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Abstract Motivated by the national evaluation of readmission rates among kidney
dialysis facilities in the United States, we evaluate the impact of including discharging
hospitals on the estimation of facility-level standardized readmission ratios (SRRs).
The estimation of SRRs consists of two steps. First, we model the dependence of
readmission events on facilities and patient-level characteristics, with or without an
adjustment for discharging hospitals. Second, using results from the models, standard-
ization is achieved by computing the ratio of the number of observed events to the
number of expected events assuming a population norm and given the case-mix in that
facility. A challenging aspect of our motivating example is that the number of parame-
ters is very large and estimation of high-dimensional parameters is troublesome. To
solve this problem, we propose a structured Newton-Raphson algorithm for a logistic
fixed effects model and an approximate EM algorithm for the logistic mixed effects
model. We consider a re-sampling and simulation technique to obtain p-values for
the proposed measures. Finally, our method of identifying outlier facilities involves
converting the observed p-values to Z-statistics and using the empirical null distri-
bution, which accounts for overdispersion in the data. The finite-sample properties
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of proposed measures are examined through simulation studies. The methods devel-
oped are applied to national dialysis data. It is our great pleasure to present this paper
in honor of Ross Prentice, who has been instrumental in the development of mod-
ern methods of modeling and analyzing life history and failure time data, and in the
inventive applications of these methods to important national data problem.

Keywords Mixed effects · Flagging · Readmission · Standardization

1 Introduction

It is an honor to contribute to this issue of Life time Data Analysis in honor of Dr. Ross
Prentice, whose work has been influential to all of us and who is a close colleague
and friend to two of us. Ross has, of course, been absolutely instrumental in the
development of modern methods of modeling and analyzing life history and failure
time data, and in the inventive applications of these methods to important national data
problems. We are very pleased to offer this paper that deals with hospital readmission,
a topic with many policy-making implications, as a part of this very fitting tribute.

An unplanned hospital readmission is defined as any unplanned hospital admission
that occurs within 30 days of discharge from a previous admission. Readmissions
are an important indicator of patient morbidity and quality of life, and hospitaliza-
tions and readmissions are often costly, particularly among the patients with end stage
renal disease (ESRD) being treated in dialysis facilities. Dialysis patients are admit-
ted to the hospital nearly twice a year and hospitalizations account for approximately
38 % of total Medicare expenditures for dialysis patients (USRDS 2012). Further-
more, a significant percentage (30 %) of ESRD patients discharged from the hospital
have an unplanned readmission within 30 days (USRDS 2012). Clinical studies have
demonstrated that improved care coordination and discharge planning may reduce
readmissions, while some studies (Goldfield et al. 2008) also confirm that a sizable
portion of unplanned readmissions are preventable. Hence, a systematic measure of
the rate of unplanned readmissions at dialysis facilities can help to identify potential
problems and provide cost-effective health care.

In developing a readmission measure for dialysis facilities, it should be noted that
the discharging hospital and the receiving dialysis facility share responsibility. Dialysis
patients in the United States are admitted to many different hospitals and discharged
to many different dialysis facilities. Thus, a dialysis facility may be treating patients
discharged from multiple hospitals, and conversely, a hospital may admit patients from
multiple dialysis facilities. Hospitals vary in their readmission rates as documented
in the Hospital Compare measure of the Centers for Medicare and Medicaid Services
(CMS) (see Horwitz et al. 2011). It can be argued that a fair evaluation of hospital
readmissions for dialysis facilities should take into account the potential confounding
effects of the discharging hospitals. This argument is strengthened by the fact that
dialysis facilities often cannot dictate the patient’s choice of hospital and, in cases
when they do provide the referral, have few hospitals from which to choose. Several
previous studies have suggested an influence of multiple types of providers on treat-
ment practices and outcomes among ESRD patients (Turenne et al. 2008; Hirth et al.
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2009, 2010; Turenne et al. 2010a,b). This report evaluates the impact of adjusting for
discharging hospital on the estimation of facility-level readmission ratios.

The estimation of provider-level readmission rates typically consists of two steps
(e.g., Horwitz et al. 2011). First, we model the dependence of readmission events on
facilities and patient-level characteristics; to evaluate the impact of including discharg-
ing hospitals, we run the model both with and without an adjustment for discharging
hospitals. Second, we use results from these models to compute a facility-level Stan-
dardized Readmission Ratio (SRR), defined as the ratio of the number of observed
events to the number of expected events given the case-mix in that facility where the
case-mix may or may not involve hospital effects. In this, the expectation is computed
based on the average of national experience and the case-mix may ir may not include
hospital effects.

To model the readmissions, a regression method (e.g., logistic regression) is nec-
essary to model the dependence of readmission rates on facilities and patient-level
characteristics. One approach would be to use a hierarchial generalized linear model,
in which the group-specific (in our case, facility-specific) intercepts are modeled as a
random effect, typically from normal distributions. Based on this hierarchial model,
a risk-adjusted hospital-wide readmission (HWR) measure has been developed that
reflects this aspect of care at hospitals in the United States (Horwitz et al. 2011).
Although the hierarchial model is sometimes used for profiling, Kalbfleisch and Wolfe
(2013), via extensive comparisons of fixed effects models (FEMs) and random effects
models (REMs), argue that it is preferable to use FEMs in the context of profiling
medical providers. Specifically, they found that:

(i) The FEM yields estimates of extreme values of facility effects that are less biased
and have smaller mean squared error than the REM; this is important since iden-
tifying these extreme facilities is the main purpose of this kind of study.

(ii) The FEM method has higher statistical power to identify exceptional facilities,
for a given false positive rate.

(iii) The REM estimates are shrunk toward the overall mean and, hence, reduce the
reported variation of facility performance. This is sometimes noted as a property
of ‘stability’ of the estimates, but the smaller variance is achieved at the cost of
bias, especially for extreme effects.

