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Abstract
The collection rate of contributions to public pension (CRCP), expressed as the ratio of
the actual contributions to the expected contributions from insurers, is a key component
of the public pension system in China. Recent years have seen various patterns of
change in CRCPs at the provincial level. In order to study the drastic changes in a
short time and understand their underlying implications, we propose a nonparametric
time-varying coefficients model for longitudinal data with pre-specified finite time
points, also known as panel data. By utilizing a penalized least squares method, the
proposed method enables estimation of a large number of parameters, which can
exceed the sample size. The resulting estimator is shown to be efficient, robust, and
computationally feasible. Furthermore, it possesses desirable theoretical properties
such as n1/2-consistency, asymptotic normality, and the oracle property.
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1 Introduction

Over the last decade, a massive number of rural workers in China have migrated to
major cities for higher paying jobs. As a result, public pension arrears, as reported by
the ChineseMinistry of Social Security (CMSS), increased from 28.06 billion Chinese
yuan in 1998 to 43.06 billion in 2006. While contribution evasion rates are a global
issue impacting many developing countries [50], the CMSS has also reported in a
special audit that the situation has degenerated in recent years. In order to maintain
and improve the public pension system, it is critical to understand the system and
identify risk factors that may impact contribution evasion rates. A key measure for a
sustainable public pension system for urban employees in China is the collection rate
of contributions to public pension (CRCP), i.e., the ratio of the actual contributions to
the expected contributions from insurers. A high CRCP indicates a healthy and stable
public pension system, whereas a low CRCP often implies contribution evasions and
may result in a system breakdown [43].

The literature has identified the following six factors that may play an important
role in influencing CRCPs: per capita disposable income, the consumer price index,
the enterprise scale, the unemployment rate, the proportion of state-owned enterprise
workers’ salary in the total society wages, and the choice of collection institutions
[14,37]. However, conflicting results were reported, mostly due to the unavailability
of data and lack of proper statistical methods [14,17,35–37]. This paper systemically
explores the relationship of the aforementioned factors with the CRCP. We use the
relevant data of 30 provinces in China available from 2002 to 2015 from the Chinese
Statistical Yearbook (http://www.stats.gov.cn/tjsj/ndsj/2015/indexeh.htm).

The collected data are longitudinal with some pre-specified finite time points, also
known as panel data. Figure 1 shows strong geographic and temporal variations of
the CRCP: the eastern region, which is more developed, presents lower CRCPs than
the middle and western regions, which are typically less developed; CRCPs keep
increasing over time in many regions. The variations and the increasing trend may be
due to the imbalanced distributions of the relevant risk factors as well as their potential
time-varying changes. Moreover, Fig. 2, which depicts the CRCP against each of the
six factors over time, hints at possible time-varying effects as well. To elucidate such
complex relationships between the risk factors and CRCPs, we resort to a time-varying
coefficients model for the panel data:

Yit = ft +
p∑

j=1

βt, j Xit, j + αi + εi t , i = 1, . . . , n, t = 1, . . . , T , (1.1)

where Yit is the CRCP of province i at time t , Xit = (Xit,1, . . . , Xit,p)
′ are p risk

factors in province i at time t , βt = (βt1, . . . , βtp)
′ and ft are unknown functions of

t , αi reflects the heterogeneity of province i , and εi t is independent random errors.
In our data, T = 13 and n = 30. For identifiability, we assume that f1 = 0. Model
(4.1) is termed a fixed-effects time-varying coefficients model when αi is allowed to
be correlated with Xit , or a random-effects time-varying coefficients model when αi

is uncorrelated with Xit .
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Fig. 1 The plot of the collection rate of contributions to public pension (CRCP) in 2002, 2005, 2008, and
2011

The seminal work of Hastie and Tibshirani [20] on time-varying coefficients mod-
els has motivated applications in longitudinal data analysis [11,13,22,26,28,55], time
series analysis [3,4,23], survival analysis [2,12,16,31–34,52,60]; and [5], and func-
tional data analysis [44].

Limited work, however, has been conducted for time-varying coefficient models
with panel data. Robinson [48] first introduced (4.1) without the explanatory variables
Xit for largeT and smalln. Li et al. [25] considered (4.1) forT tending to infinity.When
T is sufficiently large, Robinson [48] andLi et al. [25] applied the local linear technique
[7] to estimate ft and βt with ft = f (t/T ) and βt = (β1(t/T ), . . . , βp(t/T )) [1,46].
When T goes to infinity, the distance between any two points in {t/T ; t = 1, . . . , T }
tends to 0, the local linear approximation biases can be ignored and asymptotic results
of the resulting estimator can be easily established. In this case, the kernel smoother
methods, e.g., those developedbyQian andWang [42] andRodriguez-Poo andSoberon
[49] in a similar context, may also be applicable. However, when T is fixed, the
distance between two time points does not tend to 0 even when the sample size n
goes to infinity, resulting in large local linear approximation biases and difficulties in
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Fig. 2 The scatter plots of CRCP versus six factors at selected years

establishing asymptotic theories. Except for some ad hoc methods that present ft and
βt as distinct parameters at each t , little progress has been made with fixed values of
T . Without any constraints on ft and βt , the number of parameters to be estimated
will be more than T (p + 1), which typically exceeds the sample size n.

