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Abstract

Bayesian approaches have been utilized to address the challenge of variable selec-
tion and statistical inference in high-dimensional survival analysis. However, the
discontinuity of the `0-norm prior, including the useful spike-and-slab prior,
may lead to computational and implementation challenges, potentially limiting
the widespread use of Bayesian methods. The Gaussian and diffused-gamma
(GD) prior has emerged as a promising alternative due to its continuous-and-
differentiable `0-norm approximation and computational efficiency in generalized
linear models. In this paper, we extend the GD prior to semi-parametric Cox
models by proposing a rank-based Bayesian inference procedure with the Cox
partial likelihood. We develop a computationally efficient algorithm based on
the iterative conditional mode (ICM) and Markov chain Monte Carlo methods
for posterior inference. Our simulations demonstrate the effectiveness of the pro-
posed method, and we apply it to an electronic health record dataset to identify
risk factors associated with COVID-19 mortality in ICU patients at a regional
medical center.

Keywords: Bayesian variable selection, Risk assessment, Iterative conditional mode
algorithm, Markov chain Monte Carlo sampling, Highest posterior density intervals,
Urgent care
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1 Introduction

Identifying risk factors relevant to mortality is of paramount importance for building
reliable predictive models to profile patient risks and to effectively triage patients in
an urgent care setting. Recently, electronic health record (EHR) data have emerged as
a major resource to identify such risk factors. For example, the University of Michigan
Health System (or Michigan Medicine), as a primary regional center managing the care
of COVID-19 patients during the pandemic, has collected a wealth of demographic
and clinical data via EHR. The rich EHR data have been routinely used for monitor-
ing patients in need of urgent care at Michigan Medicine. A total of 1,265 COVID-19
patients were admitted to the Intensive Care Unit (ICU) in Michigan Medicine between
March 10, 2020 (the date of the first case in that state) and December 31, 2021 (the
cutoff date of the released EHR data). These patients were extremely vulnerable with
a high mortality rate of 20%. It is crucial to assess the associations of demographic and
clinical factors with in-hospital mortality among this vulnerable population, a primary
endpoint for patients most severely attacked by COVID-19. The high dimensionality
of EHR data, ranging from demographics, to lab measurements, to comorbidity condi-
tions, poses challenges in extracting and assessing these candidate features using Cox
proportional hazards models [1]. These models have been widely used for exploring
associations between patient attributes and time-to-event outcomes, such as mortal-
ity. As demonstrated through the management of COVID-19 patients at Michigan
Medicine, the utilization of EHR data has become essential for comprehending the
multitude of factors that play a role in influencing in-hospital mortality. Insights from
such analyses can aid healthcare professionals in devising targeted interventions and
personalized treatment strategies to mitigate mortality risks effectively, making effi-
cient usage of EHR data indispensable for evidence-based decision-making in urgent
care settings and transformative medical discoveries.

For extracting relevant features from a massive candidate set of features, numer-
ous penalization-based variable selection approaches have been proposed. [2] proposed
an `0-norm penalty to induce sparsity for regression coefficients. To address the dis-
continuity and non-convexity of the `0 penalty, an alternative `1-norm penalty, the
least absolute shrinkage and selection operator (Lasso) was presented by [3]. Lasso was
extended to the Cox model by [4] and [5], who implemented the LARS algorithm [6]
to approximate the Lasso in Cox regression models. Other commonly used regularized
regression methods for the Cox model include the smoothly clipped absolute deviation
penalty [SCAD; 7], the minimax concave penalty [MCP; 8] and the Elastic-net penalty
[E-net; 9]. Further, [10] developed a debiased lasso (DLASSO) method for drawing
inference on Cox models with a diverging number of predictors, and [11] proposed a
method for hypothesis testing under Cox models with high dimensional covariates.

From the Bayesian perspective, spike-and-slab [12] priors and shrinkage priors are
the most common variable selection techniques. The spike-and-slab prior, an analog of
`0-norm penalties, is a mixing distribution with a point mass of zero and a continuous
distribution for all non-zero values, and was adopted by [13] for variable selection and
further extended by [14] to form a spike-and-slab mixture double-exponential prior.
Other useful Bayesian shrinkage priors, with a performance comparable with the spike-
and-slab prior, include normal-gamma mixture priors [15], relevance vector machine
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[16], horseshoe prior [17], and Dirichlet-Laplace priors [18]. These priors have empow-
ered various Bayesian variable selection methods for Cox models. For example, [19]
developed a semi-automatic Bayesian variable selection method for up to 20 covariates,
and [20] built a penalized semiparametric method for high dimensional survival data.
[21] proposed a product inverse moment non-local prior density (piMOM) on non-zero
coefficients, and [22] incorporated the horseshoe prior in Cox models. However, even
when p is relatively large, Markov chain Monte Carlo (MCMC) sampling algorithms
for the spike-and-slab prior methods with discontinuous `0-norm penalties often fail
to converge to the target posterior distribution [23, 24], and, in our experience (as
reported in our simulations), may produce a large number of false positives.

