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Abstract: Statistical challenges arise from modern biomedical

studies that produce time course genomic data with ultrahigh

dimensions. In a renal cancer study that motivated this paper,

the pharmacokinetic measures of a tumor suppressor (CCI-779)

and expression levels of 12625 genes were measured for each of

33 patients at 8 and 16 weeks after the start of treatments, with

the goal of identifying predictive gene transcripts and the in-

teractions with time in peripheral blood mononuclear cells for

pharmacokinetics over the time course. The resulting dataset

defies analysis even with regularized regression. Although some

remedies have been proposed for both linear and generalized lin-

ear models, there are virtually no solutions in the time course
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setting. As such, a novel GEE-based screening procedure is pro-

posed, which only pertains to the specifications of the first t-

wo marginal moments and a working correlation structure. D-

ifferent from existing methods that either fit separate marginal

models or compute pairwise correlation measures, the new pro-

cedure merely involves making a single evaluation of estimating

functions and thus is extremely computationally efficient. The

new method is robust against the mis-specification of correla-

tion structures and enjoys theoretical readiness, which is further

verified via Monte Carlo simulations. The procedure is applied

to analyze the aforementioned renal cancer study and identify

gene transcripts and possible time-interactions that are relevant

to CCI-779 metabolism in peripheral blood.

Key words: Correlated data; Generalized estimating equation-

s; Longitudinal analysis; Sure screening property; Time course

data; Ultrahigh dimensionality; Variable selection.

1 Introduction

An urgent need has emerged in biomedical studies for statistical procedures

capable of analyzing and interpreting ultrahigh dimensional time course da-

ta. Consider a motivating renal cancer study, wherein the pharmacokinetics

of a tumor suppressor (CCI-779) and expression levels of 12625 genes were

measured for each of 33 patients at 8 and 16 weeks after the start of treat-

ments. The number of measurements for each patient varies from 1 to 4
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as some patients missed their appointments due to administrative reason-

s. The goal of the study was to identify gene transcripts that predict the

pharmacokinetic measures over the time course and identify possible time-

interactions, reflecting how time modifies the regulation of relevant genes

on the CCI-779 metabolism. However, the resulting dataset defies analysis

even with regularized regression.

When the number of the covariates greatly exceeds the number of sub-

jects, traditional variable selection methods incur difficulties in speed, sta-

bility, and accuracy (Fan and Lv, 2008). Sure independence screening has

emerged as a powerful means to effectively eliminate unimportant covari-

ates, allowing the much fewer “survived” covariates to be fed into more

sophisticated regularization techniques. Applications have been found in

the context of linear regressions with Gaussian covariates and independent

responses (Fan and Lv, 2008), generalized linear models (Fan et al., 2009;

Fan and Song, 2010), additive models (Fan et al., 2011), single index models

(Zhu et al., 2011), Cox models (Zhao and Li, 2012a), nonparametric regres-

sion models (Lin et al., 2013). Nonetheless, most of the methods are derived

for independent outcome data and may not be effective for time course data

as they typically ignore within-subject correlations among outcomes. Re-

cently, Li et al. (2012) proposed to use a distance screening measure for

correlated responses, but their method is confined to a balanced configu-

ration and may not be applicable when subjects have varying numbers of

observations.

On the other side of the spectrum, a variety of variable selection methods

have been proposed to handle correlated outcome data with high-dimensional

covariates. These methods have included, for example, bridge-, LASSO- and

SCAD-penalized generalized estimating equations (GEE) (Fu, 2003; Wang

et al., 2012), penalized joint log likelihoods for mixed-effects models with

continuous responses (Bondell et al., 2010), and a two-stage shrinkage ap-

proach (Xu et al., 2013). However, they all stipulate that the number of co-

variates p grows to infinity at a polynomial rate o(nα) for some 0 ≤ α < 4/3.

They can hardly handle ultrahigh dimensional cases because of challenges in

3



computation, statistical accuracy, and numerical stability (Fan et al., 2009).

Responding to these statistical challenges, we propose a new GEE-based

screening procedure (GEES, hereafter) for ultrahigh dimensional time course

data. This would be the first attempt to handle both balanced and unbal-

anced ultrahigh dimensional time course data in the presence of within-

subject correlations. Similar to the GEE approach (Liang and Zeger, 1986),

the proposed procedure pertains only to the specification of the first two

marginal moments and a working correlation structure. Hence, it enjoys

the desirable robustness inherited from the parental GEE approach. Specif-

ically, with p growing at an exponential rate of n, the proposed procedure

possesses the sure screening property with a vanishing false selection rate

even when the working correlation structure is misspecified. Computational-

ly, GEES significantly advances existing screening procedures by evaluating

an ultrahigh dimensional GEE function only once instead of fitting p sepa-

rate marginal models. This is an important feature of GEES to make the

method worthwhile to advocate. Aside from the computational effectiveness,

we also note that the method differs from the EEScreen method proposed

by Zhao and Li (2012b) in that our estimating functions are not confined to

be U-statistics, a key assumption stipulated in that work.

Further, parallel to the ISIS procedure in Fan and Lv (2008), we sug-

gest an iterative version of GEES (IGEES) to handle difficult cases when

the response and some important covariates are marginally uncorrelated.

We improve the original algorithm by, instead of computing the correla-

tion between the residuals of the response against the remaining covariates,

computing the correlation between the original response variable and the

projection of the remaining covariates onto the orthogonal complement s-

pace of the selected covariates. This way, the correlation structure among

covariates is retained. Our Monte Carlo simulations manifest the drastically

improved performance of IGEES under some challenging settings.

The rest of the paper is organized as follows. In Section 2, we introduce

the GEES for covariate screening in a broader context of longitudinal data

analysis. Section 3 presents the corresponding theoretical properties. In
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Section 4, we investigate the finite sample performance of the GEES by

Monte Carlo simulations and an application to the advanced renal cancer

data set. Section 5 contains an iterative version of GEES that is used to

identify some relevant gene-by-time interactions that regularizes the CCI-

779 metabolism in our motivating data example. The paper is concluded

with a short discussion in Section 6 and all the technical proofs are relegated

to the Appendix.

2 GEE based sure screening

2.1 Generalized estimating equations

In a longitudinal study (including time course genomic studies as a special

case), suppose a response Yik and a p-dimensional vector of covariates Xik

(e.g. gene expressions) are observed at the kth time point for the ith sub-

ject, i = 1, . . . , n and k = 1, . . . ,mi. Let Yi = (Yi1, . . . , Yimi)
τ be the vector

of responses for the ith subject, and Xi = (Xi1, . . . , Ximi)
τ be the corre-

sponding mi × p matrix of the covariates. Assume the conditional mean of

Yik given Xik is

µik(β) , E(Yik|Xik) = g−1(Xτ
ikβ), (2.1)

where g is a known link function, and β is a p-dimensional unknown parame-

ter vector. Let σ2
ik(β) be the conditional variance of Yik given Xik, Ai(β) be

an mi×mi diagonal matrix with kth diagonal element σ2
ik(β), and Ri(α) be

an mi ×mi working correlation matrix, where α is a finite dimensional pa-

rameter vector which can be estimated by residual-based moment method.