(iv) The REM usually requires the assumption that the facility effect is independent
of case mix. When there is correlation between patient characteristics and facility
attributes (e.g., patients with less favorable measurements of health status are
referred to facilities with poorer treatment strategies), REM estimates of regres-
sion coefficients are biased.

Based on this work, we prefer to use fixed effects to profile facilities. To evaluate
the impact of including discharging hospitals on the estimation of facility-level SRRs,
we consider two models, one with and one without hospital adjustments. In Model
1, no adjustments are made for hospitals; this leads to a logistic regression model for
readmission rates with facilities accounting with fixed effects. In Model 2, hospitals
are represented as random effects, which leads to a mixed-effects logistic regression
model. In this, we again consider facilities as fixed effects, because facilities are the
entities to be profiled. The model, however, adjusts for the potential confounding
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effects of hospitals using random effects. Our general aim is to adjust each facility’s
readmission measures for the potential effects of the hospitals that are treating its
patients. Hospitals are not being profiled and we are interested in the simultaneous
estimation of their effects on the facility measures. In this case, it is natural to include
hospitals as random effects in the model and to make adjustments taking account of the
distribution of hospital effects across the population. With this approach, each facility’s
measure is adjusted for our best estimate of the true effect of each hospital, taking
account of the distribution from which these effects arise. This has the advantage of
circumventing problems with identifiability that would arise if hospitals were included
as fixed effects and also tends appropriately to dampen the effects of hospitals with
extreme outcomes.

The remainder of this article is organized as follows. In Sects. 2 and 3, we describe
the models and the methods used to fit them, and the measures resulting from each. We
then study issues associated with fitting these models when the numbers of facilities
and/or hospitals are large. Specifically, in Sect. 2, we propose an iterative profile-
likelihood-based algorithm to fit the fixed-effects model with a large number of facili-
ties. In Sect. 3, we develop an approximate EM algorithm for fitting the more general
mixed-effects model. We propose inference procedures for conducting statistical tests
and constructing p-values. Finally, to ‘flag’ outlier facilities, we convert the p-values to
Z-statistics and use methods based on the empirical null hypothesis, which accounts
for overdispersion in the data (Efron 2004; Kalbfleisch and Wolfe 2013). Simula-
tion studies are provided in Sect. 4 to illustrate and evaluate our proposed methods.
Sect. 5 applies the proposed methods to the national data on readmissions for dialysis
facilities. We provide some discussion of the proposed and related methods in Sect. 6.

2 Model 1: fixed effects model without adjusting for hospitals

We use subscript i to represent facility and k to represent discharge. Let F be the
total number of dialysis facilities. The total number of discharges is denoted by n =∑F

i=1 ni , where ni is the number of discharges in facility i . Let Yik denote the observed
outcome for the kth discharge within the i th facility, where i = 1, 2, . . . , F and k =
1, 2, . . . , ni . In the context of our motivating example, Yik equals 1 if the kth discharge
in facility i results in a readmission within 30 days, and Yik equals 0 otherwise.

We consider first a logistic model in which facilities are represented as fixed effects,
and no adjustment is made for hospitals. This leads to a regression model of the form:

logit(pik) = log
pik

1 − pik
= γi + βT Zik, (Model 1)

where the parameters γi correspond to the fixed facility effects, ZT
ik = (Zik1, Zik2, . . . ,

Zikr ) is an r dimensional vector of covariates associated with the kth discharge from
facility i , and βT = (β1, β2, . . . , βr ) is a vector of regression parameters. In this, γi

measures the facility effect in the sense that a large value of γi would indicate that the
i th facility performs relatively poorly. Note that pik = P{Yik = 1| facility i, Zik}. We
assume that, given the covariates, Yik and Yi ′k are conditionally independent. It should
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be noted that in our motivating example, some patients experience multiple readmis-
sions during the observation period, and so this independence assumption would be
violated. However, our preliminary results suggest that a much more complicated alter-
native that takes the repeated aspect into account would have negligible adjustment
effects on the analysis.

2.1 Model fitting of the fixed-effects model

Fitting Model 1 is challenging given the high-dimensional nature of the fixed parame-
ters, as in our motivating example where F , the number of facilities, is around 5,000.
Based on the observed data, the likelihood function corresponding to Model 1 is

L(γ,β) =
F∏

i=1

ni∏

k=1

exp{(γi + βT Zik)Yik}
1 + exp(γi + βT Zik)

, (1)

where γ = (γ1, . . . , γF )T . When F is large (e.g., F = 5, 000), standard software
fails due to the large design matrix. Note, however, that (1) can be written as

L(γ,β) =
F∏

i=1

L(γi ,β),

where L(γi ,β) := ∏ni
k=1[exp{(γi +βT Zik)Yik}/{1+ exp(γi +βT Zik)}]. On account

of this, it is straightforward to estimate γi given β. On the other hand, estimating β

for given γi can also be routinely done. The following iterative algorithm is easily
implemented:

(i) Set initial values for β(0) and γ
(0)
i and � = 0

(ii) For fixed β = β(�), update γi using a one-step Newton-Raphson iteration as

γ
(�+1)
i = γ

(�)
i + I (�)

i

−1
U (�)

i ,

where U (�)
i and I (�)

i are defined in the Appendix 1.
(iii) Now update β by carrying out one step of the Newton-Raphson iteration

β(�+1) := β(�) + I (�)
β

−1
U (�)

β ,

where U (�)
β and I (�)

β are defined in the Appendix 1.