To address these limitations, we explore the idea of approximating `0-norm penalty
from an empirical Bayes perspective. Specifically, we consider the use of the Gaussian
and diffused-gamma (GD) prior [24], a novel Bayesian shrinkage prior which produces
a differentiable `0-norm approximation under maximum a posteriori (MAP) estima-
tion. Compared to other Bayesian methods, the GD prior is computationally efficient
and effective in selecting important predictors and eliminating noise variables in gener-
alized linear models [24]. However, since the GD prior was primarily proposed for fully
parametric models, it is unclear about its utility in a semiparametric setting, particu-
larly for Cox models. In this work, we extend the GD prior-based Bayesian strategy to
Cox models. To avoid specifying priors on the (infinite dimensional) baseline hazard
functions, we focus on the ranks of the observed survival outcomes, whose distribu-
tion turns out to be equal to the partial likelihood of a Cox model under independent
censoring [25]; in a similar context, [21] proposed to use the partial likelihood as the
sampling distribution for Bayesian model selection but did not provide justifications
or draw inference. For quantifying the uncertainty of the estimated coefficients of all
the predictors (regardless of being selected or not), we further propose a computation-
ally efficient inference procedure via the iterative conditional mode (ICM) algorithm
and Markov chain Monte Carlo methods.

Our work makes the following contributions. First, with independent censoring
[26], we build the likelihood based on the ranks of the observed survival outcomes,
which is equal to the commonly used partial likelihood of a Cox model and is free of
the baseline hazard function; thus, our sampling distribution in the proposed Bayesian
procedure does not need to involve complicated priors for baseline hazards. Second, our
proposed GD prior can be described by a continuous and convex Gaussian and gamma
mixture model to approximate the `0 penalty, which further reduces computational
costs. Finally, our Bayesian framework facilitates simultaneous variable selection and
inference, which offers a distinct advantage in comparison to other methodologies
dedicated solely to variable selection or high-dimensional inference, such as the piMOM
method [21].

The paper is organized as follows. Section 2 introduces the rank-based Bayesian
approach for inferring on Cox Models. Section 3 proposes the GD prior for the regres-
sion coefficients, and Section 4 designs a posterior computational algorithm. Section
5 conducts simulations to evaluate the performance of the proposed method in finite
sample settings. Section 6 applies the method to analyze the aforementioned Michi-
gan Medicine EHR data to assess risk factors associated with the mortality of COVID
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patients admitted to the ICU. Section 7 concludes the paper with a discussion.
Additional results are presented in online Supporting Information.

2 Formulation of the Problem

2.1 Cox Models with High Dimensional Covariates

Let Ti and Ci respectively denote the survival time (e.g., the time from an ICU admis-
sion to death) and censoring time for the ith individual. The observed responses consist
of T̃i = min{Ti, Ci} representing the observed survival time, and δi = I(Ti ≤ Ci) rep-
resenting the censoring indicator. Here, I(a) equals 1 if condition a holds, and equals
0 otherwise. As commonly assumed in the literature, we assume independent censor-
ing, that is, Ti and Ci are conditionally independent given xi, where xi ∈ Rp is the
covariate vector of individual i. Also, we assume that the Ti’s are continuous, imply-
ing that ties occur with a probability of 0. The observed data, (xi, T̃i, δi), i = 1, . . . , n,
are independently and identically distributed copies of (x, T̃ , δ). Finally, denote by
X = (x1, . . . ,xn)> ∈ Rn×p the covariate matrix, by Xj (j = 1, . . . , p) the jth column
of X, and by nd =

∑n
i=1 δi the number of observed events.

The Cox proportional hazards model [26] stipulates that the hazard rate for a

subject with covariate x is h(t | x) = h0(t) exp
(
x>β

)
, where β = (β1, . . . , βp)

>
is a

vector of regression coefficients and h0(t) is the baseline hazard function. Associated
with the specified Cox model is the partial likelihood [26]:

L(β) =

n∏
k=1

{
exp

(
x>k β

)∑
l∈Rk

exp
(
x>l β

)}δk

where Rk is the set of indices of subjects at risk at T̃k. Denote by l(β) = logL(β) the
log partial likelihood. When p is fixed and small, the frequentist estimates of β are
routinely obtained by maximizing L(β) or l(β). However, when p > nd or even p/nd is
not negligible, the high dimensionality of predictors may defy traditional frequentist
methods, causing inaccurate inferences [10].