The GEE estimator of β is defined to be the solution of

n−1
n∑

i=1

µ̇τ
i (β)V

−1
i (β)(Yi − µi(β)) = 0, (2.2)

where µi(β) = (µi1(β), . . . , µimi(β))
τ , µ̇i(β) = ∂µi(β)/∂β is an mi × p ma-

trix, and Vi(β) = A
1/2
i (β)Ri(α)A

1/2
i (β) is the working covariance matrix of

Yi.
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As in Liang and Zeger (1986), we assume that Yik belongs to an ex-

ponential family with a canonical link function in (2.1), implying that the

first two moments of Yik can be written as µik(β) = a(Xτ
ikβ) and σ2

ik(β) =

ϕȧ(Xτ
ikβ), for some differentiable function a(·). For simplicity, we assume

that mi = m < ∞ and ϕ = 1 throughout this article, though our procedure

is still valid for non-canonical response with varying cluster sizes. Then,

equation (2.2) can be reduced to

G(β) , n−1
n∑

i=1

Xτ
i A

1/2
i (β)R−1(α)A

−1/2
i (β)(Yi − µi(β)) = 0, (2.3)

where Ri(α) = R(α) for i = 1, . . . , n when mi ≡ m. We stress that the

assumption of Ri(α) = R(α) is for the ease of presentation (in the next

section) and is non-essential. A key advantage of the GEE approach is that,

when p is of order o(n1/3), it yields a consistent estimator even with mis-

specified working correlation structures (Wang, 2011). But it fails when the

dimensionality p greatly exceeds the number of subjects n, even if regular-

ized methods are used (Wang et al., 2012; Xu et al., 2013). This brings up

a high demand of screening methods that can quickly reduce p.

2.2 A new screening procedure

To simplify the presentation, we assume (Yi, Xi) are iid copies of (Y,X),

where Y is the multivariate response and X = (x1, . . . , xp) is the cor-

responding m × p covariate matrix. Then, let µ(β) be the mean vector

of Y , A(β) be an m × m diagonal matrix with the variances of Y giv-

en X as the diagonal elements, and R(α) an m × m correlation matrix.

Without loss of generality, we assume throughout this article that the co-

variates are standardized to have mean zero and standard deviation one,

though our procedure is still valid for non-standardized covariates. Let β0

be the true value of β, g(β) = E{XτA1/2(β)R−1(α)A−1/2(β)(Y − µ(β)},
Ω0 = A1/2(0)R−1(α)A−1/2(0), and gj(0) be the jth element of g(0). Define

the trace of a symmetric matrix M as tr(M), and the covariance matrix of
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two random vectors a and b as Cov(a, b). It follows that

gj(0) = E{xτjΩ0(Y − µ(0)} = tr{Ω0Cov(Y, xj)},

where the last equality holds as xj is a mean 0 vector and the expectation is

taken with respect to the joint distribution of (Y, xj). This implies that gj(0)

is a surrogate measure of the dependence between the response vector Y and

the jth covariate vector xj , justifying the utility of gj(0) as a thresholding

criterion for covariate screening.

Based on {(Yi, Xi), i = 1, . . . , n}, an empirical estimate of g(β) would be

n−1
n∑

i=1

Xτ
i A

1/2
i (β)R−1(α)A

−1/2
i (β)(Yi − µi(β)).

Interestingly, it coincides with G(β) as defined in (2.3), based on which we

carry out the screening procedure. Specifically, let Gj(0), the estimate of

gj(0), be the jth element of G(0). We select covariates with large values

of Gj(0). As R(α) is unknown a priori, we replace G(0) by Ĝ(0) with

R(α) replaced by the empirical estimate R(α̂), where α̂ is obtained via the

residual-based moment method. Let R̂ = R(α̂). Then, Ĝ(0) is defined as

Ĝ(0) = n−1
n∑

i=1

Xτ
i A

1/2
i (0)R̂−1A

−1/2
i (0)(Yi − µi(0)). (2.4)

Hence, we would select the submodel using

M̂γn = {1 ≤ j ≤ p : |Ĝj(0)| > γn}, (2.5)

where γn is a predefined thresholding value. Under some regularity condi-

tions, such a procedure, termed as the GEE-based sure screening (GEES),

would effectively reduce the full model of size p down to a submodel M̂γn

with size less than n.

Remark 1. The proposed procedure (2.5) only requires a single evaluation

of the GEE function G(β) at β = 0 instead of p separate GEE models,

rendering much computational convenience.
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Remark 2. Consider the following independent linear model:

Yi = Xτ
i β + ϵi,

where ϵi are independent identically distributed from the standard normal

distribution N(0, 1). The GEE function reduces to

G(β) = n−1
n∑

i=1

Xi(Yi −Xτ
i β).

Therefore, for any given γn, the GEES select the submodel

M̂γn = {1 ≤ j ≤ p : n−1|Xτ
·jy| > γn},

where y = (Y1, . . . , Yn)
τ and X·j is the jth column of the n× p data matrix

X = (X1, . . . , Xn)
τ . Thus our procedure includes the original sure indepen-

dent screening proposed by Fan and Lv (2008) as a special case.

3 Sure screening properties of GEES

We study the sure screening properties of the proposal. Let p = pn be

a function of the sample size n, β0 be the true value of pn-dimensional

coefficients β and M0 = {1 ≤ j ≤ pn : β0 ̸= 0} be the true model with

model size sn = |M0|. For a symmetric matrix A, we write λmin(A) and

λmax(A) for the minimum and maximum eigenvalues, respectively. Define

∥A∥F = tr1/2(AτA) as its Frobenius norm and ∥a∥2 as the L2 norm of a

vector a. Let R̂ be the estimated working correlation matrix and σn =

E{λmax(n
−1
∑n

i=1X
τ
i Xi)}/

√
E{λmin(n−1

∑n
i=1X

τ
i Xi)}.

We assume the following regularity conditions:

(C1). β0 is an interior point of a compact set C.

(C2). ∥R̂ − R̄∥F = Op(
√

sn/n), where R̄ is a constant positive definite ma-

trix. The common true correlation matrix R0 satisfies 0 < λmin(R0) ≤
λmax(R0) < ∞.
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(C3). For each 1 ≤ i ≤ n and 1 ≤ k ≤ m, Xik is uniformly bounded by a

positive constant c1.

(C4). There exists a finite positive constant c2 such that E∥A−1/2
i (β)(Yi −

µi(β))∥2+δ
2 ≤ c2 for some δ > 0 and every β ∈ C.

(C5). There exists a finite constant c3 > 0 and a positive definite matrix R̄

such that minj∈M0 |ḡj(0)| ≥ c3n
−κ for some 0 < κ < 1/2, where ḡj(0)

is the jth element of

ḡ(0) = EXτA1/2(0)R̄−1A−1/2(0)(Y − µ(0)).

(C6). sn = op(n
1/3−2κ/3) and log pn = o(n1−2κ), where κ is given in (C5).

(C7). Let Σ = E{n−1
∑n

i=1X
τ
i Xi}. Assume that ∥Σβ0∥2 = Op(1). Further,

let B = {β : ∥β − β0∥ ≤ ∆
√

sn/n}, where ∆ is a constant. On

B, a(Xτ
ikβ) are uniformly bounded away from 0 and ∞, ȧ(Xτ

ikβ) and

ä(Xτ
ikβ) are uniformly bounded by a finite positive constant c4 for

1 ≤ i ≤ n, 1 ≤ k ≤ m.

Conditions (C1) and (C2) are analogous to conditions (A1), (A4) of

Wang et al. (2012) for generalized estimating equations. Condition (C3)

has been assumed in Wang et al. (2012), Zhu et al. (2011), and Li et al.

(2012). This condition could be relaxed by the following moment condition:

For each 1 ≤ i ≤ n and 1 ≤ k ≤ m, there exists a positive constant t0 such

that

max
1≤j≤pn

E{exp(tXijk)} < ∞,

for all 0 < t < t0. But, in practice, centralized and normalized covariates

will trivially satisfy (C3), which empirically justifies its usage. Condition

(C4) is similar to the condition in Lemma 2 of Xie and Yang (2003), con-

dition (Ñδ) in Balan and Schiopu-Kratina (2005), and condition (A5) in

Wang (2011), which usually holds for outcome Yi of a variety of types, in-

cluding binary, Poisson and Gaussian. With ḡj(0) = tr{A1/2(0)R̄−1A−1/2(0)

Cov(µ(β0), xj)}, condition (C5) is similar to the condition in Theorem 3 of
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Fan and Song (2010), ensuring the marginal signals are stronger than the

stochastic noise as shown in Web Appendix A. The first part of condition

(C7) is analogous to condition F in Fan and Song (2010). The second part of

condition (C7) is analogous to condition (A6) of Wang et al. (2012), which

is generally satisfied for the GEE.

