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S1. Selection of initial values and tuning parameters

To implement the Algorithm, we need to supply reasonable initial values following four steps.

Step 1. We obtain the initial values ¥(*) and B for ~ and @ by minimizing

33" (ilts) — 7B (6. X(B))

=1 j=1

that ignoring correlations and heterogeneity.

Step 2. Denote R;(ty;) = Yi(ty;) — ¥ OB, (t;, X3?). Based on a homogeneous variance model,
that is, var(&x) = pg, we estimate the eigenfunctions gbéo) (t) = nlio)/Bnl(t) by applying the
package of fpca for FPCA to R;(-),i=1,---,n

Step 3. We obtain the initial ridge estimator of ¢, ¢, for fixed B8, 4©® and ng,(cO), by minimizing
—L,(m,¢) + Ninil|€||% with respect to ¢, which is implemented by iteration solution of ¢ as
the minimizer of 5 —||¢ — {C + hini L(C; 7Y% + Aine||C||%, with € being the estimate of ¢

from the previous step. Then, we obtain a®) by applying the package of MAVE, and obtain

6" by minimizing 3", YK, {Cy — 03 Bra(Xjewe) Y

Step 4. Finally, let £ = B, (t,) S5, " {01 Bra(Xia ) 120" B,y (t:). Then, o2 = S tr{(Z0—

Ri(t:) Ri(t:))}-

We move on to detail the selection of the step lengths «, h, v, the number of FPCs K,,, and
the tuning parameter \. First, following Beck| (2014), we take small constants for &, h, v to
ensure the convergence of the algorithm. Second, as in |[James et al.| (2000)); Happ and Greven
(2018), we choose K, by using the proportion of variability explained by each principal
component. Particularly, we choose K, so that Zk L pk / Dok pk > 95%, where p,(co) is the
initial value for py, obtained by applying the package fpca to R;(-),i = 1,--- ,n. We also
note, unlike the traditional FPCA, the proposed estimation is less sensitive to the choice of

K, since we will further select FPCs for each individual using individual-specific penalties.
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Third, we select A by minimizing the generalized cross-validation (GCV) error:

S S {ilty) — Yilti) ¥

GV = No(1 — df/Np)? !

where Ny = > | n; and df = p(1+ K,,) + 2K,,my1 + myimpe + 1, the number of parameters
in model @ available to estimate Y;(¢;;). We have confirmed the performance of our tuning

procedure via simulations in Section

S2. Supplementary materials in simulation and real data analysis

S2.1  Supplementary results in simulation studies

Example 1. Figures |S1| and [S2| plot the estimates of ¢ (t) and pg(u),k = 1,2,3, and their
95% pointwise confidence intervals based on 500 bootstrap samples for various settings, where
the solid, dashed and dotted lines, respectively, represent the true functions, the average of
the estimated functions, and the 95% pointwise confidence bands. It appears that the average
of the estimated functions coincides with the truth, with the confidence intervals covering
the truth as well. As shown in Figure [S3] all of the estimated mean functions overlap with

the truth, and the performance improves with increased sample sizes.

[Figure 1 about here.|
[Figure 2 about here.|

[Figure 3 about here.]

Tables [S1| show the proposed estimator ¢ presents smaller biases and variances than SSV

for both kinds of distributions.
[Table 1 about here.|

Example 2. Table shows the calculated Type-1 error rates and power levels obtained

under significant level 0.05, suggesting that the Type-1 error rate of all parameters is
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controlled at approximately 0.05, and the power tends to 1 as the sample size increases.

[Table 2 about here.]

Example 3. Table presents the biases and empirical standard deviations for the para-

metric and non-parametric estimates obtained by FRIS and SSV for the SSV data.
[Table 3 about here.]

Example 4. Table [S4]shows the p-values for 3 and a by FRIS, which suggest that the mean
significantly depends on X;; and X;3 and the covariance is associated with X;, under the

level of 0.05.
[Table 4 about here.]
Example 5. We consider a multiple index model satisfying
E(Y[X) = py(X5) = plts, XiBy, XiB,), cov (Y| X;) = X,

where 3, = 370 én(t) pr(Xau, Xooua)dr(t:) + 0L, pu(t,ur,ug) = 10t - {exp(uy) +
exp(uz)} and pp(uy, uz) = 10>7%(uyus)?I(uiuy < 0),k = 1,2,3. Set B, = (0.6,0,0.8),
By = (1,0,0), ag; = (0,0.8,0.6), a2 = (0,1,0),k = 1,2,3. Other setting is the same as
that in Example 1(1). The setting in Example 5 implies that the covariates (X1, X;3) are
associated with the mean, and the covariates (X, X;3) are associated with the covariance
of the functional response.