Although our initial theory assumes the absence of ties, it is imperative to consider
real-world scenarios in which ties can occur. Should ties indeed happen, the partial
likelihood function we have presented represent the Breslow approximation [27] of
likelihood for such tied observations, which is an effective and popular strategy for
addressing ties [28]. Alternatively, we can employ either the exact likelihood [29] or
Efron’s approximation [30] if “heavy” ties are present.

2.2 Rank-based Bayesian Inference on Cox Models

As L(β) depends on only the relative rankings of the survival data and not on their
specific values [26], we propose a rank-based Bayesian approach to estimate and draw
inference on β, even when p is large. The key idea is that, regardless of the dimension of
β, the partial likelihood, L(β), can be used as the sampling distribution in a Bayesian
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procedure because L(β) is the marginal likelihood for all possible underlying ranks
consistent with the observed data, subject to independent censoring [25, 31].

Specifically, introduce yij = δiI(T̃i ≤ T̃j)−δjI(T̃j < T̃i), which specifies the possible
ordering of subjects i and j; it is 1 if subject j is observed to survive longer than i, is −1
if subject i is observed to survive longer than j, or is 0 if the ordering between them can-
not be determined with the observed data. As such, y = (yij , 1 ≤ i < j ≤ n) contain all

possible rankings consistent with the observed survival outcomes, (T̃i, δi), i = 1, . . . , n,
and thus the density f(y|β) = L(β) under independent censoring [25]. The approach is
an effective alternative to the common Bayesian survival approaches [32], by avoiding
specifying priors for the baseline hazard functions and relieving much computational
burden.

Our procedure enables variable selection, for which we introduce the marginal
probability of observing the rank data, y, under L(β), i.e., m(y) =

∫
L(β)π(β)dβ,

and use it for selecting tuning parameters. As π(β), the prior of β, impacts the overall
performance of the selection procedure and the amount of sparsity, we adapt a GD
version of π(β) to Cox models.

3 GD Prior Adapted to Cox Models

The GD prior [24] is a Bayesian shrinkage prior, which is differentiable and approx-
imates the `0-norm, i.e.,

∑p
j=1 I(βj 6= 0), with the maximum a posteriori (MAP)

estimation. We adapt this prior, originally designed for generalized linear models, to
Cox models. We start by proposing an `0-norm approximation to obtain

˜̀
0(β | κ, τ0) = κ

p∑
j=1

X>j Xjβ
2
j

τ0 +X>j Xjβ2
j

, (1)

where κ ≥ 0 is a hyperparameter controlling the level of sparsity, τ0 is predetermined
to be sufficiently small, and Xj is the jth column of X. Moreover, writing g(τ | x) =
x2/

(
τ2 + x2

)
, as

lim
τ→0

g(τ | x) = I(x 6= 0),

we have that ˜̀
0(β | κ, τ0) → κ

∑p
j=1 I(βj 6= 0) as τ0 → 0, for any given κ and β [24].

Therefore, if τ0 is sufficiently small, penalty function (1) provides a good approxima-
tion to the `0-norm penalty. The behavior of the GD prior to an appropriate tuning
parameter τ0 is illustrated in Figure 1. As τ0 decreases, the shrinkage rate towards
zero increases, suggesting that non-important variables can be quickly excluded for
small τ0.

Consequently, we derive a prior that attains this form of `0-norm approximation.
We set independent Gaussian priors for the βj ’s with precision parameter dj , for
j = 1, . . . , p. We further propose that the dj ’s have independent gamma priors with
shape parameter κ+ 1

2 and rate parameter τ0/(2X
>
j Xj). Let d = (d1, . . . , dp)

>. Then
the joint GD prior for β and auxiliary statistic d can be specified as

πGD(β,d) ∝ πG(β | d)πD(d), (2)
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Fig. 1 Selection performance of the Gaussian and Diffused-gamma (GD) prior based on the values
of τ0.

where

πG(β | d) ∝
p∏
j=1

{
d

1/2
j exp

(
−dj

2
β2
j

)}
, (3)

πD(d) ∝
p∏
j=1

{
d
κ−1/2
j exp

(
− τ2

0

2X>j Xj
dj

)}
. (4)