The following theorem establishes the sure screening property for the

GEES procedure. The proofs are relegated to the Appendix.

Theorem 1. Under conditions (C1) - (C7), if γn = c3n
−κ/4, then there

exists a positive constant c depending on c1 and c2 such that

P (M0 ⊂ M̂γn) ≥ 1− 2sn exp

{
− c23n

1−2κ/4

2c+ c3n−κ

}
− cs

3/2
n

n1/2−κ
.

Remark 3. It is not uncommon to misspecify the working correlation struc-

ture R̂ involved in (2.4) for Ĝ(0). However, Theorem 1 guarantees that, with

a probability tending to one, all of the important covariates will be retained

by the GEES procedure even if the working correlation structure is misspec-

ified (see condition (C2)).

Remark 4. Similar to existing screening procedures, from Theorem 1, we

find that only the size of non-sparse elements sn matters for the purpose of

screening, not the dimensionality pn.

Theorem 2. Under conditions (C1) - (C7), if γn = c3n
−κ/4, then there

exists a positive constant c, depending on c2, cβ and boundaries c1 and c4,

such that

P (|M̂γn | ≤ O(n2κσn)) ≥ 1− 2pn exp

{
c23n

1−2κ/162

2c+ c3n−κ

}
− cs

1/2
n

n1/2−κ
.

Theorem 2 states that the size of M̂γn can be controlled by the GEES

procedure and is of particular importance in the longitudinal setting. First,

the probability that the bound holds approaches to one even if log pn =
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o(n1−2κ) with 0 < κ < 1/2. This implies that the size of false positives

can be controlled with high probability even in the longitudinal setting with

ultrahigh dimensional covariates. Second, this bound holds with high prob-

ability even with misspecified working correlation structures.

4 Numerical studies

We first assess the finite sample performance of the GEES via Monte Carlo

simulations. Then, we further illustrate the proposed procedure with an

analysis of advanced renal cancer data of Boni et al. (2005).

4.1 Simulation results

Throughout, we consider three types of working correlation structures for the

multivariate outcomes: independence, exchangeable and AR(1), and label

the corresponding approaches as GEES IND, GEES CS, and GEES AR1,

respectively. To mimic the real situations, we set the total number of co-

variates p = 1000, 6000, 20000 and repeat our procedure 400 times for each

configuration.

To assess the sure screening property, we record the minimum model size

(MMS) required to contain the true model M0. We report the 5%, 25%,

50%, 75%, and 95% quantiles of MMS. For the assessment of computational

efficiency, we also report the average computing time in seconds for each

method.

Example 1 To mimic the real data example below, we generate the

correlated normal responses from the model

Yik = cXτ
ikβ + ϵik,

where i = 1, . . . , 30, k = 1, . . . , 10,Xik = (Xik1, . . . , Xikp)
τ is a p-dimensional

covariate vector and β = (1, 0.8, 0.5,−0.7, 0, . . . , 0)τ . For the covariates,

Xik1 is independently from the Bernoulli(0.5) distribution, and Xik2 to Xikp

are independently from the multivariate normal distribution with mean
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0 and an AR(1) covariance matrix with marginal variance 1 and auto-

correlation coefficient 0.8. The random errors (ϵi1, . . . , ϵi10)
τ are indepen-

dently from the multivariate normal distribution with marginal mean 0,

marginal variance 1 and an exchangeable correlation with parameter ρ. T-

wo values of ρ are considered: ρ = 0.5 and 0.8. And to control the signal

to noise ratio (SNR), we vary the constant c in front to Xτ
ikβ. We consider

c = 0.5, 0.75, and 1.5, which corresponds to SNR = 30%, 50%, and 80%,

respectively.

As a comparison, we also implement the sure independence screening

(SIS) proposed by Fan and Lv (2008) and the distance correlation based

SIS (DC-SIS) proposed by Li et al. (2012). Tables 1, 2 and 3 reports the

5%, 25%, 50%, 75%, and 95% percentiles of the minimum model size (MM-

S) and the average computing time by different screening methods under

different SNR settings. We see that our method performs well across a wide

range of signal to noise ratios. In particular, under the correctly specified

correlation structure (CS), the GEES CS gives the smallest MMS to en-

sure the inclusion of all truly active covariates. It significantly outperforms

other methods, especially in the higher dimensional case with strong within-

subject associations. In contrast, the DC-SIS performs relatively poor when

the signal to noise ratio is small, though it accounts for the within-subject

correlations as well. And the last column reveals that the GEES is extreme-

ly more efficient than the DC-SIS in computation. On the other hand, the

GEES IND and the SIS perform same in linear models, which is in accor-

dance with Remark 2 in Section 2.2.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

Example 2 Consider a balanced Poisson regression model:

Yik|Xik ∼ Pois{λ(Xτ
ikβ)},
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where i = 1, . . . , 400, k = 1, . . . , 10, λ(u) = exp(u), β = (1.5− U1, . . . , 1.5−
U4, 0, . . . , 0)

τ , and Uk’s follow a uniform distribution U[0,1], reflecting d-

ifferent strengths of signals. For the p-dimensional covariate vectors, we

generate Xik independently from the multivariate normal distribution with

mean 0 and an AR(1) covariance matrix with marginal variance 1 and auto-

correlation coefficient 0.8. The response vector for each cluster has an ex-

changeable correlation structure with correlation coefficient ρ. We consider

ρ = 0.5 and 0.8 to represent moderate and strong within-cluster correlations.

Similar to Example 1, we also implement the SIS proposed by Fan and

Song (2010) and the DC-SIS proposed by Li et al. (2012) for comparison.

Table 4 summarizes the minimum model size and the average computing

time by different screening methods. In the presence of correlation, the pro-

posed GEES outperforms the competing methods even when the working

correlation structure is misspecified. The DC-SIS performs well in this case

where nonzero coefficients have large values, but as in Example 1, it incurs

much more computational burden than the GEES. On the other hand, the

GEES IND outperforms the SIS significantly in computation, as the latter

needs to fit p marginal Poisson regressions, which is relatively unstable un-

der this dependent features setting, whereas the former only needs a single

evaluation of the estimating function. Moreover, as the number of covariates

p increases, the GEES performs very stably as opposed to the SIS.

[Table 4 about here.]

4.2 Advanced renal cancer data analysis

We apply the proposed screening method to study a phase II trial of CCI-

779, an anti-cancer inhibitor, administered in patients with advanced renal

cell carcinoma (Boni et al., 2005).

Pharmacokinetic profiling (i.e. the cumulative concentration of CCI-779

measured by the area under the curve) for a total of 33 patients was per-

formed at 8 and 16 weeks after the start of treatments. The 8 week was

chosen as metabolism of CCI-779 would be stabilized by then and its mea-
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surement could be regarded as the baseline. However, a sizable portion of

patients missed their measurements at 8-week or 16-week because of admin-

istrative issues while some patients were measured twice at 8 or 16 weeks,

which resulted in an unbalanced data structure. A total of expression values

for 12625 probesets were also measured for each subject at each time point

using HgU95A Affymetrix microarrays during the course of therapy. One

goal of the trial was to identify transcripts in peripheral blood mononuclear

cells that, after the initiation of CCI-779 therapy, exhibit temporal profiles

correlated with the concentration of CCI-779.

As the log-transformed outcome, CCI-779 cumulative AUC, is roughly

normal, we consider the GEE model (2.1) with the identity link. Figure 1

shows that there is an increasing trend for AUC over time of treatments

for all patients who were measured at both 8 and 16 weeks. So, we include

a binary variable “TIME” - 0 for measurement at 8 week (baseline), 1 for

measurement at 16 week - into the GEE model (2.1) to account for the time

effect. Further, since the number of genes (p = 12625) greatly outnum-

bers the number of patients (n = 33) in the study, a covariate screening

seems necessary before feeding the data to any sophisticated variable selec-

tion methods. Therefore, we first implement the proposed GEES procedure

based on different working correlation structures to reduce dimensionality.