Table summaries the estimates and the p-values for 3 and a by FRIS. From the p-
values, it can be seen that the covariates X;; and X3 have significant contribution to the
mean part, and X;» and X;3 have significant association with the covariance under the level

of 0.05. Hence, the Type I error is well-controlled for the multiple index model by FRIS.

[Table 5 about here.]
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S2.2 Supplementary results in real data analysis
In this section, we present supplementary results to the real data. Figure [S4] shows the
estimated results of the binary function pu(¢,u) of FRIS and SSV in real data. The two

functions are very similar, indicating that our method is relatively accurate.

[Figure 4 about here.|

S3. Proof

S3.1 Notation
Let P, be the empirical measure of {(Y;,X;) : ¢ = 1,2,...,n}, and P be the probability

measure of (Y, X). Define the log-likelihood as
1 1 f a1
l(m) = —5log [B] = o {Y — p} B7H{Y — pu},

where p = p(t,X'8), = = .0 dil(t)pn(Xa)gi(t) + 0?1 Let 9 = (8, a), ¢ =
(02, 1y o1, pr) and & = (¥, 4').
Define

o'f o'f
Moo = { 10+ Iy L) — G

)| < cllz =y, for anyz,y € Rd} ,
for 1 € Np,s € (0,1] with r =1+ s, for any a = (a1, ...,aq) € N© with Z;.lzl a; = [, and for
ac>0.

Let h = (1,hy,h) hy) € R x Hoo x [ He % T12 Hea with hy = (hog,. .. hox,)
and hy = (ha1,...,hsx, ) Let la = (I, ih, Vs lglhal = (g, [hanl,- - sy, [hax,])s

and Iphs] = (i, (R3], .., by, [h3x,])". Define &y (w) = 9l(m) /09 = (I3, 1), and ly(m)[h] =
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OV, + sh)/0s| _ = (ly2, 1u[h1], I4[hs], i [hs])’, where

ls = X{Y(t) —p(t. X'B)} 7 iu(t,X'B),
e = Xpu(Xa)ju(Xan)n(t) x
-5 ST~ e, XB)HY(E) — (e XB)Y S u(t),
e = o | =38 Y () - XBHY (1) - (e, XB)) S
] = {Y(8) = ul(6, XB)YS
lolhos] = pr(Xeu)on(t) [-37 + BHY(E) — (b, XBHY () — e, X B)VS ] o

L lhai] = 0x(t) [-Z71 + ZTHY(8) — p(t, X'B)HY () — u(t, X'B)YE ] dn(t)

for k=1,..., K,.

Define TIS = A% x ©) x ©), x O where

2n»

A6 - {(ﬁlv a/702) : “/3 - ﬂOH < 57 ”a - aO“ < 57 HUZ - Ug|| < 57 (/6/>a/70-2) S A}>
©; = {u(t,u) : [lu(t,u) — po(t, u)|| < 6, € O},

01, = {cb(t) () — Po()]l < 6, 9(t) € HGM}

©;, = {p(U) Hlp(u) = po(u)l| < 6, p(u) HG%}

Let ||v]| denote the ¢3 norm for a vector v and || f|| = (fo f2(t)dt)'/? for any function f(-)
with a domain [0, 7]; @ < b means ¢; < a/b < cg, where ¢3 > ¢; > 0 are constants and a < b

means a/b — 0.

S3.2 Proofs of The Main Results
LEMMA 1:  For py € Hra, Gro, pro € Hr1, 1 < k < K, there exists smoothing spline

n, Pk, Prk Such that ||,Un Mo||oo = O( ) ||¢nk - ¢1<:o||oo = O( ) ||Pn/<; - pkOHoo =
O(m,,"

n

). Moreover, we have ||w,—m||c = O(m,"), where 7, = (B, &', 02, jun, P, p,) € IL,.



6 Biometrics, 000 0000

Proof: The proof follows from [Schumaker| (1981)).