One could potentially integrate d out of (2) to obtain the “marginal prior” for β.
However, the integration would incur high computational costs. An alternative strat-
egy is to replace d in (2) by its MAP estimator, d̂MAP = arg maxd[πGD(β,d)] =(

2κ
τ2
1 +β2

1
, ..., 2κ

τ2
p+β2

p

)
, where τ2

j =
τ2
0

X>
j Xj

and j = 1, · · · , p. We refer to πGD(β, d̂MAP ) as

the MAP-based prior for β. Applying (3) and (4), and since πGD(β, d̂MAP ) ∝ πG(β |
d̂MAP ), we have

arg max
β

{
L(β)πGD(β, d̂MAP )

}
= arg min

β

{
−l(β) + ˜̀

0 (β | κ, τ0)
]
. (5)
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The resulting estimate is termed the MAP estimate of β, aligning with that a penal-
ized estimator can be considered as MAP estimator of the posterior distribution in
a Bayesian analysis [3]; for a given τ0 (i.e., τ0 = 10−4, based on Figure 1 and our
numerical experience), the MAP-based prior for β helps attain the desired continuous
and differentiable `0-norm penalty (1), and the results are not sensitive to the choice
of τ0 when it is sufficiently small. Furthermore, a Bayesian framework complements
the MAP estimates with the estimation of a posterior distribution of β, laying the
groundwork for posterior inference.

We have utilized a prior that integrates data information and shares similarities
with an `0 norm penalty, which might lead to concerns about the double usage of
the data. To address this, we have introduced a hyperprior (τ0), which facilitates the
specification of a higher-level distribution, permitting the incorporation of additional
external knowledge or expert insights. By integrating this hyperprior, we may improve
the model’s resilience and adaptability, avoiding overfitting the data and mitigating
biases linked to data-driven priors.

4 Algorithms

We adopt a component-wise updating ICM algorithm to compute the MAP estimate
of β and further develop an MCMC sampler to approximate the posterior distribution
of β.

4.1 MAP estimation via component-wise updating ICM

It follows that the MAP estimates of β and d, separately obtained from (2) and (5),
can be jointly obtained by maximizing the following posterior density of β and d given
y. That is,

(β̂, d̂) = arg max
β,d

π(β,d|y) = arg max
β,d

L(β)πG(β|d)πD(d),

where β̂ and d̂ denote the MAP estimates of β and d (without the subscript of “MAP”
for simplicity). This observation facilitates the use of a component-wise updating ICM
algorithm:

d̂← arg max
d

{
πG(β̂|d)πD(d)

}
,

β̂ ← arg max
β
{L(β)πG(β|d̂)},

which can be implemented by using Algorithm 1. Based on our numerical studies, ε0
in the algorithm is set to be 0.0001, and for choosing the initial estimates of β̂(0), we
recommend using the estimates from the ridge regression. Following [24], the hard-

thresholding parameter ζ
(t)
j is chosen to be 1.96/

√
2κ

τ2
0 /X

>
j Xj+(β̃

(t)
j )2

, corresponding to

the bound of a 95% prior credible interval when βj = 0, which turns out to work well
in our experience.
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Algorithm 1 The component-wise ICM algorithm

1. Set an initial β̂(0) = (β̂
(0)
1 , . . . , β̂

(0)
p )>.

2. For t = 1, 2, . . . ,

d̂
(t)
j =

2κ

τ2
0 /X

>
j Xj + (β̂

(t−1)
j )2

,

β̃
(t)
j = arg min

βj

[
− l(β̂(t−1)

1 , . . . , β̂
(t−1)
j−1 , βj , β̂

(t−1)
j+1 , . . . , β̂(t−1)

p ) +
d̂

(t)
j

2
β2
j

]
,

β̂
(t)
j = β̃

(t)
j I{|β̃(t)

j | > ζ
(t)
j },

where j = 1, 2, · · · , p.
3. Stop when maxj=1,··· ,p |β̂(t)

j − β̂
(t−1)
j | < ε0, where ε0 is sufficiently small (e.g.,

0.0001).

4. Following convergence, set β̂ = (β̂
(t)
1 , . . . , β̂

(t)
p )> and d̂ = (d̂

(t)
1 , . . . , d̂

(t)
p )>.