Then, we combine our procedures with the penalized weighted least-squares

(PWLS) method proposed in Xu et al. (2013) to refine the results. To com-

mensurate with the sample size of 33, we first apply the GEES to screen

out d = 15 most informative ones from those 12625 genes, while keep the

covariate “TIME” in the model. Then, we apply the PWLS to the following

GEE model to examine the gene main effects

log(Yik) = β0 + β1TIMEik +
∑
j∈A

β2j log(GENikj) + ϵik, (4.1)

whereA consists of these 15 selected gene transcripts, GENikj represents the

observed gene expression value of the jth selected genes in A at the kth time

point for the ith subject, and ϵik is the error term. Without confusion, we

still denote the methods as GEES. To compare with the competing methods,
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we also consider the SIS method proposed in Fan and Lv (2008), in which

the SCAD method (Fan and Li, 2001) is used to refine the results. We note

that the DC-SIS method proposed by Li et al. (2012) is not applicable to

our unbalanced setting.

The resulting number of informative genes are summarized in Table 5.

We also consider an out-of-sample testing to compare the performance in

terms of forecasting. We conduct 100 cross-validation experiments, in each

of which we randomly partition the entire data set D = {1, . . . , 33} into a

training data set D1 with 25 subjects and a test data set D2 with 8 subjects.

We fit the GEE model with the identity link respectively for the GEES and

the SIS with the training data, then calculate the prediction error in the

test data set by using the loss function proposed by Cantoni et al. (2005).

Table 5 reports the median of prediction errors from 100 random splits

and Figure 2 summarizes the prediction errors using boxplot for procedures

GEES IND, GEES CS, GEES AR1 and SIS. We can see that, in terms of

forecasting, the GEES CS performs best, which gives the smallest prediction

error. Although both the GEES IND and the SIS assume the independence

among the responses, the SIS does not perform as well as the GEES IND

even with more genes selected.

[Figure 1 about here]

[Figure 2 about here]

[Table 5 about here.]

Our results have strong biological implications. Four overlapping genes

have been identified by all the GEES procedures under different working cor-

relation structures: ubiquitin specific peptidase 6 (Tre-2 oncogene) (USP6),

α3β1 intergin, beta-actin, and glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), all of which are relevant to renal functions (Schmid et al., 2003).
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5 IGEES: An iterative GEE based sure screening

Like any other univariate screening procedures, the GEES procedure may

miss the covariates which are marginally unrelated but jointly related to

the responses. In the sprit of the iterative SIS (Fan and Lv, 2008; Fan et

al., 2009) and the iterative sure independent ranking and screening (Zhu

et al., 2011), we propose an iterative GEE based sure screening (IGEES)

procedure to overcome this difficulty.

Step 1. In the initial step, we apply the GEES procedure for samples {(Yi, Xi), i =

1, . . . , n} to select k1 covariates, where k1 < d and d is the predeter-

mined number of selected covariates. Let A1 be the set of indices of

the selected covariates and XiA1 be the corresponding m× k1 matrix

of selected covariates for the ith subject, i = 1, . . . , n.

Step 2. Let XA1 = (Xτ
1A1

, . . . , Xτ
nA1

)τ , and XAc
1
be its complement. Then, we

denote the projection of XAc
1
onto the orthogonal complement space

of XA1 by X̃ = {IN − XA1(X
τ
A1

XA1)
−1 Xτ

A1
}XAc

1
, where N = nm.

Decompose X̃ into X̃ = (X̃τ
1 , . . . , X̃

τ
n)

τ as XA1 . Apply the GEES

procedure for {(Yi, X̃i), i = 1, . . . , n} and select k2 covariates. Let A2

be the corresponding index set.

Step 3. Repeat Step 2 K − 2 times and update the selected covariates with

A1 ∪ . . . ∪ AK until k1 + . . .+ kK ≥ d.

In practice, selecting the total number of selected covariates d is chal-

lenging, which depends upon the data’s attribute and model complexity. In

linear models, Fan and Lv (2008) recommended d = [n/ log n] as a sensi-

ble choice according to the asymptotic theory, while in models where the

response provides less information, Fan et al. (2009) suggested smaller d,

such as d = [n/(4 log n)] for logistic regression models, to screen out non-

informative variables. In the following simulation, we consider four different

values of d: [n/ log n], [n/(2 log n)], [n/(3 log n)], and [n/(4 log n)]. The re-

sults below show that our method is quite robust to different choices of d,

which implies that the model-based choice of d seem to be satisfactory.
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Example 3 In this simulation experiment, we consider an unbalanced

logistic regression:

logit(µik) = Xτ
ikβ,

where i = 1, . . . , 400, k = 1, . . . ,mi, β = (4, 4, 4,−6
√
2, 0, . . . , 0)τ with p =

1000, and mis are randomly drawn from a Poisson distribution with mean

5 and increased by 2. We independently generate Xik from a multivariate

normal distribution with mean zero and covariance Σ = (σij), where σii = 1

for i = 1, . . . , p, σi4 = σ4i = 1/
√
2 for all i ̸= 4, and σij = 1/2 for i ̸= j, i ̸= 4

and j ̸= 4. The covariate X4 is marginally independent from, but jointly

relevant to, the response variable Y , which typically will not be selected

by the GEES. The binary response vector for each cluster has an AR(1)

correlation structure with correlation coefficient ρ with two values ρ = 0.5

and 0.8 to represent different within correlation strength. How to decide the

sizes kis is also challenging, which is usually depends on model complexity.

As suggested by Fan et al. (2009), in this example, we choose k1 = [2d/3]

and ki+1 = min(5, d− ki). The following simulation results hint the validity

of this strategy.

Table 6 reports the frequency when every single truly informative covari-

ate is selected (Ps) as well as when all the truly informative covariates are

selected (Pa) out of 400 replications based on different predefined threshold-

ing values of d. It reveals clearly that the IGEES can greatly improve the

performance of the GEES even in the high within correlation setting. And

even with a misspecified working correlation structure, it identifies covariate

X4, which is missed by the GEES. Moreover, we observe that both the GEES

and the IGEES perform quite robust to different choices of d. In particular,

choosing a larger d increases the probability that the IGEES keeps all active

variables even when the working correlation structure is misspecified.

[Table 6 about here.]

Example 4 (revisit of real data analysis) We further use the

advanced renal cancer data set in Section 4.2 to evaluate the performance of

the IGEES method. Same as the analysis in Section 4.2, we first apply the

17



proposed IGEES procedure to shrink the dimension to 16 based on different

working correlation structures, where the covariate “TIME” is kept in the

model. Then, we apply the PWLS to fit (4.1) for refined modeling. With-

out confusion, call the methods as IGEES. And we compare with the ISIS

method proposed in Fan and Lv (2008) with the SCAD method for further

refining the results. Table 7 depicts the resulting number of informative

gene transcripts and the median of prediction errors from 100 random split-

s. Together with Table 5, it can be clearly seen that the IGEES CS has

the smallest prediction error. The GEES does not perform as well as the

IGEES, partly because the GEES may miss some important features during

the screening.

[Table 7 about here.]