LEMMA 2: Let N(e,F,d) denote the covering number with respect to a semi-metric d of
function class F. Under Conditions (C1)-(C3), the covering number of the class L,(d) =

{I(w) : w € TI2} satisfies
N(e, La(8), || - 1) = (8/2)Fnmetma),

Proof: The proof is similar to that in Ma et al. (2015)), and is omitted.

LEMMA 3:  Under (C1)-(C4), we have for any ¢ < 1,

sup |P,l(m) —Pl(m)| — 0

mellf,

almost surely.

Proof: Since w € II9, then |l(m)| is bounded. Without loss of generality, we assume
sup |I(m)| < 1. It then follows that PI?(w) < P sup |I(7)> < 1. Let max{(v + 7)/2,v} <
welld welld

¢ < 1/2, a,, = n~/** log(n)'/?, and ¢, = e, for fixed ¢ > 0. Then for any I(7) € L, (0)

and sufficiently large n, we have

P12 (7r) 1 1
16e2na2 — 16e2logn  2°

Var{P,l(m)/(4e,)} <
By inequality (31) and lemma33 in [Pollard| (1984) and Lemma [2] it yields

P(sup |P,l(w) —Pi(7)| > 8,)

welld
2 n n
<8N (e, La(8). || - ) exp(—2)P(sup [ 3" 1P(m,)| < 64) + P(sup [n' Y ()| > 64)
128 €I, i=1 mell, i=1
2.2
~ 7(Knmn+m%) _n&f a,
1

Lo o 1420
en~1/2+¢ log(n)1/2) BT logn}

= exp [(Knmn +m?2) {(% — ¢)logn — %loglogn + log(l/s)} -

= exp{(K,m, + mi) log(

1
ﬁngn_“r% log(n)}

< exp(—c*'n**logn), (2)
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where ¢* is a constant. Hence,

ZP( seul_fl)é |P,l(7) — Pl(m)| > 8,,) < 0. (3)

By the Borel-Cantelli lemma, we have

Pnge, U, {sup |P,l(m) —Pi(m)| > 8, }

mwelld

meaning that the probability that events { sup |P,l(w)—Pi(7)| > 8¢, } will occur for infinite
melld

many times is 0. Since €,, — 0, this completes the proof.

S3.2.1 Proof of Theorem 3.1. Define N, = {m : ¢g > ||m — my|| = €, w € 112"} for some

€p < 1 and any 0 < € < €. Then we have

supPl(w) = sup{Pi(w)— P,l(7) + P,l(7)}
Ne Ne

> —sup|P,l(mw) — Pli(7)| + sup P, l(7) = —Hy + sup P, l(7), (4)
Ne Ne Ne
where Hy; = sup |P,l(7) — Pl(r)|. For &2 € N, we have
Ne

sup P, l(m) = P l(7)") = P, l(m) = —Hy + Pl(m), (5)

€

where Hy = Pl(my) — P,l(7p). Thus, (4) and (5] give

Pi(my) — supPl(w) < Hy + Hs. (6)

€

By Jensen’s inequality;,

Pi(7) — Pl(my) < log IP’{

Ydz =0,
f

where the equality holds if and only if w = . Let §. = Pl(mg) — supPl(7) > 0. Since
Ne

{mor e N} C{H,+ Hy > 4.}, it follows that H, = o(1), Hy = o(1) almost surely, by Lemma

and the strong Law of Large Numbers. Therefore, |7 — my||2 = o(1) almost surely.

We next conclude the convergence rate by verifying the conditions of Theorem 3.2.5 of
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van der Varrt and Wellner| (1996). To that end, we define a function class
L= {l(m) = U(mo), |7 — mo| <€, € T}
It can be seen that log Nyj(e, L, || - ||) = (Kumy, +m2)log(£). Then the bracketing integral

T Lell- ) = /1108 Nife. £l e = /R + e

By Lemma 3.4.2 of van der Varrt and Wellner| (1996)), we have

E(S}ip V(P = B)(U(m) — i(mo))|) = Jyle, Lol ) (1+ bt “(g;f\jﬁ” o

Kn n 2
< O(/Kniy 1 mze+%>. (7)

This shows that the function ¢,(e) in Theorem 3.2.5 of van der Varrt and Wellner| (1996))

is given by ¢,(€) = /K,m, + m2e + Knimintm, Obviously, ¢,(€)/¢€ is decreasing in € and
g n vn

r2dn (=) = rpy/Kamy, +m2 + 12(Kym, +m2)/y/n < y/n for every n, which implies 7, <

v/ Kpmy, +m2.