4.2 MCMC sampling method

For Bayesian inference, it is important to obtain the posterior distribution of the
regression coefficient. With no closed form for the full conditional of β or its compo-
nents βj , we apply the Metropolis-Hasting algorithm. At the (s+1)th MCMC iteration,

using β
(s)
j sampled at the sth iteration, we sample βj with β

(s+1)
j from a Gaussian

proposal density φ
(
·|β(s)

j

)
with mean β

(s)
j and variance ω

(
− ∂2

∂β2
j
l(β)|β=β̂ + d̂j

)−1
for

some ω > 0, where β̂ and d̂ are obtained from Algorithm 1. We then compute the
acceptance probability for the proposed move as

α = min

1,
L ∗ πGD(β

(s)
1 , . . . , β

(s)
j−1, β

(s+1)
j , β

(s)
j+1, . . . , β

(s)
p )φ

(
β

(s)
j |β

(s+1)
j

)
L ∗ πGD(β

(s)
1 , . . . , β

(s)
j−1, β

(s)
j , β

(s)
j+1, . . . , β

(s)
p )φ

(
β

(s+1)
j |β(s)

j

)
 ,

for j = 1, · · · , p, where for notational ease L∗πGD(β) = L(β)πGD(β, d̂). This way, the

MAP estimates, β̂ and d̂, from the ICM algorithm are incorporated into the proposal
density. Further, ω controls the acceptance rate of the MCMC procedure and we aimed
to have 40% - 60% acceptance rates. Setting ω equal to 1 or 1.5 in the simulation
studies yielded reasonable acceptance rates. For inference, we use the MCMC samples
to construct the 95% highest posterior density (HPD) intervals for the coefficients of
all the potential predictors, regardless of them being selected.

4.3 Tuning parameter selection

As parameter κ controls the degree of sparsity in the MAP estimate, we detail its
selection process. For a given κ, denote by βκ the vector of non-zero coefficients, and
by pκ the dimension of βκ. Motivated by BIC, we consider an independent “working”
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normal prior so that βκ ∼ N
(
0, 1

pκ
I
)

. When there are a few non-zero coefficients,

the normal prior variance is the reciprocal of pκ, making the prior less informative.
As the marginal distribution of the data is m(y|κ) =

∫
L(βκ)π(βκ)dβκ, we propose a

Monte Carlo (MC) estimator of m(y|κ), i.e., m̂(y|κ) = S−1
∑S

i=1
L(βκ)π(βκ)
N(βκ|µκ,Σκ) , where

S denotes the number of simulations, µκ = arg maxβκ log{L(βκ)π(βκ)}, and Σκ =

−
[

∂2

∂βκ∂β>
κ

logL{(βκ)π(βκ)}|βκ=µκ

]−1

. Finally, we choose κ̂ = arg maxκ m̂(y|κ),

which can be implemented using a grid search. Justifications for choosing κ in this fash-
ion were given by [24] in the context of generalized linear models, and our simulations
confirmed its utility in the setting of Cox models by detecting sparse models.

5 Simulation Studies

We conducted simulation studies to compare our proposed GD prior method with the
competing methods, including ridge, E-net, LASSO, MCP, SCAD, the spike-and-slab
mixture double-exponential [BLasso; 14, 33] known as Bayesian spike-and-slab mixture
lasso, product moment [pMOM; 21], product inverse moment nonlocal priors[piMOM;
21], and the debiased Lasso [DLASSO; 10] for Cox models. The competing frequentist
methods and the Bayesian Lasso were respectively implemented by using glmnet,
ncvreg, BhGLM, and BVSNLP packages in R. The selection of the tuning parameter, κ,
for our proposed GD prior method was performed as detailed in the last section. For
the ridge, E-net, LASSO, MCP, and SCAD penalized regression models that involved
regularization parameters, we conducted 10-fold cross-validation over a grid of values
of these parameters and chose those that minimized the cross-validation error, which
in our case was the negative log-partial likelihood [34–36]. We have made the code
publicly available on GitHub.

We evaluated selection and prediction performance using false positive rate (FPR),
false negative rate (FNR), false discovery rate (FDR), and the average number of
selected covariates:

FPR =
FP

TN + FP
, FNR =

FN

TP + FN
, FDR =

FP

FP + TP
,

where a false positive incorrectly identifies a variable as being relevant for the predic-
tion when it is actually irrelevant or has no true association with the target outcome,
and a false negative selects a variable as being irrelevant for the prediction when it is
actually irrelevant or has a true association with the target outcome. To generate the
survival outcomes and covariates, we considered the following three scenarios, similar
to those adopted by [37].