We propose a flexible and computationally feasible approach to estimating ft and
βt for panel data with a fixed T . As our focus is not on predicting the CRCP for each
province, we treated αi as a nuisance parameter. We do not impose any parametric
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assumptions on ft or βt . Instead, we only assume that ft and βt vary smoothly with
t [7], Hastie et al. 2001. In general, such an assumption is expressed as a smoothing
property of some unknown functions. However, when t is discrete, the ordinary defi-
nition of smoothness does not apply. We therefore modify the smoothness assumption
by assuming that ft and fs and βt and βs remain close to each other when t and s are
contiguous. Consequently, if we can identify time intervals within which ft or βt are
constant, we effectively achieve dimension reduction for the parameter space.

We propose a penalized least squares method to identify the jump points of ft and
βt and estimate the time-varying regression functions ft and βt simultaneously. Our
method is flexible and data-driven as it does not require a priori specifications of the
number and locations of the jump points of ft and βt . In addition, the estimator has
the desirable n1/2-consistency, asymptotic normality, and the oracle property, i.e., the
resulting estimator is as efficient as if the jump points of ft and βt were known. The
proposed method is applied to the CRCP data, and we have identified two significant
factors for the CRCP, the per capita disposable income and the unemployment rate,
which were not detected by the available methods.

The remainder of this paper is organized as follows. Section 2 introduces the non-
parametric time-varying effects model for panel data and proposes a penalized least
squares method for inference. Section 3 compares the proposed method with the exist-
ing ones, and Sect. 4 details the analysis of the CRCP study. We conclude the paper
with some remarks in Sect. 5. Appendix details the proofs of the theorems.

2 The ProposedModel andMethod

Consider n independent subjects, each with observations (Xit ,Yit ), t = 1, . . . , T ,
i = 1, . . . , n, generated by (4.1). Let gt = ft − ft−1 and γt j = βt, j − βt−1, j with
f0 = 0 and β0, j = 0 for j = 1, . . . , p. Thus ft = ft−1 and βt, j = βt−1, j if gt = 0
and γt j = 0, respectively. Therefore, the number and the location of the jump points
of ft and βt can be determined by the number and the location of nonzero parameters
in {gt , γt j , t = 1, . . . , T , j = 1, . . . , p}, leading to a reformulation of (4.1) as

Yit =
t∑

d=1

gd +
p∑

j=1

t∑

d=1

γd j Xit, j +αi + εi t , i = 1, . . . , n, t = 1, . . . , T . (2.1)

Taking the difference of Yit and Yis for t > s, we have

Yit − Yis =
t∑

d=s+1

gd +
p∑

j=1

(
t∑

d=1

γd j Xit, j −
s∑

d=1

γd j Xis, j

)
+ εi,ts, (2.2)

where εi,ts = εi t − εis , i = 1, . . . , n, 0 ≤ s < t, and 1 ≤ t ≤ T . To identify
and estimate the nonzero parameters in {gt , γt j , t = 1, . . . , T , j = 1, . . . , p} while
encouraging the “smoothness” of ft and βt , we propose the following penalized least
squares estimation,
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Ln(θ) = 1

n

n∑

i=1

∑

t>s

⎧
⎨

⎩Yit − Yis−
t∑

d=s+1

gd −
p∑

j=1

(
t∑

d=1

γd j Xit, j −
s∑

d=1

γd j Xis, j

)⎫⎬

⎭

2

+
T∑

t=2

pλ(|gt |) +
T∑

t=1

p∑

j=1

pλ(|γt j |), (2.3)

with g1 = f1 − f0 = 0 for identifiability purposes, where θ = (g2, . . . , gT , γ ′
1, . . . ,

γ ′
T )′ and γt = (γt1, . . . , γtp)

′. Here, pλ(·) is a penalty function, such as pλ(|β|) =
λ|β|q withλ > 0, q > 0,which yields thewell-known ridge regressionwith q = 2 and
Lasso penalized regressions [53] with q = 1. Another popular choice is the smoothly
clipped absolute deviation (SCAD) penalty function [9].

By minimizing Ln(θ), we show that there exists a positive probability that some
gt and γt j can be estimated to be exactly zero, lending support to the usage of the
automated selection of the jump points ft and βt and the estimation of the time-
varying regression, simultaneously.