Because the effect of gene expressions on CCI-779 cumulative AUC may

be modified by time, we next consider the following GEE model and apply

the PWLS to examine the interaction effects of selected genes with time

log(Yik) = β0 + β1TIMEik +
∑
j∈B

β2j log(GENikj),

+
∑
j∈B

β3jTIMEik ∗ log(GENikj) + ϵik, (5.1)

where B consists of final selected gene transcripts based on the GEES and the

IGEES procedures. We find that the GEES method couldn’t identify any

gene-by-time interactions, but there are two genes with the gene-by-time

interaction that have been identified by all the IGEES procedures under

different working correlation structures: beta-actin (ACTB), and ubiquitin

specific peptidase 6 (Tre-2 oncogene) (USP6). Figures 3 and 4 show the

estimated regression lines of the log AUC on these two genes at 8 and 16

weeks, respectively. The time-interaction effects are obvious - both genes

seem to regularize the CCI-779 metabolism at week 8, but not at week

16. These two genes may be related to renal functions at early stage of

treatment; see Boni et al. (2005) for more detail.
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[Figure 3 about here]

[Figure 4 about here]

6 Discussion

The original idea of sure independence screening stems from studying the

marginal effect of each covariate, which presents a powerful method for di-

mension reduction and has been widely applied for independent data. But

these applications may not be effective for time course data as they would

ignore within-subject correlations. To fill this gap, we propose the GEES,

a new computationally efficient screening procedure based only on a single

evaluation of the generalized estimating equations in ultrahigh dimensional

time course data analysis. We show that, with p increasing at the expo-

nential rate of n, it enjoys the sure screening property with vanishing false

selection rate even when the working correlation structure is misspecified.

An iterative GEES (IGEES) is also proposed to enhance the performance

of the GEES for more complicated ultrahigh dimensional time course. The

numerical studies demonstrate its improved performance compared with ex-

isting screening procedures.

Once dimension reduction is achieved, we can use some regularized re-

gression techniques, such as the penalized GEE method (Wang et al. 2012)

and the PWLS method (Xu et al. 2013), to reach the final model.

Several open problems, though, still exist. Even if the proposed pro-

cedure is capable of retaining important covariates without including too

many false positives no matter what working correlation matrix is used, the

mis-specification of the working correlation will indeed affect the efficiency

of parameter estimation in the regularization step. It is therefore important

for us to discuss the impact of mis-specification in a more systematic fash-

ion. Moreover, to retain the covariates which are marginally unrelated but

jointly related with the responses, we propose an iterative GEES procedure,

along the line of Fan and Lv (2008) and Fan et al. (2009). The validity

of such a strategy is implied by our numerical studies. But future work is
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warranted to study the relevant theoretical properties, although the theory

is elusive even for independent cases.

Finally, in the presence of missing responses at some time points, our

implicit assumption is missing completely at random (MCAR), under which

generalized estimating equations (GEE) yield consistent estimates (Liang

and Zeger, 1986). Such an assumption is applicable to our motivating ex-

ample, as patients missed their measurements due to administrative reasons.

However, when the missing data mechanism is missing at random (MAR),

that is the probability of missing a particular outcome at a time-point de-

pends on observed values of that outcome and the remaining outcomes at

other time points, GEE has to be modified so as to incorporate missing

mechanisms. This is beyond the current scope of the work and would war-

rant further investigations.
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Figure 1: A scatter plot of CCI-779 cumulative AUCs against 8 and 16 weeks.

The line is the 45 degree line. The solid circles correspond to patients who

only had AUC at 8 week, while the solid diamond corresponds to the patient

who only had AUC at 16 week
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Figure 2: Prediction error results by 100 random splits of the advanced renal

cancer data set. The procedures from A to D are GEES IND, GEES CS,

GEES AR1 and SIS
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Figure 3: CCI-779 cumulative AUC versus ACTB gene expression level.

The unfilled circles correspond to data at week 8, while the filled circles

correspond to data at week 16. The red and blue lines denote the estimated

regression lines for data points at 8 and 16 weeks, respectively
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Figure 4: CCI-779 cumulative AUC versus USP6 gene expression level. The

unfilled circles correspond to data at week 8, while the filled circles corre-

spond to data at week 16. The red and blue lines denote the estimated

regression lines for data points at 8 and 16 weeks, respectively
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Table 1: The 5%, 25%, 50%, 75%, and 95% percentiles of the mini-

mum model size and the average runtime in seconds (standard deviation) in

Example 1 (with Xeon X5670 2.93 GHz CPU) when SNR = 30%

p ρ Method 5% 25% 50% 75% 95% TIME

1000 0.5 GEES IND 5 25 121 372.75 837.50 0.05(0.01)

GEES CS 4 11.75 50.50 193.25 715.10 0.12(0.01)

GEES AR1 5 25 90.50 361.75 829.10 0.14(0.01)

SIS 5 25 121 372.75 837.50 0.05(0.01)

DC-SIS 49 406.75 598 781 915.20 1.16(0.04)

0.8 GEES IND 5 24 94.50 307 781.25 0.04(0.01)

GEES CS 4 5 12 45.25 305.50 0.10(0.01)

GEES AR1 4 8 29 122 495.25 0.12(0.01)

SIS 5 24 94.50 307 781.25 0.04(0.01)

DC-SIS 200.85 422 613 795 961 1.14(0.03)

6000 0.5 GEES IND 10 111.25 474 1805.25 4774.90 0.30(0.02)

GEES CS 5 32.75 250.50 1009.75 4030.25 0.36(0.02)

GEES AR1 11 115 547 2174.25 5035.20 0.37(0.03)

SIS 10 111.25 474 1805.25 4774.90 0.30(0.02)

DC-SIS 1133.80 2531.25 3634.50 4697 5631.25 6.98(0.01)

0.8 GEES IND 11 102.75 552 1942 4734.50 0.28(0.04)

GEES CS 4 9 62.50 337.25 2608.50 0.35(0.01)

GEES AR1 4 32 215 924.25 3997.90 0.37(0.02)

SIS 11 102.75 552 1942 4734.50 0.28(0.04)

DC-SIS 919.85 2393 3634.50 4748.75 5596.20 6.89(0.09)

20000 0.5 GEES IND 35.90 433 2005.50 6779.75 16333.35 1.22(0.03)

GEES CS 8.95 156.75 871.50 3874 14848.30 1.27(0.04)

GEES AR1 23.95 362.50 1892.50 6725.25 16322.90 1.37(0.06)

SIS 35.90 433 2005.50 6779.75 16333.35 1.22(0.03)

DC-SIS 3147.85 7841.25 12233.50 15680.50 19001.45 23.19(0.17)

0.8 GEES IND 51.95 494.75 2185 6473.25 16595 1.26(0.06)

GEES CS 5 30.75 171.50 1142.25 6211.60 1.33(0.04)

GEES AR1 9.95 124 696.50 2492.50 10067 1.35(0.04)

SIS 51.95 494.75 2185 6473.25 16595 1.26(0.06)

DC-SIS 3585.45 8486 12464 16071.75 19301.15 23.12(0.14)
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Table 2: The 5%, 25%, 50%, 75%, and 95% percentiles of the mini-

mum model size and the average runtime in seconds (standard deviation) in

Example 1 (with Xeon X5670 2.93 GHz CPU) when SNR = 50%

p ρ Method 5% 25% 50% 75% 95% TIME

1000 0.5 GEES IND 4 8 32 131.25 577.45 0.04(0.01)

GEES CS 4 6 15 65 363.60 0.11(0.01)

GEES AR1 4 10 37.50 123 616.80 0.12(0.01)

SIS 4 8 32 131.25 577.45 0.04(0.01)

DC-SIS 89.80 258.75 484.50 697.50 928.05 1.12(0.01)

0.8 GEES IND 4 8 26.50 99 578.15 0.03(0.01)

GEES CS 4 4 7 17 120.10 0.10(0.01)

GEES AR1 4 5 19 63 309.60 0.13(0.01)

SIS 4 8 26.50 99 578.15 0.03(0.01)

DC-SIS 95.95 291 480 678.75 931.10 1.13(0.03)

6000 0.5 GEES IND 5 27 162 856.75 3401.90 0.30(0.02)

GEES CS 4 11 64.50 377 2195.15 0.34(0.02)

GEES AR1 5 33.75 198.50 812 3762.25 0.36(0.02)

SIS 5 27 162 856.75 3401.90 0.30(0.02)

DC-SIS 523.60 1735.75 2934 4187 5575.60 7.04(0.10)

0.8 GEES IND 4 16.75 106 602.25 2764.30 0.32(0.02)

GEES CS 4 5 17 88.25 728.20 0.33(0.01)