The covariate x = (x1, . . . , xp)
> was generated from multivariate Gaussian,

marginally standard normal, but with the following correlation structures and model
sizes (i.e., numbers of non-zero coefficients):

Scenario 1: Corr(xi, xj) = 0 for all i 6= j ∈ {1, · · · , p}. The true regression
coefficients, β0 = (1, 1, 0, 0, 1, 1, 0, · · · , 0)>, consisted of four non-zero regression
coefficients.
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Scenario 2: Corr(xi, xj) = 0.5|i−j| for all i, j ∈ {1, · · · , p}. The true regression
coefficients,

β0 = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0 · · · , 0)>,

had 10 non-zero regression coefficients.
Scenario 3: Corr (xi, x4) = 1/

√
2.2 for all i 6= 4, and Corr (xi, xj) =

1/2 for all i 6= j ∈ {1, · · · , p}\{4}. Only the first 5 predictors of β0 =
(1, 1, 1,−1.5

√
2, 1/3, 0, · · · , 0)> were non-zero.

We varied n to be 100 and 1,250, and set p equal to 20, 100, and 200. When n = 100,
we generated the survival and censoring times independently and respectively from
an exponential distribution with the rate of exp(x>β0) and 0.1, corresponding to an
expected censoring rate of 30%. When n = 1, 250, we generated the survival times
the same way, but generated the censoring times independently from an exponential
distribution with a rate of exp(x>β0) and 4 exp(x>β0), corresponding to a roughly
50% and 80% censoring rate respectively; the same size and a censoring rate of 80%, in
this case, were meant to mimic our real data. A total of 100 independent datasets were
generated for simulation configuration. We ran MCMC simulations for 3,000 iterations
with a burn-in of 500 for each dataset. In all three scenarios, the tuning parameter
κ was obtained by performing a grid search in the interval [0.1, 3], as described in
Section 4.3.

Table 1 presents the selection performance of each method when n = 100 with
an approximately 30% censoring rate, i.e., nd was about 70. We note that DLASSO
is only applicable with p < nd. The GD prior provided the lowest FPR, FNR, and
FDR in most cases considered, outperforming the other methods as the number of
predictors increased. It produced a sparse model overall, though pMOM and piMOM
provided sparser models in all cases, and MCP yielded a smaller FPR for n = 200.
However, pMOM failed to select significant variables with more complicated covariance
structures as in Scenario 3. When evaluating the estimation of each coefficient, we
found that the performance of each method varied. The prediction performance was
assessed by using the mean squared error (MSE) and the concordance index [C-index;
38]. Table 1 also presents the prediction performance of the different methods, showing
that the proposed method provided a smaller MSE than most of the other methods,
except for pMOM and piMOM in some cases. Using FPR, FNR and FDR as the
criteria, our proposed method was comparable with pMOM and piMOM and was
better than the other methods. The MCP method was competitive in prediction for
a larger number of predictors and under more complicated correlation structures; in
contrast, the proposed method did provide a stable performance.

We repeated the same experiment with a larger sample size (n = 1, 250) but mod-
erate and severe censoring rates (∼ 50% and ∼ 80%). When the censoring rate was
∼ 80%, nd was about 250, and both the sample size and the number of events were
roughly equal to those of our real example. Tables 2 and 3 summarize the perfor-
mance of each method. With n = 1, 250, the pMOM algorithm failed to converge in
most cases, whereas piMOM, the improved version of pMOM, performed quite well.
Therefore, we did not include pMOM, but still kept piMOM in the table. The results
were consistent with what was observed when n = 100 and the censoring rate was
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∼ 30% and revealed that our proposed method remained effective even with a mod-
erate or high censoring rate, and in many cases was comparable, if not better than,
with piMOM.

We next compared the time required to obtain the MAP estimates using Bayesian
methods presented in Table 4 under the three aforementioned scenarios for sample sizes
of n=100 and n=1250. Our findings indicate that our method is faster than BLASSO
and comparable to pMOM and piMOM. This is reasonable because BLASSO requires
the MCMC sampling to compute the MAP estimates, which is more time-consuming.
On the other hand, our GD approach, pMOM, and piMOM methods have closed-form
solutions, making them more computationally efficient.

Table 5 displays a summary of MAP estimates of the regression coefficients
obtained by MCP, BLASSO, and DLASSO over 100 repetitions of Scenarios 1–3 with
n = 100 and p = 20. The proposed method yielded smaller standard errors and MSEs
than the other methods, indicating better accuracy and efficiency. Summaries of the
MAP estimate for the p = 100 and p = 200 cases supported that the important vari-
ables detected by MCP were substantially underestimated compared to our method.
The underestimation worsened as predictors increased (Web Tables S1 and S2). We
further find that even when p > n, the GD prior showed stable estimation results
without suffering from underestimation. Moreover, Web Figures S3 and S4 illustrate
the grid search results for κ as specified in Section 4.3.