Besides, we need to show that 72" satisfies P,l(72") > P,l(mw) — O,(r,?). Note that

)

Pol(7)") = Pulmo) = Pu(U(m)) — U(mwn)) + (Bn = P) () — (7m0)) + P(U(7n) — I(7m0))

= L + 1)+ I,

where I; > 0. Define L(m) = {%, 7 € I19"}, which is a P-Donsker class by Lemma .
Therefore, I, = O,(n~ ™+ /2 n=Y2) and Iy > —O,(n~#*7) . Since € < 1/2 — vr + 7/2, it

follows Pnl(ﬁ'zr) — Pn(ﬂ'o) > _Op(n—2rv+7') for Ty < nm‘—7‘/2.

Finally, we obtain that

175 = moll = Op(r, ") = Op(6n)

n

with 6, = n~(1=20)/2 4 p~(=v=7)/2 4 n=(r=7/2) by noting K,, = n”. This completes the proof.
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S3.2.2 Proof of Theorem 3.2. Denote
Sin(7) = Prpli(7), Son () [h] = Prla(7)[h],
Si(m) = Ply (), Sy() [h] = Ply(7)[h].
From the definitions of [1(7) and ly(7), it follows
Si(mg) =0 and  Sy(mg)[h] = 0.
Define
Su(m) = —Pli(m)lL(w)',

Stz(m)[h] = Sy ()] — Pl ()l () [h],

Saa(m) [, h] = —Ply () [0l () (1]

for h*, h € R x H,2 x Hji”l Hq X H]K:"1 H,1. To prove the theorem, we need to show

(a) There is an h* € R x H, 5 HJKZ’H H,1 X H7 such that
S1a(m0) 1] — o (mo)a*, 1] = 0, (s)
and
[(9) = =S () + S () 7] (9)

is the information for estimation of ¥ with I=!(19) being the information bound for h €

Kn Kn
R x HT,Q X H]‘:1 Hr,l X Hj:l Hr,l-

(b) Stochastic equicontinuity, i.e.,

sup  [v/n(Sin — S1)(7) — Vn(Sin — S1)(mw0)| = 0p(1), (10)

[ —70||<bn
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sup  [v/n(S2n — Sa)(m)[h7] — V/n( Sz — S2)(mo)[7]| = 0,(1),

[ —o|<bn

(11)

when 0<v<1/4,7 <min{1/2 —v,2v(r — 1),v(2r — 1)/2} .

(¢) In a neighborhood {7 : |7 — || < d,} and for r > 1,
S () — S1(1w0) — S (o) [9 — Do) — S1a(m0) 3 — 3o
= o(|[9 = doll) + O([¢p — o), (12)
and
Sa(m)[0*] — S5(7w0) (0] — 931 (70) "] (9 — D) — Saa(00) [0*, 9 — 3Py

= o([[9 = Boll) + O(ll% — o). (13)

We first verify (a). In fact,

S12(mo)[h] — Saa(mo)[h*, h] = —Ply(mo)lz(mo)[h] + Pla (7o) [h*]la (7o) [h]

= —P{li(mo) — l2(mo)[h*] } 2 (7o) [h],

where h* = E(Iy(m)|X,Y)/E(ly(m0)|X,Y) satisfies Sy(7)[h] — Saa(70)[h*, h] = 0.

Denote I*(m) = Iy () — lo(7)[h*] to be the efficient score for 9. Then

1(9) =

~813() + S () [)

Bl ()l () — Pla(me)[*] 1 ()

B{l () — la(m)[h*]} 1 ()

B{ly(m) — lo(m)[°]} {1s () — Lo () [0}

P{I" () }*2.
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Then for (b), by the definitions of Sy, S1, San, and S,, we have

Vi (Siy = Si)(m) — /(S — S1)(mo) = (P, — P)(li () — li(mo)),

and

Vi(San — S2) ()] = v/ (S2n — S2) (o) [07] = V(P — P)(la()[h7] — I (o) [07]).