(iv) If max ‖p(�+1)∗
ik − p(�)∗

ik ‖ > 10−6, set � = � + 1 and go back to step (i), where

p(�)∗
ik is defined in the Appendix 1.
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2.2 Standardized readmission ratio (fixed effects)

A measure of hospital readmissions for patients under the care of a specific dialysis
facility is given by the SRR, which is defined as the ratio of the observed number
of readmissions to the model-based expected number of readmissions, accounting
for patient-level characteristics and assuming a national norm for readmission rates.
Under the fixed effects model (Model 1), we define

S R Ri
(1) = Oi

Ei
= Oi

∑ni
k=1 pik(γ̂M , β̂)

, (SRR 1)

where Oi = ∑ni
k=1 Yik is the observed number of readmissions in facility i and Ei is the

corresponding expected number. The latter is the sum of the estimated probabilities of
readmission of all patients within this facility, assuming a national norm for the facility
effect, which is specified with γ̂M =median(γ̂1, . . . , γ̂F ). In this measure, each facility
is compared with an ‘average’ facility in the population of all facilities, adjusting for
its particular case mix. Note that we introduce a median term for the ‘average’ facility
effect; this is more robust to extreme values and avoids problems that would arise in
using the mean, for example. Note also that S R Ri

(1) can be viewed as an estimate of
the theoretical quantity

˜S R R
(1)

i =
∑ni

k=1 pik(γi , β)
∑ni

k=1 pik(γM , β)
.

An SRR lower than 1.0 indicates that the facility’s observed readmission rate is
less than expected based on national rates. An SRR greater than 1.0 indicates that
the facility has a rate of readmission higher than would be expected based on patient
characteristics and the national norm.

2.3 Evaluating the p-values (fixed-effects)

Making statistical inference about SRR is challenging given the high-dimensional
nature of fixed parameters, especially when F , the number of facilities, is very large.
In the context of our motivating example, some facilities had no readmissions (i.e.,
the observed number of readmissions Oi = 0), which leads to a maximum likelihood
estimate of γ̂i = −∞ for the facility effect. The usual Wald test fails in this case.
To calculate a p-value, we use an ‘exact’ method that assesses the probability that
the facility would experience a number of readmissions as least as extreme as that
observed if the null hypothesis were true; this calculation accounts for each facility’s
patient mix. To implement this, we exploit the large-scale structure of the data, which
allows β and γM to be estimated extremely precisely when F and n = ∑

ni are
large. Therefore, when assessing the significance of the S R Ri or γi , we replace β

with β̂ and γM with γ̂M without losing precision. We further evaluate the influence
of these replacements in Sect. 4 when the population size and the number of facilities
are moderate.
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To test H0 : γi = γM (which implies ˜S R R
(1)

i = 1), we calculate the nominal
p-value for the i th facility as the probability that the observed number of readmissions
should be at least as extreme as that expected, if this facility had a readmission rate
corresponding to the ‘average’ facility. Our approach captures the most important
aspects of the variability in the proposed estimator, and is described as follows

(i) Obtain β̂ and γ̂M and proceed under assumptions that β = β̂ and γM = γ̂M .
(ii) Calculate PH0(

∑ni
k=1 Yik ≥ Oi ) or PH0(

∑ni
k=1 Yik ≤ Oi ). We do this by simula-

tion and draw B samples, {Y b
ik : k = 1, 2, . . . , ni }B

b=1, where each sample, and
each observation is drawn independently from a Bernoulli distribution,

Y b
ik ∼ Ber

(
exp(γ̂M + ZT

ik β̂)

1 + exp(γ̂M + ZT
ik β̂)

)

, b = 1, 2, . . . , B; k = 1, 2, . . . , ni .

(iii) Calculate Y b
i. := ∑ni

k=1 Y b
ik .

(iv) Compute

SL+
i := 1

B

B∑

b=1

[
1

2
I (Y b

i. = Oi ) + I (Y b
i. > Oi )

]

and

SL−
i := 1

B

B∑

b=1

[
1

2
I (Y b

i. = Oi ) + I (Y b
i. < Oi )

]

,

where Oi is the originally observed number of readmission in facility i , and I ()̇

is an indicator function. Then calculate the significance level (two tailed test),
P := 2 ∗ min[SL+

i , SL−
i ].

Note that in step (iv), SL+
i the ‘mid-p’ values as the average of the probabilities

Yi > Oi and Yi ≤ Oi . This avoids two-tailed p-values greater than 1 in the center of
the distribution. This strategy is particularly useful when we apply methods based on
the empirical null hypothesis.

3 Model 2: mixed effects model

We extend Model 1 to accommodate a random effect representing hospitals. Thus, we
use a mixed-effect logistic regression model to estimate the probability of readmission
as a function of a random effect for hospital, a fixed effect for dialysis facility and a
set of patient characteristics. The model is specified as

log
pi jk

1 − pi jk
= γi + α j + βT Zi jk, (Model 2)
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where we have introduced a third subscript j to indicate hospital. In this, i = 1, . . . , F ;
j = 1, . . . , H ; and k = 1, . . . , ni j where ni j = 0 is allowed (a common scenario in
the motivating example). Note that F is the number of facilities and H is the number of
hospitals. Thus, pi jk represents the probability of a readmission for the kth discharge
among patients from the i th facility who are discharged from j th hospital. Here, γi is
the fixed effect for facility i , and α j is the random effect for hospital j . It is assumed
that the α j ’s arise as independent normal variables (i.e., α j ∼ N (0, σ 2

h )).

