.06) 3.36 (3.02) 7.45 (4.02) 4.48 (0.77) 2.97 (3.73)
CS 38.00 (0.00) 4.04 (0.87) 33.96 (0.87) 67.00 (0.00) 5.42 (0.64) 61.58 (0.64)
CS+Lasso 8.41 (4.48) 4.13 (0.99) 4.29 (4.07) 10.64 (4.83) 5.41 (0.66) 5.23 (4.59)
CS+MCP 5.81 (2.35) 3.68 (1.13) 2.12 (1.84) 7.53 (2.29) 5.33 (0.78) 2.20 (2.44)
CS+SCAD 6.75 (3.19) 3.88 (1.07) 2.87 (2.81) 7.13 (3.07) 5.32 (0.79) 1.81 (3.17)

3 (p0 = 6) FR 4.45 (1.51) 4.08 (1.64) 0.37 (0.61) 5.49 (0.54) 5.46 (0.50) 0.03 (0.21)
FR+Lasso 4.45 (1.51) 4.40 (1.44) 0.05 (0.24) 5.49 (0.54) 5.48 (0.50) 0.01 (0.16)
FR+MCP 4.45 (1.51) 4.40 (1.44) 0.05 (0.24) 5.49 (0.54) 5.48 (0.50) 0.01 (0.16)
FR+SCAD 4.44 (1.50) 4.39 (1.43) 0.05 (0.24) 5.49 (0.54) 5.48 (0.50) 0.01 (0.16)
FRx1 4.57 (1.39) 4.30 (1.44) 0.26 (0.50) 5.49 (0.54) 5.46 (0.50) 0.03 (0.21)
FRx10 4.97 (1.91) 3.72 (1.88) 1.24 (0.48) 6.48 (0.53) 5.45 (0.50) 1.03 (0.21)
FR(η1) 6.99 (2.59) 4.72 (1.40) 2.27 (2.29) 6.55 (1.18) 5.76 (0.43) 0.80 (1.09)
FR(η2) 4.93 (1.62) 4.35 (1.56) 0.58 (0.84) 5.74 (0.63) 5.60 (0.49) 0.14 (0.42)
PSIS 38.00 (0.00) 2.32 (0.76) 35.68 (0.76) 67.00 (0.00) 3.20 (0.61) 63.8 (0.61)
PSIS+Lasso 2.17 (2.01) 1.46 (1.01) 0.71 (1.28) 5.24 (2.50) 2.94 (0.73) 2.30 (2.17)
PSIS+MCP 2.66 (1.86) 1.81 (0.98) 0.86 (1.25) 3.44 (1.16) 2.88 (0.54) 0.56 (1.02)
PSIS+SCAD 2.78 (2.35) 1.66 (1.08) 1.11 (1.55) 4.23 (1.53) 2.92 (0.59) 1.31 (1.37)
CS 38.00 (0.00) 2.87 (0.71) 35.13 (0.71) 67.00 (0.00) 3.88 (0.69) 63.12 (0.69)
CS+Lasso 3.34 (2.81) 2.03 (1.17) 1.31 (1.92) 7.16 (3.05) 3.71 (0.75) 3.45 (2.71)
CS+MCP 3.45 (1.88) 2.44 (0.98) 1.00 (1.34) 4.19 (1.15) 3.62 (0.64) 0.57 (0.92)
CS+SCAD 4.13 (2.60) 2.42 (1.14) 1.71 (1.82) 4.80 (1.36) 3.66 (0.66) 1.14 (1.24)
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Table 3: Comparisons of methods under covariate-dependent censoring

Example Method (n, p) = (200, 1000) (n, p) = (400, 1000)

PIT TP FP PIT TP FP
1∗ (p0 = 4) FR 3.58 (0.51) 3.55 (0.50) 0.03 (0.17) 3.99 (0.15) 3.98 (0.13) 0.00 (0.06)