GEES AR1 4 10 71 323.50 1854.25 0.36(0.02)

SIS 4 16.75 106 602.25 2764.30 0.32(0.02)

DC-SIS 582.10 1676.25 2889.50 4029.50 5579.95 6.88(0.06)

20000 0.5 GEES IND 8.95 90.25 474.50 2451.75 9952 1.24(0.03)

GEES CS 4 34 254.50 1228 5770.70 1.30(0.01)

GEES AR1 8 138 67.507 2497.25 11559.60 1.36(0.01)

SIS 8.95 90.25 474.50 2451.75 9952 1.24(0.03)

DC-SIS 1990.65 6228.25 10783 14770.50 18772.55 23.55(0.28)

0.8 GEES IND 6 54.25 363.50 1910.25 9866 1.27(0.03)

GEES CS 4 8 42 289 2927.10 1.27(0.04)

GEES AR1 4 35 216 1027.50 7477.95 1.34(0.02)

SIS 6 54.25 363.50 1910.25 9866 1.27(0.03)

DC-SIS 2198.45 5859.25 10268.50 14201.50 18631.05 23.29(0.32)
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Table 3: The 5%, 25%, 50%, 75%, and 95% percentiles of the mini-

mum model size and the average runtime in seconds (standard deviation) in

Example 1 (with Xeon X5670 2.93 GHz CPU) when SNR = 80%

p ρ Method 5% 25% 50% 75% 95% TIME

1000 0.5 GEES IND 4 4 6 17.25 174.05 0.04(0.01)

GEES CS 4 4 6 18 167.25 0.11(0.01)

GEES AR1 4 5 11.50 52.75 464.20 0.13(0.01)

SIS 4 4 6 17.25 174.05 0.04(0.01)

DC-SIS 30.80 136.75 300.50 559.50 883.10 1.12(0.04)

0.8 GEES IND 4 4 6 17 109.65 0.04(0.01)

GEES CS 4 4 5 11 68.05 0.10(0.01)

GEES AR1 4 5 11 38 222.40 0.12(0.01)

SIS 4 4 6 17 109.65 0.04(0.01)

DC-SIS 30.95 123.75 301 571 859.10 1.16(0.02)

6000 0.5 GEES IND 4 5 15 97.25 924.40 0.28(0.02)

GEES CS 4 4 14 80.25 619.45 0.37(0.02)

GEES AR1 4 10 49.50 294.25 1762.10 0.39(0.02)

SIS 4 5 15 97.25 924.40 0.28(0.02)

DC-SIS 156.75 812.25 1910 3505.75 5408.40 6.86(0.11)

0.8 GEES IND 4 5 16 92.75 1231.55 0.30(0.02)

GEES CS 4 4 8 39 491.50 0.36(0.01)

GEES AR1 4 8 34 187.50 1206.95 0.38(0.02)

SIS 4 5 16 92.75 1231.55 0.30(0.02)

DC-SIS 118.85 734.25 1792 3355 5205.50 6.92(0.04)

20000 0.5 GEES IND 4 9 41.50 301.50 2862.10 1.16(0.01)

GEES CS 4 7.75 35.50 186.50 1926.55 1.31(0.05)

GEES AR1 5 29 139 704.50 5524.50 1.30(0.02)

SIS 4 9 41.50 301.50 2862.10 1.16(0.01)

DC-SIS 343.45 2168 5653 10816.25 17624.50 23.11(0.16)

0.8 GEES IND 4 6 32.50 298.75 2996.25 1.13(0.02)

GEES CS 4 5 18 126.25 1850.45 1.36(0.03)

GEES AR1 4 13 106 780.50 4502.45 1.32(0.05)

SIS 4 6 32.50 298.75 2996.25 1.13(0.02)

DC-SIS 646.35 2974.50 6248 11632.50 17498.30 25.54(0.12)
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Table 4: The 5%, 25%, 50%, 75%, and 95% percentiles of the minimum

model size and the average computing time in seconds (standard deviation)

in Example 2 (with Xeon X5670 2.93 GHz CPU)

p ρ Method 5% 25% 50% 75% 95% TIME

1000 0.5 GEES IND 4 4 4 4 5 0.82(0.06)

GEES CS 4 4 4 4 5 1.64(0.10)

GEES AR1 4 4 4 4 5 2.08(0.15)

SIS 4 6 47 180 410.30 132.91(32.39)

DC-SIS 4 4 4 4 7 130.78(1.03)

0.8 GEES IND 4 4 4 4 5 0.80(0.01)

GEES CS 4 4 4 4 5 1.61(0.02)

GEES AR1 4 4 4 4 5 2.06(0.13)

SIS 4 5 34 149.25 515.50 134.59(40.08)

DC-SIS 4 4 4 4 5.05 130.67(1.07)

6000 0.5 GEES IND 4 4 4 4 5 1.61(0.04)

GEES CS 4 4 4 4 5 1.96(0.01)

GEES AR1 4 4 4 4 6 2.30(0.01)

SIS 4 6 119 762.50 2062 305.08(45.05)

DC-SIS 4 4 4 4 7.05 199.50(0.41)

0.8 GEES IND 4 4 4 4 5 1.62(0.02)

GEES CS 4 4 4 4 5 2.00(0.03)

GEES AR1 4 4 4 4 7 2.29(0.04)

SIS 4 6 103.50 783.75 2821.85 298.57(44.77)

DC-SIS 4 4 4 4 8.15 197.11(0.06)

20000 0.5 GEES IND 4 4 4 4 5 8.29(0.69)

GEES CS 4 4 4 4 5 8.65(0.72)

GEES AR1 4 4 4 4 6.05 8.63(0.54)

SIS 4 6 350.50 2161.50 5675.70 671.68(95.53)

DC-SIS 4 4 4 4 5 715.27(49.56)

0.8 GEES IND 4 4 4 4 5 8.30(0.49)

GEES CS 4 4 4 4 5 8.91(0.65)

GEES AR1 4 4 4 4 8.10 8.78(0.84)

SIS 4 6 307 2017.75 7129.35 651.14(93.48)

DC-SIS 4 4 4 4 10.05 706.47(48.92)
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Table 5: The number of selected informative genes (labeled “Model size”)

and the median of prediction errors (“PE”) from 100 random splits for pro-

cedures in the advanced renal cancer data set. “GEES” stands for the GEES

screening procedure with the PWLS variable selection method. “SIS” stands

for the SIS procedure in Fan and Lv (2008), in which the SCAD method is

used to refine the results
Model size PE

GEES IND 5 129.38

GEES CS 5 49.48

GEES AR1 5 61.21

SIS 11 194.85
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Table 6: The proportion that every single truly active covariate is selected

(Ps) and the proportion that all truly active covariates are identified (Pa)

out of 400 replications in Example 3
Ps Pa

d ρ Method X1 X2 X3 X4 ALL
[n/ logn] 0.5 GEES IND 1 1 1 0 0

GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 1 1
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

0.8 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 1 1
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

[n/(2 log n)] 0.5 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 1 1
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

0.8 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 1 1
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

[n/(3 log n)] 0.5 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 1 1
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

0.8 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 0.99 0.99
IGEES CS 1 1 1 1 1
IGEES AR1 1 1 1 1 1

[n/(4 log n)] 0.5 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 0.98 0.98
IGEES CS 1 1 1 0.99 0.99
IGEES AR1 1 1 1 0.99 0.99

0.8 GEES IND 1 1 1 0 0
GEES CS 1 1 1 0 0
GEES AR1 1 1 1 0 0
IGEES IND 1 1 1 0.96 0.96
IGEES CS 1 1 1 0.99 0.99
IGEES AR1 1 1 1 1 1
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Table 7: The number of selected informative genes (labeled “Model size”)

and the median of prediction errors (“PE”) from 100 random splits for pro-

cedures in the advanced renal cancer data set. “IGEES” stands for the

IGEES screening procedure with the PWLS variable selection method. “I-

SIS” stands for the ISIS procedure in Fan and Lv (2008), in which the SCAD

method is used to refine the results
Model size PE

IGEES IND 5 128.98

IGEES CS 5 37.94

IGEES AR1 6 56.75

ISIS 10 185.07
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7 Appendix

To prove Theorems 1 and 2, we will need the Bernstein’s inequality (see, e.g.

van der Vaart andWellner, 1996) and a lemma of Wang (2011) (Lemma C.1).