Finally, to verify the accuracy of the Bayesian interval estimates produced by the
GD prior technique, we post-processed the Scenario 1 MCMC samples to compute
the MC coverage of the 95% HPD intervals for the variables xj , j = 1, . . . , p. These
coverage probabilities are displayed in Figure 2. Our GD approach achieved high
coverage probabilities for the non-zero coefficients, even for relatively modest-sized
data (p = 100) as well as high dimensional data (p = 200). The MC coverage plot of
Scenario 1 with p = 20 is presented in Web Figure S1, and the plots for Scenarios 2
and 3 are shown in Web Figure S2.

6 Analysis of EHR with COVID-19 Patients
Admitted to ICU

We applied our proposed GD prior method and the competing methods listed in the
simulation studies to analyze the Michigan Medicine EHR data to assess risk factors
associated with in-hospital mortality of COVID-19 patients admitted to ICU. The
data consist of n = 1, 265 COVID-19 patients admitted between March 10, 2020,
and December 31, 2021. In-hospital survival time was defined as the time from ICU
admission until in-hospital death, possibly censored by discharge or termination of the
study. During the follow-up, a total of nd = 250 deaths were observed.

The analytical goal was to estimate the associations of common risk factors with
in-hospital mortality. We extracted and created a set of demographic, socioeconomic,
and clinical risk factors identified in the literature relevant to COVID-19 health
outcomes, including age, sex, race (Black or non-Black), ethnicity (Hispanic or non-
Hispanic), smoking status, alcohol use, drug use, and prevalent comorbidity conditions.
We obtained physiologic measurements within 24 hours of admission, such as body
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Table 4 Comparison of the Average Computing Time (Seconds) to Attain MAP
Estimates for Various Bayesian Methods when n = 100, 1, 250.

Method
n = 100 n = 1250

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

BLASSO 9 13 13 78 79 80
pMOM 8 10 8 65 67 70
piMOM 6 9 8 53 59 64
GD 7 12 11 56 59 66

mass index (kg/m2), oxygen saturation, body temperature, respiratory rate, diastolic
and systolic blood pressure, and heart rate. In total, p = 51 demographic and clinical
predictors were considered candidate features.

We first applied our method to the entire dataset to present a summary of a
posterior distribution. As in simulations, the hyperparameter κ of the GD prior was
selected over [0.1, 3]. For selection and prediction performance measures, we used 10-
fold cross-validation by randomly partitioning the data into training and test sets,
using the training set to fit the model and the testing set to evaluate the model
performance. Observations in each fold were randomly chosen to maintain a similar
censoring rate across folds. In each training set, we generated 3,000 times posterior
samples after discarding 500 burn-in samples. By using 10-fold cross-validation, the
average C-index and integrated Brier score [IBS; 39] across folds were measured for
prediction performance; in addition, we defined the selection probability of each feature
using the empirical percentage of selecting this feature across folds.

Table 6 provides the MAP estimates and overall posterior summaries of the regres-
sion coefficients of the GD prior approach, compared with the DLASSO method; the
other competing methods did not draw an inference and, therefore, are not reported
in this table. The predictors chosen by the GD prior approach are listed in the
top panel above the separation line. The Bayesian point estimates agreed with the
DLASSO estimates; however, the GD prior approach was able to select variables and,
in the meantime, quantify the uncertainty for all the variables, whereas DLASSO did
not select variables. That is, fundamentally different from the DLASSO method, our
proposed GD prior method performed variable selection and inference simultaneously.

The covariates selected by the GD prior method included age, blood loss anemia,
diastolic blood pressure (non-invasive), an indicator of fluid electrolyte disorders, heart
rate, oxygen saturation, psychoses, respiratory rate, and solid cancer with and without
metastasis. Of the non-selected variables, the 95% HPD intervals obtained from the
proposed method were narrow, containing zeroes. We found that age (0.83; 0.70 to
0.98), blood loss anemia (0.30; 0.04 to 0.58), fluid electrolyte disorders (1.40; 0.82 to
1.97), heart rate (0.23; 0.10 to 0.33), psychoses (0.3; 0.08 to 0.55), respiratory rate
(0.21; 0.11 to 0.34), and solid tumor without metastasis (0.33; 0.08 to 0.56) were
significant with the 95% HPD intervals not containing 0, and were associated with
increased risk of in-hospital death. On the other hand, high oxygen saturation (-0.41;
-0.52 to -0.29) and high diastolic blood pressure (-0.13; -0.22 to -0.03) were associated
with improved survival. Figure 3 illustrates how the tuning parameter works internally
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Table 7 Comparisons of C-index, IBS and
the number of selected variables across
different methods applied to the COVID-19
ICU dataset.