FR+Lasso 3.58 (0.51) 3.01 (0.09) 0.57 (0.50) 3.99 (0.15) 3.00 (0.06) 0.98 (0.13)
FR+MCP 3.58 (0.51) 3.01 (0.09) 0.57 (0.50) 3.99 (0.15) 3.00 (0.06) 0.98 (0.13)
FR+SCAD 3.58 (0.51) 3.01 (0.09) 0.57 (0.50) 3.99 (0.15) 3.00 (0.06) 0.98 (0.13)
FRx1 3.58 (0.51) 3.55 (0.50) 0.03 (0.17) 3.99 (0.15) 3.98 (0.13) 0.00 (0.06)
FRx10 4.58 (0.51) 3.56 (0.50) 1.03 (0.17) 4.98 (0.14) 3.98 (0.13) 1.00 (0.04)
FR(η1) 5.05 (1.56) 3.84 (0.37) 1.21 (1.53) 4.56 (0.85) 4.00 (0.00) 0.56 (0.85)
FR(η2) 3.89 (0.64) 3.70 (0.46) 0.19 (0.48) 4.08 (0.32) 4.00 (0.06) 0.09 (0.31)
PSIS 38.00 (0.00) 2.96 (0.51) 35.04 (0.51) 67.00 (0.00) 3.41 (0.50) 63.59 (0.50)
PSIS+Lasso 4.39 (2.82) 2.29 (0.96) 2.11 (2.24) 6.58 (2.63) 3.06 (0.59) 3.53 (2.53)
PSIS+MCP 4.00 (2.15) 2.37 (0.90) 1.63 (1.70) 4.81 (1.60) 3.08 (0.54) 1.73 (1.55)
PSIS+SCAD 4.30 (2.54) 2.27 (0.91) 2.03 (2.01) 5.34 (1.91) 3.04 (0.59) 2.30 (1.83)
CS 38.00 (0.00) 3.00 (0.49) 35.00 (0.49) 67.00 (0.00) 3.25 (0.43) 63.75 (0.43)
CS+Lasso 4.50 (2.67) 2.36 (0.77) 2.14 (2.28) 6.50 (2.44) 2.92 (0.41) 3.58 (2.33)
CS+MCP 4.01 (2.00) 2.38 (0.75) 1.63 (1.65) 4.72 (1.45) 2.91 (0.35) 1.81 (1.38)
CS+SCAD 4.27 (2.39) 2.29 (0.76) 1.98 (1.96) 5.45 (1.87) 2.89 (0.39) 2.57 (1.77)

2∗ (p0 = 6) FR 6.13 (0.39) 6.00 (0.04) 0.13 (0.39) 6.01 (0.09) 6.00 (0.00) 0.01 (0.09)
FR+Lasso 6.12 (0.38) 5.99 (0.09) 0.13 (0.39) 6.01 (0.09) 6.00 (0.00) 0.01 (0.09)
FR+MCP 6.12 (0.38) 5.99 (0.09) 0.13 (0.39) 6.01 (0.09) 6.00 (0.00) 0.01 (0.09)
FR+SCAD 6.04 (0.25) 5.91 (0.30) 0.13 (0.39) 6.01 (0.09) 6.00 (0.00) 0.01 (0.09)
FRx1 6.06 (0.26) 6.00 (0.04) 0.06 (0.25) 6.01 (0.09) 6.00 (0.00) 0.01 (0.09)
FRx10 7.09 (0.32) 6.00 (0.04) 1.09 (0.31) 7.01 (0.11) 6.00 (0.00) 1.01 (0.11)
FR(η1) 7.55 (1.72) 6.00 (0.00) 1.55 (1.72) 6.68 (1.05) 6.00 (0.00) 0.68 (1.05)
FR(η2) 6.32 (0.64) 6.00 (0.00) 0.32 (0.64) 6.11 (0.39) 6.00 (0.00) 0.11 (0.39)
PSIS 38.00 (0.00) 3.44 (0.92) 34.56 (0.92) 67.00 (0.00) 4.80 (0.59) 62.20 (0.59)
PSIS+Lasso 8.55 (5.16) 3.63 (1.00) 4.92 (4.81) 9.14 (5.81) 4.79 (0.58) 4.34 (5.65)
PSIS+MCP 5.50 (2.47) 3.25 (1.04) 2.24 (2.05) 9.01 (2.91) 4.76 (0.67) 4.25 (2.63)
PSIS+SCAD 6.27 (3.19) 3.42 (0.99) 2.86 (2.98) 8.67 (4.77) 4.73 (0.68) 3.95 (4.50)
CS 38.00 (0.00) 4.40 (0.89) 33.60 (0.89) 67.00 (0.00) 5.66 (0.53) 61.34 (0.53)
CS+Lasso 8.74 (4.59) 4.47 (0.97) 4.27 (4.22) 11.42 (4.57) 5.66 (0.55) 5.76 (4.32)
CS+MCP 6.19 (2.39) 4.12 (1.15) 2.06 (1.95) 7.30 (2.11) 5.62 (0.62) 1.67 (2.37)
CS+SCAD 6.54 (2.98) 4.22 (1.08) 2.33 (2.76) 6.91 (2.81) 5.61 (0.66) 1.30 (2.98)