Considering the classes of functions {/;(7) : |7 —mo|| < 6.} and {lx(7)[h*] : |7 — 7| < 0},
it yields

K,m, +m?2
Vn

when when 0 <wv <1/4,7 <min{l1/2 —v,2v(r —1),v(2r —1)/2} for r > 1. Thus, we have

E( sup |\/ﬁ(Pn—IP’)(l1(7r)—l1(7ro))\> < O(V/ Kt + m20, +

[l =0 |<dn

) = o(1),

sup  [v/n(Py — P) (i () — l1(m0))| = 0.

[ —o||<6n

Similarly,

sup  [v/n(Py, — P)(Ia(m) [0"] — lz(mo) [h7])] — 0.

[ =70 |<dn

Finally, for (c),

Si(m) = Si(mo) = Su(mo)[® — Do) + Sia(m0) (3 — o] +
{(S1(m)[® = 9] + Sra(m)lab = whu]) — (St ()0 — Do) + Sva(mo) 4 — o)) }

= Si(mo)[¥ — o] + Siz(mo)[th — o] + O(||9 — 9 ||>) + O(|]¢b — who*).

Similarly,

Sa () [0*] — Sa(wo)[0*] — Sa1 (o) [0*](W — ) — Saa (7o) [1*, 9 — 2o

= O([|9 = 9|*) + O([[4 — %ol

Now we are positioned to conclude the normality of '1/9\7017" First, note that

Sln(?rzr) = O, Sgn(%zr)[h;kl] =0 and Sl(ﬂ'g) = O, 82(71'0)[1’1*] = 0. (]_4)
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For h! € R x © x [[1", ©y;, x ©F. and |h* — h}|| = O(n~""**/?) under the condition in

(b) and by some entropy calculation, we have S, (72")[h*] = 0,(n"1/2).

Then we see that

~

S1 (B2 = 90) + Suaf bl — o] + o057 — Do) + O[5 — tholl*) = Sin(mo) = 0,(n~1/?),

S [0 (D7 — 9) + Sualb, B2 — po] + ([T = Doll) + O — wholl?) — S (o) [1°] = 0,(n~112),

by (14)), (b) and (c).
We then have

(S11 = Saa W) (9 — Bo) + o([[97 — Do |) = S1a(7w0) — San(0)[17] + 0, (n~"/2),

by (a) and (15]). This yields that
V(S = Su[h N O7 = 99) = vn{Sin(m0) — San(mo) 0]} + 0,(1)
= V/nP,l"(m0) + 0,(1).

Besides, note that when n"~%/2/A = 0,(1), where A = A\ (1(9)),

W1 (90) PPl (m0) 21 (90) /2 = 1+ w1 (9g)* (Pl (7o) ® — ()1 ()" *u,
where the second term is bounded by

1(90) 2 [Pl (700) % — I(90) | [1(90) /2| = A™20,(n"n~/2)A™2 = 0,(1).
Therefore, it follows for any vector u with ||u|| =1,
V' 1) (97 = 9o) = N(0,1).

This completes the proof of Theorem 3.2.

S3.2.3  Proof of Theorem 3.3. We show that 72" is a strict minimum of @, () for w € 1T,

with probability approaching 1 through the following two steps.
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(1) For any 7 € II°", denote ©* = (8, ", 0%, 1, p*, @) € I

n

where p* = T'(p) and pj, =
pr(Xiog),
Qn(T") < Qu(T)),
with the equality only when 7* = 72"
(2) Define II, = {m: ||m — 77| < tn,w € II’}, where t, is a positive sequence. For any
e Hfl" U ﬁny
Qn(m) < Qu(7"),

with the equality only when 7w = 7*.

We first show (1). Under condition (C4) and sup |piro| > aA,
(i,k)€O

lpix] = ||pix — pirol — |pirol| = |piro] — dn > a,

when A > d,,. Thus,

Zm(|ﬂ§‘k|)= > oalloal) = e, (16)

(i,k)eO
where ¢ is a constant not depend on 7. In addition, for any « € Hfl", by the definition of
7", we have L, (7w%") > L,(7*). Therefore, it follows @, (7*) = L,(7*) + ¢; and Q,(77") =

L,(7°") + ¢1. Hence we get

Qn(m") < Qu(w)).