3.1 Model fitting of the mixed-effects model

We now look at fitting the mixed-effects logistic regression model (Model 2) to the
readmission data. The complete likelihood is

L(α; σh, γ ,β) =
H∏

j=1

⎡

⎣

{
F∏

i=1

ni j∏

k=1

exp{Yi jk(γi + α j + ZT
i jkβ)}

1 + exp{γi + α j + ZT
i jkβ}

}
exp{−α2

j /(2σ 2
h )}

√
2πσ 2

h

⎤

⎦ ,

where γ T = (γ1, γ2, . . . , γF ) is the vector of fixed effect parameters for facilities,
and αT = (α1, α2, . . . , αH ) is the vector of (unobserved) random effect parameters
for hospitals. The incomplete (or observed) likelihood is

L(σh, γ ,β) =
H∏

j=1

∫ ∞

−∞
L j (α j ; σh, γ ,β)dα j , (2)

where L j (α j ; σh, γ ,β) is defined implicitly. Our general aim is to use (2) to estimate
σh, γ and β. Note that the terms “complete” and “incomplete” are used in the sense
of the EM algorithm (Dempster et al. 1977), and the random effects α are viewed as
missing data. Various approaches have been developed to carry out likelihood infer-
ence. Zeger and Karim (1991) used a Gibbs sampling approach based on a Markov
chain Monte Carlo (MCMC) algorithm. Breslow and Clayton (1993) obtained approx-
imate estimates based on penalized quasi-likelihood (PQL). Breslow and Lin (1995)
and Lin and Breslow (1996) studied the bias in the PQL estimators and developed a
bias-correction. These procedures perform reasonably well if the number of facilities,
F , is of moderate size. However, when F is large (e.g., F >1,000), these approaches
all encounter computational difficulties. In what follows, we present an approximate
EM algorithm to address this computational difficulty. In developing this algorithm,
we make use of a profile-likelihood-based method similar to that introduced in Sect.
2.1.

Let Y be the vector of all outcomes of Yi jk . The posterior distribution of α j , given
the data, γ, β and σh is

� j (α j | Y, σh, γ ,β) = L j (α j ; σh, γ ,β)/C j ,
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where C j = ∫ ∞
−∞ L j (α j ; σh, γ ,β)dα j . The posterior mean and variance of α j are

α j0 =
∫

α j� j (α j | Y, σh, γ ,β)dα j

ν j0 =
∫

(α j − α j0)
2� j (α j | Y, σh, γ ,β)dα j .

To numerically approximate α j0 and ν j0, we use a Gauss-Hermite quadrature cal-
culation. The number of quadrature points is pre-specified to be 20, for which the
approximation is usually sufficient (Lange 1999).

An approximate EM algorithm is described as follows. The E-step pertains to the
calculation of a conditional expectation of the complete log-likelihood. We therefore
require

E
[
log L(α; σh, γ ,β) | Y, σ

(�)
h , γ (�),β(�)

]

=
H∑

j=1

E
[
log L j (α j ; σh, γ ,β) | Y, σ

(�)
h , γ (�),β(�)

]
, (3)

where (σ
(�)
h , γ (�),β(�)) are the current estimates of the parameters. Since there is no

closed form for (3), we approximate log L j (α j ; σh, γ ,β) using a 2nd order Taylor
expansion about α j0 to obtain

log L j (α j ; σh, γ ,β) ∼= − log σ − α2
j

2σ 2
h

+
F∑

i=1

ni j∑

k=1

{
(γi + α j + βT Zi jk)Yi jk

+ log(q0
i jk) − (α j − α j0)p0

i jk − (α j − α j0)
2

2
p0

i jkq0
i jk

}
,

where p0
i jk := pi jk(γi , α j0,β) and q0

i jk := 1 − p0
i jk . It follows that

E
[
log L j (α j ; σh, γ ,β) | Y, σ

(�)
h , γ (�),β(�)

] ∼= − log σ
(�)
h − (α

(�)
j0 )2 + ν

(�)
j0

2(σ
(�)
h )2

+
F∑

i=1

ni j∑

k=1

{
(γ

(�)
i + α

(�)
j0 + (β(�))T Zi jk)Yi jk + log(q(�)

i jk) − (ν
(�)
j0 )2

2
p(�)

i jkq(�)
i jk

}
,

(4)

where α
(�)
j0 and ν

(�)
j0 are the posterior mean and variance of α j given the data, σ (�)

h , γ (�),

and β(�); p(�)
i jk := pi jk(γ

(�)
i , α

(�)
j0 ,β(�)) and q(�)

i jk := 1 − p(�)
i jk . The M-step involves the

maximization of (3) with respect to (σh, γ ,β) using the approximation (4). First,
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σ
(�+1)
h = {∑ j ((α

(�)
j0 )2 + ν

(�)
j0 )/H} 1

2 . Second, note that

E
[
log L(α; σh, γ ,β) | Y, σ (�), γ (�),β(�)

]
∝

∑

i

L(�)
i ,

where

L(�)
i =

H∑

j=1

ni j∑

k=1

{
(γ

(�)
i + α

(�)
j0 + (β(�))T Zi jk)Yi jk + log(q(�)

i jk) − (ν
(�)
j0 )2

2
p(�)

i jkq(�)
i jk

}
.

Each γi can be updated using one step in the Newton-Raphson algorithm listed in the
Appendix 2.

3.2 Standardized readmission ratio (mixed effects)

Let H(i) denote the collection of the indices of the discharging hospitals corresponding
to the i th facility. The SRR is defined as

S R R(2)
i = Oi

Ei
= Oi

∑
j∈H(i)

∑ni j
k=1 pi jk(γ̂M , α̂ j , β̂)

, (SRR 2)

where, as before, Ei is the expected number of readmission for patients in facility i
assuming rates that apply to the ‘average’ facility and the hats indicate the estimated
values. In particular, α̂ j is the estimate of the (random) hospital effect obtained as
the mean of the posterior distribution of α j . Note that S R Ri

(2) is an estimate of the
theoretical quantity

˜S R R
(2)

i =
∑

j∈H(i)
∑ni j

k=1 pi jk(γi , α j , β)
∑

j∈H(i)
∑ni j

k=1 pi jk(γM , α j , β)
.