We re-state the results.

Lemma 7.1. (Bernstein’s inequality) Let Z1, . . . , Zn be independent random

variables with mean zero and satisfy

E|Zi|l ≤ l!M l−2Vi/2

for every l ≥ 2 and all i and some positive constants M and Vi. Then

P (|Z1 + . . .+ Zn| > t) ≤ 2 exp

(
−1

2

t2

V +Mt

)
,

for V > V1 + . . .+ Vn.

Lemma 7.2. (Wang, 2011) Let Ḡ(β) = n−1
∑n

i=1X
τ
i A

1/2
i (β)R̄−1A

−1/2
i (β)(Yi−

µi(β)) and ∇(β) = −∂Ḡ(β)/∂β. Then, we have

∇(β) = H̄(β) + Ē(β) + S̄(β),

where

H̄(β) =
1

n

n∑
i=1

Xτ
i A

1/2
i (β)R̄−1A

1/2
i (β)Xi,

Ē(β) =
1

2n

n∑
i=1

Xτ
i A

1/2
i (β)R̄−1A

−3/2
i (β)Di(β)Fi(β)Xi,

S̄(β) =
1

2n

n∑
i=1

Xτ
i A

1/2
i (β)Fi(β)Ji(β)Xi,

with

Di(β) = diag(Yi1 − µi1(β), . . . , Yim − µim(β)),

Fi(β) = diag(ä(Xτ
i1β), . . . , ä(X

τ
imβ)),

Ji(β) = diag(R̄−1A
−1/2
i (β)(Yi − µi(β))).
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Proof of Theorem 1. According to the definition of M̂γn , we know

that {M0 ⊂ M̂γn} is equivalent to {minj∈M0 |Ĝj(0)| ≥ γn}. Then, it is

easy to see that

P (M0 ⊂ M̂γn) ≥ 1−
∑

j∈M0

P (|Ĝj(0)| < γn).

Let Ḡ(0) = n−1
∑n

i=1X
τ
i A

1/2
i (0)R̄−1A

−1/2
i (0)(Yi − µi(0)) and Ḡj(0) be the

jth element of Ḡ(0). Then for each j ∈ M0, we have

P (|Ĝj(0)| < γn) ≤ P (|Ḡj(0)| − |Ḡj(0)− Ĝj(0)| < γn)

≤ P (|Ḡj(0)| < 2γn) + P (|Ḡj(0)− Ĝj(0)| > γn).

We first consider the term P (|Ḡj(0)| < 2γn), j ∈ M0. Under conditions

(C2), (C4) and (C5), we have that

P (|Ḡj(0)| < 2γn) ≤ P (|ḡj(0)| − |Ḡj(0)− ḡj(0)| < 2γn)

≤ P (|Ḡj(0)− ḡj(0)| > c3n
−κ − 2γn)

= P (|Ḡj(0)− ḡj(0)| > c3n
−κ/2)

≤ 2 exp

{
− c23n

1−2κ/4

2c+ c3n−κ

}
,

for every j ∈ M0, where the second inequality is due to the bound minj∈M0 |ḡj(0)| ≥
c3n

−κ in condition (C5), the last inequality follows from Lemma 7.1, and

c is a positive constant depending on c2. Hereafter, we use c to denote a

generic positive constant which may vary for every appearance.

Next, let ej be a p-dimensional basis vector with the jth element being
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one and all the other elements being zero, 1 ≤ j ≤ p. Then,

P (|Ḡj(0)− Ĝj(0)| > γn)

≤ P (n−1
n∑

i=1

|eτjXτ
i A

1/2
i (0)(R̂−1 − R̄−1)A

−1/2
i (0)(Yi − µi(0))| > γn)

≤ P (n−1
n∑

i=1

∥eτjXτ
i A

1/2
i (0)∥2 · ∥R̂−1 − R̄−1∥F · ∥A−1/2

i (0)(Yi − µi(0))∥2 > γn)

≤ P (n−1
n∑

i=1

∥A−1/2
i (0)(Yi − µi(0))∥2 > cγn/∥R̂−1 − R̄−1∥F )

≤ c(sn/n
1−2κ)1/2, (7.1)

where the third inequality follows from condition (C3), and the last inequal-

ity follows from conditions (C2), (C4) and the Markov’s inequality.

Therefore, under condition (C6), we have

P (M0 ⊂ M̂γn) ≥ 1−
∑

j∈M0

{
P (|Ḡj(0)| < 2γn) + P (|Ḡj(0)− Ĝj(0)| > γn)

}

≥ 1− 2sn exp

{
− c23n

1−2κ/4

2c+ c3n−κ

}
− cs

3/2
n

n1/2−κ

→ 1.

2

Proof of Theorem 2. Note that γn ≤ |Ĝj(0)| ≤ |Ḡj(0)| + |Ḡj(0) −
Ĝj(0)| for every j ∈ M̂γn . Thus, we have

|M̂γn | ≤ |{1 ≤ j ≤ p : |Ḡj(0)| ≥ γn/2 or |Ḡj(0)− Ĝj(0)| ≥ γn/2}|

≤ |{1 ≤ j ≤ p : |Ḡj(0)| ≥ γn/2}|

+|{1 ≤ j ≤ p : |Ḡj(0)| < γn/2 and |Ḡj(0)− Ĝj(0)| ≥ γn/2}|

, I1 + I2.

Consequently, it is sufficient to provide upper bounds on I1 and I2 that hold

with a high probability, respectively. Now suppose that ∥Ḡ(0) − ḡ(0)∥∞ ≤
γn/4. Then |Ḡj(0)| ≥ γn/2 implies that |ḡj(0)| ≥ γn/4. Hence, under

∥Ḡ(0)− ḡ(0)∥∞ ≤ γn/4, we have

I1 ≤ |{1 ≤ j ≤ pn : |ḡj(0)| ≥ γn/4}| ≤ 16∥ḡ(0)∥22/γ2n.

37



Consequently, it follows that

|M̂γn | ≤ 16∥ḡ(0)∥22/γ2n

under ∥Ḡ(0) − ḡ(0)∥∞ ≤ γn/4 and ∥Ĝ(0) − Ḡ(0)∥∞ < γn/2, which implies

that we only need to provide an upper bound on ∥ḡ(0)∥22 when ∥Ḡ(0) −
ḡ(0)∥∞ ≤ γn/4 and ∥Ĝ(0)− Ḡ(0)∥∞ < γn/2 hold with a high probability.

Let β∗
0 = Σ1/2β0. Note that ḡ(β0) = EXτA1/2(β0)R̄

−1A−1/2(β0)(Y −
µ(β0)) = 0. Thus, we have

∥ḡ(0)∥22 = ∥ḡ(β0)− ḡ(0)∥22
= ∥E{Ḡ(β0)− Ḡ(0)}∥22
= ∥ − E{∇(β̃)}β0∥22
≤ λmax(MM τ )∥β∗

0∥22,

where β̃ lies on the line segment between β0 and 0 so that β̃ ∈ B and

M = E{∇(β̃)}Σ−1/2. Since

MM τ = E{∇(β̃)}Σ−1Eτ{∇(β̃)}

≤ λ−1
min(Σ)E{∇(β̃)}Eτ{∇(β̃)},

we have λmax(MM τ ) ≤ λ−1
min(Σ)λ

2
max(E{∇(β̃)}). Now, we only need to

provide an upper bound on λmax(E{∇(β̃)}). Lemma 7.2 implies that

λmax(E{∇(β̃)}) ≤ λmax(E{H̄(β̃)}) + λmax(E{Ē(β̃)}) + λmax(E{S̄(β̃)}).