3∗ (p0 = 6) FR 5.11 (1.02) 4.87 (1.13) 0.24 (0.51) 5.72 (0.47) 5.70 (0.46) 0.02 (0.13)
FR+Lasso 5.11 (1.02) 5.06 (0.96) 0.04 (0.22) 5.72 (0.47) 5.71 (0.45) 0.01 (0.10)
FR+MCP 5.11 (1.02) 5.06 (0.96) 0.04 (0.22) 5.72 (0.47) 5.71 (0.45) 0.01 (0.10)
FR+SCAD 5.08 (1.01) 5.03 (0.94) 0.04 (0.22) 5.72 (0.47) 5.71 (0.45) 0.01 (0.10)
FRx1 5.11 (0.98) 4.92 (1.00) 0.19 (0.46) 5.72 (0.47) 5.70 (0.46) 0.02 (0.13)
FRx10 5.74 (1.49) 4.59 (1.50) 1.15 (0.38) 6.72 (0.49) 5.70 (0.46) 1.03 (0.17)
FR(η1) 7.11 (1.96) 5.38 (0.87) 1.73 (1.84) 6.60 (1.00) 5.91 (0.28) 0.69 (0.96)
FR(η2) 5.51 (1.09) 5.07 (1.02) 0.44 (0.73) 5.97 (0.54) 5.83 (0.37) 0.14 (0.39)
PSIS 38.00 (0.00) 2.55 (0.72) 35.45 (0.72) 67.00 (0.00) 3.34 (0.63) 63.66 (0.63)
PSIS+Lasso 3.08 (2.58) 1.85 (1.10) 1.23 (1.79) 5.93 (2.76) 3.19 (0.70) 2.74 (2.46)
PSIS+MCP 3.10 (1.84) 2.10 (0.96) 1.00 (1.37) 3.48 (1.06) 3.05 (0.57) 0.43 (0.87)
PSIS+SCAD 3.38 (2.40) 2.02 (1.11) 1.36 (1.67) 4.12 (1.48) 3.11 (0.58) 1.01 (1.37)
CS 38.00 (0.00) 3.12 (0.70) 34.88 (0.70) 67.00 (0.00) 4.10 (0.68) 62.90 (0.68)
CS+Lasso 4.47 (3.28) 2.53 (1.21) 1.94 (2.42) 7.88 (3.17) 3.96 (0.69) 3.92 (2.89)
CS+MCP 3.97 (1.99) 2.77 (0.89) 1.20 (1.62) 4.35 (1.07) 3.86 (0.62) 0.50 (0.87)
CS+SCAD 4.60 (2.57) 2.72 (1.05) 1.87 (1.97) 4.83 (1.28) 3.87 (0.63) 0.96 (1.13)
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Table 4: The number of overlapped genes chosen by PSIS, CS, SII and FR

PSIS CS SII FR
PSIS 25 1 3 0

CS 1 25 0 0
SII 3 0 25 0
FR 0 0 0 2
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