Note also that this theoretical quantity depends on the true hospital effects α j corre-
sponding to the facility i .

3.3 Evaluating the p-values (mixed-effects)

Making statistical inferences about γi ’s under the mixed effects model is complicated.
Our aim is to prescribe an approximate yet accurate inference procedure that can
be executed in a computationally efficient manner. We provide below a procedure for
constructing p-values for the hypothesis γi = γM . The calculation accounts for facility
i’s patient mix and the hospitals associated with the facility.

(i) As before, we take the structured parameters β, γM and σh as fixed, and then
estimate α̂ j and ν̂ j using the approximate EM algorithm developed in Sect. 3.1.
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(ii) We generate hospital random effects by sampling from the posterior distribution
of the hospital-specific distribution. We approximate the distribution for each
random effect with a normal distribution. Thus, we draw an independent sample
of size B,

αb
j ∼ N [α̂ j , ν̂ j ], b = 1, . . . , B

for each hospital j = 1, . . . , H .

(iii) To test H0 : γi = γM (which implies ˜S R R
(2)

i = 1), we independently draw B
samples, {Y b

i jk : j = 1, 2, . . . , H ; k = 1, 2, . . . , ni j }B
b=1. Observations within

each sample are drawn independently according to

Y b
i jk ∼ Ber(

exp(γ̂M + αb
j + β̂

T
Zi jk))

1 + exp(γ̂M + αb
j + β̂

T
Zi jk)

),

where b = 1, 2, . . . , B; j = 1, 2, . . . , H ; and k = 1, 2, . . . , ni j .
(iv) We calculate Y b

i.. := ∑
j∈H(i)

∑ni j
k=1 Y b

i jk ; the number of readmissions in facility
i from the bth random sample.

(v) We compute SL+
i := 1

B

∑B
b=1

[ 1
2 I (Y b

i.. = Oi ) + I (Y b
i.. > Oi )

]
and SL−

i is
defined correspondingly; then, the two sided p-value of γi = γM is P =
2 ∗ min[SL+

i , SL−
i ].

We remark that this approach implicitly assumes that β, γM and σ are estimated with
little error. A more elaborate and complex sampling scheme could be derived to account
for the uncertainty in these estimates, but this approximation is justified because of
the large-scale nature of our motivating example.

3.4 Fitting Model 2 with a two stage approach

As examined in the next simulation section, the proposed Model 2 works well when
the data structure is balanced in that each facility’s discharges came from multiple
hospitals and vice versa. However, when the data are very sparse so that most of the
patients in each facility are discharged from one or only a few hospitals, joint fitting of
the fixed effect parameters for facilities along with the random effect for hospitals can
cause numerical problems. This is the case in our motivating example, where most of
the ni j ’s (number of discharges in facility i and hospital j) are zero, and facilities are
associated with relatively few hospitals (further details are provided in Sect. 5). In this
case, the proposed algorithm for fitting the mixed effects model fails to appropriately
capture the hospital effects (as shown in the next section).

To circumvent this problem, we consider a two-stage approach to estimate the
mixed effects model:

Stage 1: At the first stage, we fit a double random effects model. This model takes
the form of Model 2, but both facilities and hospitals are random effects
(i.e., γi ∼ N (0, σ 2

f ) and αi ∼ N (0, σ 2
h ) where the γ and α are mutually
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independent). From this double random effects model, both σ f and σh can
be accurately estimated.

Stage 2: Facilities are modeled as fixed effects, and hospitals are modeled as random
effects, with the standard deviation, σh , for hospital effects taken to be σ̂h ,
its estimate from Stage 1. This stage takes the form of Model 2, except that
the standard deviation, σh , for hospital effect is set as constant.

4 Simulation study

We carried out a simulation study in order to examine the finite sample properties of the
proposed methods. We considered three covariates: Z1 was generated from a Bernoulli
distribution with probability 0.5; and Z2 and Z3 were generated from independent
standard normal distributions. We set βT = (β1, β2, β3) = (0.5, 0.5,−0.5).

4.1 Simulation setting 1

In the first set of simulations, we examined the bias and empirical standard deviation
of the proposed estimation procedures with relatively large numbers of facilities and
hospitals (F = H = 1, 000). The sample size ni j was generated from a truncated

Poisson distributions (i.e., ni j = mi j ∗ I (mi j ≤ 7). where mi j
iid∼Poisson(15)). For

this setting, Pr(ni j = 0) = 0.982, so that a large proportion of cells are empty. The
observed outcomes Yi jk were generated from a mixed-effect logistic regression model

log
P(Yi jk = 1)

1 − P(Yi jk = 1)
= log(3/7) + γi + α j + βT Zi jk .

where i = 1, dots, 1, 000 and j = 1, . . . , 1, 000. Note that we chose log(3/7) to
approximate the national readmission rate of about 31 %. We focused on one out-
lier facility (Facility 1) to evaluate the proposed methods. Specifically, we varied
the magnitude of γ1 from −1 to 1; for the more extreme values, Facility 1 is an
outlier facility, which is distinct from the others. All other facility effects were gen-

erated as γi
iid∼N (0, 0.22) for i = 2, . . . , 1, 000. The hospital effects were generated

as α j
iid∼N (0, 0.22) for j = 1, . . . , 1, 000. Note that σ f = σh = 0.2 is close to the

estimate from our motivating example.
In Table 1, we compare the estimated SRR from the proposed approaches. Both

approaches for fitting Model 2 performed well in this setting (estimates are the same),
in the sense that the biases were small and the coverage probabilities (CPs) were close
to the nominal value 0.95. Note that although the bias of Model 1 was also small,
its empirical standard deviation (ESD) was slightly larger than those from Model 2.
Moreover, the CPs of Model 1 were lower than those from Model 2. The reason
for this phenomenon is that the average hospital effect was zero (since mean of α j

equals zero); hence, on average, the fixed effects model is approximately unbiased.
However, individual hospital effects vary about zero, and ignoring hospital effects
may affect the estimation of facility effects, resulting in a larger ESD and lower CP.
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Table 1 Simulation setting 1