Next we show (2). For any 7 € II°* | J II,,, by Taylor’s expansion, we have

Qul(m") = Qulm) = Lu(m") = Lo(m) - {Zmpz‘kn - ZpA<rpik\>}

OL, (7
{ aé )} P —p) Zm ix]) (195 = pinl)

= H1+H27
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where p;;, lies between p, and p;.. For Hy, it can be seen that

Hy = =Y pallpu)(Iph — pirl)

i,k

= = > i) Uoh = piel) = D oa(uD (105 — pil)
(i,k) €O (i) £O

= = > ) (oh = o) + D Da(l5i) il
(i,k) €O (iLk)EO

Similar to ((16)), px(|pik|) in the first term is equal to 0. Thus, the first term in Hy disappears.
For the second term in Ho, noting |pu| < |pix| < |pi — 05| + 195 ] <ty for (i, k) ¢ O, we get

Hy> > palta)lpicl, (17)

(i,k) 20
by the concavity of py(t).

For H;, by Taylor’s expansion, we have

H =Y {8?;;:?) }/ (Pl — Pir)

ik
S Z {Cpag;f:)} (o3 — pir)
B 7 . OL,(mo) 0? L, () - . -
B (i%;é(9|: { Opik +F op3, (Pik = piro) (1 + p<1))H( Pik)
< Z Op(tn+5n)(_0ik)'

(i,k)¢0O

The last inequality is because |pix—piro| < |Pix—pir|+|pi—piro| < tn+0, and Apaq {PO*L,, (7o) /0p0p'} -
oco. Thus, Hi 2 — 37 py¢0 Op(tn + 0n)|pix|. Combining with , we have

Qn(m") — > Y {Baltn) = Oplta + 62)} piel. (18)

(3,k)¢0O

Taking ¢, = o()\), we get pr(t,) — A. Since A > 9, for sufficiently large n, we have

Qn(m*) = Qn(m). This completes the proof of Theorem 3.3.

S3.2.4  Proof of Theorem 3.4. Theorem 3.4 is a standard result of semiparametric M-

estimation, which can be referred to Theorem 1 in |Cheng and Huang (2010). The proofs of
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B and «a are similar. So we only consider the proof of 3 in the following by verifying the
conditions of Theorem 1 in |Cheng and Huang (2010)).

We define ¥ = (o', 02,1, @, p') is the other parametric which is infinite. Rewrite 7 =
(B, ®'Y. First, Condition I in (Cheng and Huang (2010) is satisfied, which means that the
expectation of the derivative of score function and the variance of score function are both
nonsingular. In addition, Conditions (W1)-(W5) in |(Cheng and Huang (2010)) are satisfied
because it’s an exchangeable bootstrap and ¢ = 1 under the notation in |(Cheng and Huang
(2010). Therefore, it suffices to verify Conditions (S1)-(S3) and (SB1)-(SB3).

Conditions (S1), (S2), (SB1) and (SB2) follow by Conditions (C1) ad (C2). For Condition
(S3), recall that ¥, — Wo|| = O,(6,) and ||B, — Byl = n Y2 If T +v < 1/2, there
exists v € (1/4,1/2] satisfying Condition (S3). For Condition (SB3), we note E(I(8,¥) —
By, W0)) = —d2(¥, Bg) — B — By|l? and E(U(B, o) — By, Wo)) = —||B — By|*- Thus, we

have

E((B,¥) —1(8,%0)) < E((B,¥) - 1By, ¥o)) — E((B, ¥o) — I(By, ¥o))

= —d(T, W) + |8 - Byl*. (19)

Denote Vs = {I(B,®) — (B, ¥,) : # = (3, %) € II’} and its bracketing entropy integral

is Jy(6, Vs, || - |) 2 / Knmy +m26. Then, similar as (7)), we have

B (sup |V, — P)1(B, ¥) — (8, o)) = O(y/ Ko, + mo + "m;_*m ), (20)

and

(s VA(E; — B) (U8, %) — 18, %)) < O/ Ry + s + L2010 oy

where P? is empirical measure under bootstrap samples satisfying Theorem 3 of (Cheng and

Huang| (2010). So Condition (SB3) follows by (19)-(21). This completes of the proof.
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Figure S1: Estimates of the eigenfunctions ¢ (t),k = 1,2,3 (solid-true function; dashed-
average of the estimated function; dotted-95% pointwise confidence bands) by FRIS in
Example 1.
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Figure S2: Estimates of the score variances pi(u),k = 1,2,3 (solid-true function; dashed-

average of the estimated function; dotted-95% pointwise confidence bands) by FRIS in
Example 1.
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Figure S3: (a) True mean function u(t,u); (b-e)Estimated mean function u(t,u) by FRIS
in Example 1.
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Figure S4: Estimates of mean function u(¢,u) by FRIS and SSV for Avon Longitudinal
Study of Parents and Children.
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Table S1: Performance of FRIS for estimating e under Example 1; presented are bias (sd).