We first consider term λmax(E{H̄(β)}), β ∈ B. Under conditions (C2) and

(C7), for any unit length pn-dimensional vector r, we have

rτ H̄(β)r ≤ λmax(R̄
−1)rτ

(
n−1

n∑
i=1

Xτ
i Ai(β)Xi

)
r

≤ λ−1
min(R̄) · max

1≤k≤m
ȧ(Xτ

ikβ) · rτ
(
n−1

n∑
i=1

Xτ
i Xi

)
r

≤ crτ

(
n−1

n∑
i=1

Xτ
i Xi

)
r.
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Therefore,

λmax(E{H̄(β)}) ≤ E{λmax(H̄(β))} ≤ cE{λmax(n
−1

n∑
i=1

Xτ
i Xi)},

for any β ∈ B. Next, we consider term E{Ē(β)}. Let D̄i(β) = diag(µi1(β0)−
µi1(β), . . . , µim(β0)− µim(β)). Then, we have

E{Ē(β)} = E

{
1

2n

n∑
i=1

Xτ
i A

1/2
i (β)R̄−1A

−3/2
i (β)D̄i(β)Fi(β)Xi

}
,

which can be decomposed as

E{Ē(β)} = E{Ē11(β)}+E{Ē12(β)}+ E{Ē13(β)}+E{Ē14(β)},

where

Ē11(β) =
1

2n

n∑
i=1

Xτ
i [A

1/2
i (β)−A

1/2
i (β0)]R̄

−1A
−3/2
i (β0)D̄i(β)Fi(β0)Xi

Ē12(β) =
1

2n

n∑
i=1

Xτ
i A

1/2
i (β)R̄−1[A

−3/2
i (β)−A

−3/2
i (β0)]D̄i(β)Fi(β0)Xi

Ē13(β) =
1

2n

n∑
i=1

Xτ
i A

1/2
i (β)R̄−1A

−3/2
i (β)D̄i(β)[Fi(β)− Fi(β0)]Xi

Ē14(β) =
1

2n

n∑
i=1

Xτ
i A

1/2
i (β0)R̄

−1A
−3/2
i (β0)D̄i(β)Fi(β0)Xi.

For any r ∈ Rpn with ∥r∥2 = 1,

|rτ Ē11(β)r|

=
1

2n

∣∣∣∣∣
n∑

i=1

m∑
k=1

(µik(β0)− µik(β))r
τXτ

i [A
1/2
i (β)−A

1/2
i (β0)]R̄

−1A
−3/2
i (β0)eke

τ
kFi(β0)Xir

∣∣∣∣∣
≤ 1

2

{
1

n

n∑
i=1

m∑
k=1

(µik(β0)− µik(β))

}1/2

·

{
1

n

n∑
i=1

m∑
k=1

(rτXτ
i [A

1/2
i (β)−A

1/2
i (β0)]R̄

−1A
−3/2
i (β0)eke

τ
kFi(β0)Xir)

2

}1/2

.
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The application of Taylor expansion yields that{
1

n

n∑
i=1

m∑
k=1

(µik(β0)− µik(β))

}1/2

=

{
1

n

n∑
i=1

m∑
k=1

ȧ2(Xτ
ikβ

∗)(β − β0)
τXikX

τ
ik(β − β0)

}1/2

≤

(
sup
β̃∈B

ȧ2(Xτ
ikβ̃)

)1/2

·

{
(β − β0)

τ 1

n

n∑
i=1

Xτ
i Xi(β − β0)

}1/2

≤ cλ1/2
max(n

−1
n∑

i=1

Xτ
i Xi)∥β − β0∥2,

where β∗ lies on the line segment between β0 and β. Under conditions (C2),

(C3), and (C7), we have

1

n

n∑
i=1

m∑
k=1

(rτXτ
i [A

1/2
i (β)−A

1/2
i (β0)]R̄

−1A
−3/2
i (β0)eke

τ
kFi(β0)Xir)

2

≤ 1

n

n∑
i=1

m∑
k=1

(rτXτ
i [A

1/2
i (β)−A

1/2
i (β0)]R̄

−1A
−3/2
i (β0)ek)

2 · (eτkFi(β0)Xir)
2

≤ c∥β − β0∥22
1

n

n∑
i=1

∥Xir∥22

≤ cλmax(n
−1

n∑
i=1

Xτ
i Xi)∥β − β0∥22.

Hence, for any β satisfying ∥β∥2 ≤ cβ,

|rτ Ē11(β)r| ≤ c

2
λmax(n

−1
n∑

i=1

Xτ
i Xi)∥β − β0∥22

≤ cλmax(n
−1

n∑
i=1

Xτ
i Xi),

which implies that

λmax(E{Ē11(β)}) ≤ E{λmax(Ē11(β))} ≤ cE{λmax(n
−1

n∑
i=1

Xτ
i Xi)}.
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Similarly, we can show that λmax(E{Ē1s(β)}) ≤ cE{λmax(n
−1
∑n

i=1X
τ
i Xi)}

for s = 2, 3, 4. Thus,

λmax(E{Ē(β)}) ≤
4∑

s=1

λmax(E{Ē1s(β)}) ≤ cE{λmax(n
−1

n∑
i=1

Xτ
i Xi)}.

We can also have λmax(E{S̄(β)}) ≤ cE{λmax(n
−1
∑n

i=1X
τ
i Xi)}, and then

λmax(E{∇(β)}) ≤ cE{λmax(n
−1
∑n

i=1X
τ
i Xi)} for β ∈ B. Consequently,

under condition (C7), we have

∥ḡ(0)∥2 ≤ λ
−1/2
min (Σ)λmax(E{∇(β̃)})∥β∗

0∥2

≤ cλ
−1/2
min (Σ)E{λmax(n

−1
n∑

i=1

Xτ
i Xi)}∥β∗

0∥2.

Further, note that λmin(Σ) ≥ E{λmin(n
−1
∑n

i=1X
τ
i Xi)}. Thus, we have

∥ḡ(0)∥2 ≤ c
E{λmax(n

−1
∑n

i=1X
τ
i Xi)}

(E{λmin(n−1
∑n

i=1X
τ
i Xi)})1/2

∥β∗
0∥2,

which results in, combining ∥Ḡ(0)− ḡ(0)∥∞ ≤ γn/4 and ∥Ĝ(0)− Ḡ(0)∥∞ <

γn/2,

|M̂γn | ≤ 16∥ḡ(0)∥22/γ2n ≤ O(n2κσn).

On the other hand, invoking Lemma 7.1, we have

P (∥Ḡ(0)− ḡ(0)∥∞ > γn/4)

≤
p∑

j=1

P (|Ḡj(0)− ḡj(0)| > γn/4)

≤ 2pn exp

{
c23n

1−2κ/162

2c+ c3n−κ

}
→ 0

when log pn = o(n1−2κ). Similar to the inequality (7.1) in the proof of

Theorem 1, we have

P (∥Ĝ(0)− Ḡ(0)∥∞ ≥ γn/2)

= P ( max
1≤j≤p

|Ĝj(0)− Ḡj(0)| ≥ γn/2)

≤ c(sn/n
1−2κ)1/2

→ 0.
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Therefore,

P (|M̂γn | ≤ O(n2κσn))

≥ P (∥Ḡ(0)− ḡ(0)∥∞ ≤ γn/4 and ∥Ĝ(0)− Ḡ(0)∥∞ < γn/2)

≥ 1− P (∥Ḡ(0)− ḡ(0)∥∞ > γn/4)− P (∥Ĝ(0)− Ḡ(0)∥∞ ≥ γn/2)

≥ 1− 2pn exp

{
c23n

1−2κ/162

2c+ c3n−κ

}
− cs

1/2
n

n1/2−κ

→ 1,

which concludes the proof. 2
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