γ1 True SRR Model 1 Direct approach Model 2 Two-stage Model 2

Bias ESD CP Bias ESD CP Bias ESD CP

−1.0 0.50 0.008 0.12 0.94 0.000 0.11 0.96 −0.002 0.11 0.96

−0.4 0.80 0.013 0.15 0.93 0.000 0.14 0.96 −0.003 0.14 0.96

0 1.00 0.017 0.16 0.92 0.000 0.15 0.95 −0.004 0.15 0.95

0.4 1.25 0.020 0.17 0.93 0.000 0.15 0.95 −0.005 0.15 0.95

1.0 1.66 0.028 0.19 0.92 0.000 0.15 0.96 −0.007 0.15 0.96

Performance of ̂S R R with various values of γ1; Number of facilities: F = 1, 000, Number of hospitals:

H = 1, 000; 1, 000 replications; Sample size: ni j = mi j ∗ I (mi j ≤ 7), where mi j
iid∼ Poi(15) (Pr(ni j =

0) = 0.98); Facility effects: γi
iid∼N (0, 0.22), where i = 2, . . . , 1, 000; Hospital effects: α j

iid∼N (0, 0.22);
CP coverage probability; ESD empirical standard deviation; Model 1: defined in Sect. 2.1; direct approach
for Model 2: defined in the beginning of Sect. 3; two-stage Model 2: defined in Sect. 3.4

In contrast, Model 2 accounts for the hospital effects; hence, the CPs were closer to
0.95. To further clarify the influence of replacing β with β̂ and γM with γ̂M when the
population size is moderate, we used Model 1 as an example and accounted for the
uncertainty in the estimation of β and γM by bootstrap. The results busing bootstrap
were very close to those based on replacing β with β̂ and γM with γ̂M (e.g., CPs were
essentially equivalent; results not shown).

4.2 Simulation setting 2

We also performed a simulation study, mimicking the data structure of the motivating
example: the number of facilities, number of hospitals and sample sizes (ni j ) are
the same as in the real data ( F =5,158 and H =5,107). Most of the ni j ’s were
equal to zero (more than 99.9 %). The data set is sparse, in that most patients in a
facility were discharged from relatively few hospitals. Instead of using the whole data
set of 5, 158 facilities, we randomly drew 500 facilities and used the sub-data for
further simulation. We chose this set up for two reasons. First, it dramatically saved
computation time. Second, since the number of facilities was relatively small, standard
statistical software, such as R and SAS, can be implemented, to compare our methods
with those from the standard procedures (i.e., GLM for fixed effects model and PQL
for mixed effects model). All other set ups were the same as those in Setting 1. We
focused on one outlier facility (i.e., Facility 1) to evaluate the proposed methods, and
we varied the magnitude of γ1 from −1 to 1.

Using R, the results from our proposed Model 1 were the same as those from
GLM, and the results for our proposed first approach of Model 2 (direct approach)
agreed with those from PQL. The estimated random effects of hospitals from the direct
approach of Model 2 and PQL were both close to zero, which led to the same estimation
of facilities effects as those from Model 1. In contrast, although the double random
effects model led to biased estimation for γ1, it provided good estimates of the standard
deviation of the random hospital effects (bias ∼= −0.003). This finding motivated the
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Table 2 Simulation setting 2

γ1 True SRR Model 1 Two-stage Model 2 Double random effects

Bias ESD CP Bias ESD CP Bias ESD CP

−1.0 0.50 0.031 0.13 0.94 0.000 0.11 0.96 0.249 0.08 0.01

−0.4 0.80 0.046 0.14 0.91 −0.001 0.12 0.94 0.117 0.06 0.75

0 1.00 0.059 0.15 0.80 −0.006 0.13 0.93 −0.000 0.05 1.00

0.4 1.25 0.067 0.15 0.90 −0.006 0.13 0.93 −0.143 0.07 0.24

1.0 1.60 0.085 0.17 0.91 −0.009 0.14 0.95 −0.317 0.10 0.12

Performance of ̂S R R with various values of γ1; 500 facilities (drawn from original data with F =
5, 158, H = 5, 107); 1, 000 replications; Sample size: equal to those from real data; Facility effects:

γi
iid∼N (0, 0.22), where i = 2, . . . , 500; Hospital effects: α j

iid∼N (0, 0.22); CP coverage probability; ESD
empirical standard deviation; σ : estimated standard deviation of random effects; Model 1: defined in Sect.
2.1; two-stage Model 2: defined in Sect. 3.4; Double random effects model: random effects for both facilities
and hospitals

two-stage approach for fitting Model 2. Table 2 summarizes the performances of
Model 1, the two-stage approach of Model 2 and the double random effects model.
The ESDs of Model 1 were larger than those from the two-stage approach of Model
2. Moreover, the CPs of Model 1 were substantially lower than those from Model 2
(two-stage approach); the latter CPs were close to the nominal value, 0.95. Finally,
the shrinkage was much more severe when using the double random effects approach.
Hence, when the true facility effects were different from the population average, the
bias for the double random effects approach was large and the corresponding CPs
were substantially lower than the nominal value of 0.95.