21

Normal

Mixture Normal

n; = 10

n; = 20

n; = 10

n; =20

n = 100

n = 500

n = 100

n = 500

n = 100

n = 500

n = 100

n = 500

0.0014(0.0346)
0.0053(0.0937)
0.0031(0.0778)
0.0034(0.0936)
0.0035(0.0700)
0.0025(0.0522)
0.0120(0.1059)
0.0077(0.0881)
0.0122(0.0942)

0.0013(0.0169)
0.0042(0.0635)
0.0011(0.0353)
0.0030(0.0902)
0.0017(0.0458)
0.0013(0.0378)
0.0046(0.0842)
0.0042(0.0549)
0.0061(0.0833)

0.0014(0.0314)
0.0051(0.0798)
0.0032(0.0806)
0.0033(0.1147)
0.0038(0.1011)
0.0019(0.0511)
0.0062(0.0316)
0.0080(0.0921)
0.0087(0.1027)

0.0012(0.0165)
0.0039(0.0682)
0.0013(0.0352)
0.0025(0.0868)
0.0021(0.0462)
0.0010(0.0374)
0.0042(0.0280)
0.0053(0.0499)
0.0065(0.0829)

0.0025(0.0367)
0.0082(0.1063)
0.0048(0.0867)
0.0089(0.1212)
0.0057(0.0981)
0.0030(0.0600)
0.0152(0.1388)
0.0103(0.1310)
0.0103(0.1237)

0.0021(0.0172)
0.0063(0.0815)
0.0021(0.0334)
0.0057(0.0928)
0.0039(0.0545)
0.0016(0.0436)
0.0072(0.0825)
0.0065(0.0608)
0.0075(0.0876)

0.0027(0.0428)
0.0094(0.1024)
0.0062(0.1210)
0.0072(0.1283)
0.0056(0.1062)
0.0022(0.0592)
0.0171(0.1466)
0.0084(0.1061)
0.0108(0.1216)

0.0018(0.0187)
0.0058(0.0908)
0.0022(0.0356)
0.0070(0.0934)
0.0038(0.0493)
0.0015(0.0440)
0.0073(0.0889)
0.0063(0.0534)
0.0081(0.0834)
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Table S2: Type 1 error rate and power for 3 and a by FRIS for Example 2.
Type 1 error rate Power
n; = 10 n; = 20 n; = 10 n; = 20

n = 50 n = 100 n = 500 n = 50 n = 100 n = 500 n = 50 n = 100 n = 500 n = 50 n = 100 n = 500
B2 0.0466 0.0519 0.0505 0.0525 0.0511 0.0506 B1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
@11 0.0451 0.0477 0.0482 0.0540 0.0472 0.0483 Bs 0.8864 0.9843 0.9999 0.9062 0.9980 0.9999
g1 0.0526 0.0511 0.0520 0.0514 0.0524 0.0503 a1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
a3zl 0.0547 0.0561 0.0525 0.0465 0.0510 0.0495 @13 0.8774 0.9616 0.9916 0.8354 0.9697 0.9908
* * * * * * (DD 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
* * * * * * @23 0.7659 0.9384 0.9806 0.8237 0.9311 0.9795
* * * * * * (%D 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
* * * * * * a3s3 0.8904 0.9351 0.9737 0.8020 0.9567 0.9857
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Table S3: Comparisons of FRIS and SSV Under Example 3 for the SSV data; presented are

bias (sd).

ng =

10

n; = 20

n = 100

n = 500

n = 100

n = 500

FRIS

SISV

FRIS

SsvV

FRIS

SSV

FRIS

SsvV

B1
B2

w(s)
p1()
p2()
p3()

0.0019(0.0245)
0.0006(0.0201)
0.0014(0.0240)
0.0359(0.6306)
0.0273(0.3972)
0.0168(0.1632)
0.0058(0.0575)

0.0015(0.0191)
0.0003(0.0149)
0.0006(0.0178)
0.0344(0.6050)
0.0257(0.3540)
0.0085(0.1525)
0.0018(0.0548)