Method C-index IBS
Average No.
of Variables

RIDGE 0.762 0.015 51
ENET 0.765 0.015 34
LASSO 0.758 0.015 25
MCP 0.754 0.016 18
SCAD 0.753 0.016 20
BLASSO 0.759 0.016 30
DLASSO 0.754 0.016 51
pMOM 0.727 0.016 7
piMOM 0.739 0.016 10
GD 0.756 0.016 17

in the algorithm and performs selection. The convergence of the model is verified by
the trace plots and autocorrelation plots (Web Figures S5 and S6).

With 10-fold cross-validation, Figure 4 shows the variables sorted by selection prob-
ability and, in particular, those with probability over 0.8, which were highlighted in
red. A similar set of predictors were chosen with high probability as applied to the
entire data. Table 7 presents the average C-index and integrated Brier score for pre-
diction evaluation in the testing datasets and the average number of selected variables
in the training datasets. The proposed method had a reasonable C-index and IBS on
par with the competing methods, while producing the sparsest model.

Our results agree with various studies on patients admitted to ICU for severe coro-
navirus illness. For example, studies have found that older age was associated with
COVID-19 outcomes [40, 41], lower oxygen saturation and fluid and electrolyte imbal-
ance were associated with higher COVID-19 mortality [42], increase in respiratory
rate was associated with a higher hazard of COVID-19 death [43], and pneumonia and
acute respiratory distress caused high mortality rates among COVID-19 patients [44].
Moreover, [45] and [46] found that more advanced tumors elevated mortality among
patients with COVID-19, and in particular, [47] linked the increase in COVID-19
mortality to lung cancer patients.

To recapitulate, by leveraging an EHR dataset on a large-scale COVID-19 popula-
tion admitted to ICU, we examined the prognostic utility of demographic and clinical
features on predicting in-hospital mortality and obtained results consistent with the
literature. Compared to the competing methods that performed either statistical infer-
ence or variable selection, our proposed GD prior method performed variable selection
and inference simultaneously.

7 Concluding Remarks

We have developed a new Bayesian method for analyzing Electronic Health Record
(EHR) data with survival endpoints in response to ongoing concerns about future
resurgences of COVID-19 and the need to improve treatment and management of
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critically infected individuals. Our findings can inform critical care providers of
treatment priorities, empower healthcare stakeholders with effective disease manage-
ment strategies, and aid health policymakers in optimizing the allocation of medical
resources.

From a statistical perspective, our approach provides a broad framework for per-
forming variable selection, model estimation, and inference simultaneously. To control
sparsity, we recommend using the marginal likelihood to determine the optimal tun-
ing parameter. Although our method was primarily motivated by the analysis of
ICU-admitted COVID-19 patients, it can be applied to other clinical or longer-term
care settings. Through simulation studies, we have demonstrated that our Bayesian
approach has the dual benefits of fast MCMC convergence and high inferential
precision.

Several future research directions are possible. First, we could expand the GD
prior approach to address other practical needs, such as extending it to the Acceler-
ated Failure Time (AFT) model widely used for survival analysis. Furthermore, the
GD prior could be used for competing risk models or frailty models. We anticipate
that the GD prior may outperform rival techniques in sparsity and accuracy as in
Cox regression settings. Second, we may integrate longitudinal measures in a time-
dependent model to predict patient death using COVID-19 data. Finally, as with most
EHR studies, there may be an inherent selection bias among patients seen at Michi-
gan Medicine and subsequently admitted for COVID-19-related complications. Causal
inference approaches, combined with the GD prior, could be explored to address both
observed and unmeasured confounders.
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Fig. 2 MC coverage probability for Simulation Scenario 1 with p = 100 (top) and p = 200 (bottom).
The legend True represents 1 if the variable is nonzero or 0 if the variable is zero. In addition, the
x-axis indicates each covariate.
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Fig. 3 Solution path (top) and marginal likelihood estimate (bottom) for selecting tuning parameter
κ in the COVID-19 data.
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Fig. 4 Selection probability of covariates calculated by 10-fold cross-validation. Selection probabili-
ties greater than 0.8 are flagged in red.
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