5 Application

We evaluated each model using data for ESRD patients hospitalized in calendar year
2009. In all, there were 489,493 discharges from 5,107 hospitals to 5,158 dialysis
facilities; 151,147 of these discharges resulted in an unplanned hospital readmission
within 30 days of discharge, yielding an overall readmission rate of 30.9 %. The
number of discharges per facility varied from 11 to 614, with a mean of 95 and a
median of 80 discharges. The number of facilities per hospital varied from 1 to 132,
with a mean of 10 and a median of 5. The number of hospitals per facility varied from
1 to 71, with a mean of 10 and a median of 9. Figure 1a, b demonstrate how facilities
correspond to hospitals and vice versa. Both models included the same patient-level
adjustments for age, sex, body mass index at incidence of ESRD, time since onset of
ESRD, diabetes as cause of ESRD, past-year comorbidities, discharge diagnoses that
are rare but have a high rate of readmission, and length of hospital stay during the
index admission.

The estimated hospital effects from the direct (first) approach Model 2 were close
to zero, which led to the results identical to those from Model 1. This agreed with
the situation we found in simulation using the same data structure, so that the first
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Fig. 1 Number of facilities per hospital and number of hospitals per facility

Fig. 2 Comparison of SRRs:
Model 1 and two-stage approach
for Model 2
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approach for fitting Model 2 did not work. Therefore, we focused on Model 1 and
the two-stage approach for Model 2 for further comparison. Figure 2 represents the
pairwise comparisons of the SRRs from Model 1 and Model 2. Figure 3a, b show the
distribution of these two SRRs, stratified by tertiles of numbers of hospital discharges
within each facility. As expected, the variation of SRRs decreases as the number of
discharges increases in both models.

To facilitate the sensitivity analysis, we also considered a more direct comparison
of the the SRRs by studying the pairwise ratios of one SRR with another. For example,
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Fig. 3 SRR Distributions, by number of facility discharges (tertile 1: [11, 57]; tertile 2: [58, 109]; tertile
3: [110, 614])

Fig. 4 Distributions of
SRR-to-SRR Ratio (two-stage
approach for Model 2/Model 1),
by number of facility discharges
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we considered the variable R2,1 = S R R(2)
i /S R R(1)

i . Figure 4 presents the distribution
of this ratio, stratified by tertiles of numbers of hospital discharges. There are some
discrepancies among these two SRRs, but the variation in this ratio is consistent across
facility sizes.
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Table 3 Number and percentage of outlier facilities

Two-stage Model 2 Model 1

Non-significant Significantly-better Significantly-worse Row-sum

Non-significant 4366 (84.6 %) 31 (0.6 %) 60 (1.2 %) 4457 (86.4 %)

Significantly-better 47 (0.9 %) 233 (4.5 %) 0 (0 %) 280 (5.4 %)

Significantly-worse 47 (0.9 %) 0 (0 %) 374 (7.3 %) 421 (8.2 %)

Column-sum 4460 (86.4 %) 264 (5.1 %) 434 (8.5 %) 5158 (100 %)

Model 1: no adjustment for hospitals; Model 2: two-stage approach with random effects for both faculties
and hospitals; Significantly-better: SRR < 1 and one-sided p-value ≤ 2.5%; Significantly-worse: SRR > 1
and one-sided p-value ≤ 2.5%

Table 3 presents the pairwise comparison of the numbers and percentages of outlier
facilities identified by the p-values corresponding to their SRRs (using a test SRR = 1).
For example, a total of 107 facilities changed outlier status when switching between
these two models. Specifically, 60 facilities that were significantly worse-than-average
based on Model 1 were not significant based on the two-stage approach for fitting
Model 2. On the other hand, 47 facilities that were significantly worse-than-average
based on Model 2 were not significant based on Model 1. In summary, adjusting for
hospitals has some influence, although relatively small, on the estimation of SRRs.
Typically, the difference between the two SRRs was less than 10 %, and most SRRs
changed less than 5 % between the models.

Finally, to address the problem of simultaneously monitoring a large number of
facilities, we used the method discussed in Kalbfleisch and Wolfe (2013). Essentially,
the method is based on the empirical null (Efron 2004, 2007), which accounts for
unexpected overdispersion in the data. The p-value for each facility was converted to
a Z-score, and the corresponding histograms from the two-stage approach of Model
2 are plotted in Fig. 5, stratified into three groups based on numbers of discharges
within each facility. The N (0, 1) density is then superimposed on the histogram along
with a normal curve fitted to the center of the histograms using a robust M-estimation
method. The overdispersion of the Z-scores is substantial in facilities with a larger
number of discharges. It is clear that the departure from the null is related to the
number of discharges, which is consistent with the finding in Kalbfleisch and Wolfe
(2013). This motivated us to refer from the empirical null distribution to assess outlier
facilities and to stratify the adjustment for overdispersion on the number of discharges
within facilities. Table 4 presents the flagging numbers and rates for various methods,
which includes the proposed Model 1, two-stage approach for fitting Model 2, a sin-
gle random effect model (random effect for facilities, and no adjustment for hospital),
and a double random effects model (random effects for both facilities and hospitals).
The results presented are based on a one-tailed test where the relevant p-value is
2.5% or less. Similar to previous findings, the total proportions of outlier facilities
flagged by Model 1 and Model 2 are comparable. The standard SRR method based
on Model 2 would flag about 8.1% of facilities overall. Facilities with a larger number
of discharges are more likely to be flagged (16.4%) than those facilities with smaller
number of discharges (2.4%). In contrast, the empirical null method makes an appro-

123



K. He et al.

Fig. 5 Histogram of Z Scores
(based on two-stage approach
for Model 2), by number of
facility discharges (tertile 1: [11,
57]; tertile 2: [58, 109]; tertile 3:
[110, 614])
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priate adjustment in each of the strata and yields fairly consistent flagging rates across
all strata. It is interesting to note that the test based on random effects model (either
a single random effects model without adjustment for hospitals, or a double random
effects model with both random effects for facilities and hospitals) flags fewer outlier
facilities. Especially for facilities with a small number of discharges, the single random
effects model flagged only one facility and the double random effects model flagged
none. The shrinkage in this setting is severe under the random effects approach.