0.0012(0.0098)
0.0003(0.0072)
0.0004(0.0085)
0.0186(0.2738)
0.0128(0.2791)
0.0049(0.0993)
0.0042(0.0144)

0.0004(0.0072)
0.0003(0.0058)
0.0003(0.0077)
0.0187(0.2645)
0.0101(0.2766)
0.0043(0.0992)
0.0018(0.0142)

0.0015(0.0248)
0.0004(0.0156)
0.0005(0.0172)
0.0371(0.5952)
0.0226(0.3542)
0.0182(0.1622)
0.0034(0.0535)

0.0007(0.0128)
0.0008(0.0091)
0.0006(0.0100)
0.0366(0.5834)
0.0178(0.3246)
0.0088(0.1558)
0.0021(0.0502)

0.0007(0.0086)
0.0006(0.0058)
0.0005(0.0071)
0.0267(0.2599)
0.0088(0.2690)
0.0060(0.0905)
0.0032(0.0138)

0.0007(0.0069)
0.0003(0.0039)
0.0002(0.0049)
0.0238(0.2579)
0.0022(0.2451)
0.0027(0.0878)
0.0006(0.0131)

23
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Table S4: Estimates and p-value for 8 and a of FRIS Under Example 4 for the FSREM
data.

n; = 10 n; = 20
n = 100 n = 500 n = 100 n = 500

Est. p-value Est. p-value Est. p-value Est. p-value

B1 0.8006 0.0000 0.7959 0.0000 0.7990 0.0000 0.7960 0.0000

B B2 0.0001 0.9994 0.0074 0.7486 -0.0005 0.9935 0.0094 0.7241
B3 0.5992 0.0000 0.6053 0.0000 0.6013 0.0000 0.6052 0.0000

a1l 0.1082 0.7186 0.1279 0.6786 0.1184 0.7000 0.1100 0.7243

(=3} Qi 0.9918 0.0000 0.9884 0.0000 0.9895 0.0000 0.9925 0.0000
13 0.0679 0.7729 0.0818 0.7123 0.0829 0.6972 0.0536 0.8085

a1 0.1189 0.6991 0.1317 0.6465 0.1183 0.7164 0.1110 0.7204

sz @2 0.9894 0.0000 0.9886 0.0000 0.9901 0.0001 0.9920 0.0000
a3 0.0832 0.7068 0.0724 0.7200 0.0758 0.7578 0.0606 0.7763

a3zl 0.1215 0.6776 0.1127 0.6675 0.0883 0.7769 0.1450 0.6178

a3z a3z3a 0.9905 0.0000 0.9897 0.0000 0.9947 0.0000 0.9857 0.0000

33 0.0651 0.7636 0.0738 0.7139 0.0536 0.8083 0.0853 0.6869
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Table S5: Estimates and p-value for § and « of FRIS Under Example 4.

n; = 10 n; = 20
n = 100 n = 500 n = 100 n = 500

Est. p-value Est. p-value Est. p-value Est. p-value

B1 0.8976 0.0000 0.8936 0.0000 0.8985 0.0000 0.8921 0.0000

B B2 -0.0008 0.7778 -0.0010 0.3321 0.0015 0.6513 -0.0018 0.1437
B3 0.4407 0.0000 0.4489 0.0000 0.4389 0.0000 0.5994 0.0000

ajl 0.0020 0.9676 -0.0012 0.9794 0.0067 0.9129 -0.0116 0.8627

aq g 0.8208 0.0000 0.8034 0.0000 0.1103 0.0000 0.1109 0.0000
@13 0.5713 0.0000 0.5955 0.0000 0.5813 0.0000 0.4427 0.0000

g1 -0.0092 0.0554 -0.0119 0.2147 -0.0164 0.1829 -0.0162 0.2679

a2 @29 0.8112 0.0000 0.8003 0.0000 0.8007 0.0000 0.7930 0.0000
a3 0.5847 0.0000 0.5995 0.5995 0.5988 0.0000 0.6090 0.0000

asy -0.0032 0.9519 0.0042 0.9267 -0.0065 0.9166 -0.0038 0.9152

a3 aszg 0.8238 0.0000 0.8076 0.0000 0.8318 0.0000 0.8232 0.0000
@33 0.5669 0.0000 0.5897 0.0000 0.5550 0.0000 0.5678 0.0000
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