6 Discussion

The purpose of this paper is to develop and evaluate a method for including discharging
hospitals on the estimation of facility-level SRRs. To model the dependence of read-
mission events on facilities and patient-level characteristics, we evaluated two models
that are distinguished by the level of control for the influence of the discharging hos-
pital, while accounting for facilities as fixed effects. One purpose of instituting an
SRR measure for dialysis facilities is to encourage communication between dialysis
facilities and hospitals with respect to the effective treatment of a patient following a
hospital discharge. It might be argued that one potential advantage of Model 1 is that
it makes no adjustment for hospitals and hence provides a strong incentive for dialysis
facilities to coordinate patient care with the discharging hospitals. It should be noted,
however, that there remains a substantial benefit to facilities to coordinate care even
with Model 2. In addition, Model 2 recognizes that some aspects of the hospitals’ care
are outside the dialysis facilities’ control. With Model 1, some dialysis facilities might
argue that the reason for their poor outcomes with respect to patient readmissions is the
poor care of the discharging hospital. The adjustment in Model 2, however, weakens
this rationale and reduces the force of this argument or excuse. We recommend using
the SRR computed under Model 2 because this model specification accounts, to some
extent, for the potential confounding effects of hospitals. The inclusion of this effect
is perceived to provide a fair presentation of facility effects.

In terms of our choice of regression model for profiling dialysis facilities, we prefer
fixed effects to random effects, specifically when identifying facilities with extreme
outcomes. Fixed effects provide more precise estimation of the true effects for those
facilities with extreme outcomes. In contrast, random effects result in shrinkage esti-
mators (where the estimate for each facility is shifted toward the overall mean), and
the shrinkage is particularly large for smaller facilities. This makes identification of
poor performance in smaller facilities even more difficult.

Spiegelhalter et al. (2012) discussed strategies for health care regulation. The mea-
sure we considered in this report focuses on measuring the deviation of dialysis facil-
ities relative to the overall population ‘average’. Our proposed method considered the
situation in which the primary goal is to assess whether a threshold has been breached.
Another important strategy is to select a proportion of health care providers to inspect,
for which particular attention should be paid to the problem of simultaneously moni-
toring a large number of indicators (i.e., overassertion may occur). We addressed this
issue using the methods based on the empirical null hypothesis, which accounts for
overdispersion in the data.
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It is worth noting that the denominator of the SRR estimates the expected number
of readmissions given the observed number of discharges. Therefore, the SRR may
unfairly penalize a facility with a low hospitalization rate but many readmissions.
Dialysis facilities are also reviewed with respect to their overall hospitalization rates,
and the Standardized Hospitalization Rate (SHR) compares the number of hospital-
izations to the expected number of hospitalizations in each facility (see, for example,
Liu et al. 2012). These two measures, the SHR and the SRR together, help to address
this issue.
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7 Appendices

7.1 Appendix 1: model fitting algorithm of the fixed-effects model

(i) Set initial values for β(0) and γ
(0)
i and � = 0

(ii) For fixed β = β(�), update γi using a one-step Newton-Raphson iteration as

γ
(�+1)
i = γ

(�)
i + I (�)

i

−1
U (�)

i ,

where

U (�)
i := ∂

∂γi
log L(γi ,β

(�))

∣
∣
∣
∣
γi =γ

(�)
i

=
ni∑

k=1

[Yik − p(�)
ik ],

I (�)
i := − ∂2

∂γ 2
i

log L(γi ,β
(�))

∣
∣
∣
∣
γi =γ

(�)
i

=
ni∑

k=1

p(�)
ik [1 − p(�)

ik ],

with

p(�)
ik := pik(γ

(�)
i ,β(�)).

(iii) Now update β by carrying out one step of the Newton-Raphson iteration

β(�+1) := β(�) + I (�)
β

−1
U (�)

β ,

where

123



K. He et al.

U (�)
β := ∂

∂β
log L(γ (�+1),β)

∣
∣
∣
∣
β=β(�)

=
F∑

i=1

ni∑

k=1

{Yik − p(�)∗
ik }Zik,

I (�)
β := − ∂2

∂β∂βT
log L(γ (�+1),β)

∣
∣
∣
∣
β=β(�)

=
F∑

i=1

ni∑

k=1

p(�)∗
i j {1 − p(�)∗

ik }ZikZT
ik,

with

p(�)∗
ik := pik(γ

(�+1)
i ,β(�)).

(iv) If max ‖p(�+1)∗
ik − p(�)∗

ik ‖ > 10−6, set � = � + 1 and go back to step (i).

7.2 Appendix 2: Newton-Raphson algorithm for the mixed-effects model

The γi is updated as

γ
(�+1)
i = γ

(�)
i −L′′

i
(�)−1L′

i
(�)

,

where

L′
i
(�) := ∂

∂γi
L(�)
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∣
γi =γ
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∣
∣
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=
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b(�)
i jk .

Similarly, β is updated as

β(�+1) = β(�)−L′′
β

(�)−1L′
β

(�)
,

where
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L′
β

(�) := ∂

∂β

F∑

i=1

L(�)
i

∣
∣
∣
∣
β=β(�)

=
F∑

i=1

H∑

j=1

ni j∑

k=1

Zi jka(�)
i jk,

−L′′
β

(�) := − ∂2

∂βT ∂β

F∑

i=1

L(�)
i =

F∑

i=1
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j=1

ni j∑

k=1

b(�)
i jkZT

i jkZi jk .

The γ and β are then repeatedly updated until they converge.
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