To proceed, let θ = (θ(1)′, θ(2)′)′, where θ(1) = (θ1, . . . , θm)′, with m being
the number of nonzero parameters, and θ(2) = (θm+1, . . . , θT p+T−1)

′. Throughout
the paper, the subscript “0” represents the true value. Without loss of generality,
we assume that θ

(2)
0 = 0. We consider a general nonconcave penalty function

pλ(·) for (2.3). Let an = max1≤ j≤m ṗλ(|θ j0|), Σ = diag{ p̈λ(|θ10|), . . . , p̈λ(|θm0|)},
b = ( ṗλ(|θ10|)sgn(θ10), . . . , ṗλ(|θm0|)sgn(θm0))

′, Λ = E
(∑

t>s Wi,ts(θ)⊗2|θ=θ0

)
,

and Υ = E
[∑

t>s εi,tsWi,ts(θ)
]⊗2 |θ=θ0 , where

Wi,ts(θ) = ∂

∂θ(1)

⎧
⎨

⎩

t∑

d=s+1

gd +
p∑

j=1

(
t∑

d=1

γd j Xit, j −
s∑

d=1

γd j Xis, j

)⎫⎬

⎭ , (2.4)

and b⊗2 = bb′ for any vector b. We have the following theorems, whose proofs are
given in the appendix.

Theorem 1 Ifmax1≤ j≤m p̈λ(|θ j0|) → 0, then there exists a minimizer θ̂ of Ln(θ) such
that

‖θ̂ − θ0‖ = Op(n
−1/2 + an).

Consider, for example, the SCAD penalized function. An n1/2- consistent estimator
is obtained based on a proper λ and an = 0. Its oracle property will be stated in the
following theorem.

Theorem 2 (OracleProperty)Assume lim inf
n→∞,θ→0+ ṗλ(θ)/λ > 0. Ifλ → 0and

√
nλ →

∞ as n → ∞, the n1/2−consistent local minimizer, θ̂ = (
̂

θ(1)′,̂θ(2)′)′, satisfies
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(a) Sparsity: θ̂ (2) = 0 with probability going to 1.
(b)

√
n(2Λ + Σ){θ̂ (1) − θ

(1)
0 + (2Λ + Σ)−1b} → N (0, 4Υ ).

Theorem 2 has important implications. For the SCAD penalty, when λ → 0, it
follows that b = 0 and Σ = 0. Therefore,

√
n
(
θ̂ (1) − θ

(1)
0

)
→ N (0,Λ−1Υ Λ−1)

in distribution. That is, the penalized least squares estimator for θ(1) performs as well
as the least squares estimator for estimating θ(1) when θ(2) = 0 is known a priori.

Because the SCAD penalty function satisfies (1) continuity, (2) sparsity, and (3)
unbiasedness and the estimators based on the penalized function using the penalty
SCAD have the “oracle property,” we use the SCAD penalty as our penalty function in
the numerical studies and real data analysis. However, as the SCAD penalty function
pλ(·) is nonconcave, we use a local quadratic algorithm [9] to accommodate time-
varying regression models for panel data.

Given an initial value θ
[0]
j , for example, an un-penalized estimate, we consider the

following local quadratic approximation for pλ(|θ j |):

pλ(|θ j |) ≈ pλ

(
|θ [0]

j |
)

+ 1

2
ṗλ

(
|θ [0]

j |
) (

θ2j − (θ
[0]
j )2

)
/|θ [0]

j |.

Define S(θ) = 1
n

∑n
i=1

∑
t>s

{
Yit − Yis − ∑t

d=s+1 gd − ∑p
j=1

(∑t
d=1 γd j Xit, j

− ∑s
d=1 γd j Xis, j

)}2
, Uλ(θ) =

{
ṗλ(|θ1|) θ1|θ1| , . . . , ṗλ(|θT (p+1)−1|) θT (p+1)−1

|θT p+T−1|
}′

, and

Σλ(θ) = diag
{
ṗλ(|θ1|)/|θ1|, . . . , ṗλ(|θT p+T−1|)/|θT p+T−1|

}
. We then conduct the

following iterative estimation.

Step 1 Compute θ [1] by the Newton–Raphson algorithm

θ [1] = θ [0] − {S̈(θ [0]) + Σλ(θ
[0])}−1{Ṡ(θ [0]) +Uλ(θ

[0])},

where Ṡ and S̈ are the first and second derivative of S, respectively.
Step 2 Repeat Step 1 until convergence.

For the selection of λ, Lin and Peng [27] showed that the BIC criterion performs
well. By treating the number of nonzero estimates of parameters as an approximation
to the generalized degree of freedom, DFλ, we propose to select λ by minimizing

BICλ = log{S(θ̂)} + 2−1DFλn
−1log n. (2.5)

In practice, to approximate distribution and construct the confidence interval for
θ(1), we need to estimate the variances of θ̂ (1), which can be approximated by
1
n Λ̂−1Υ̂ Λ̂−1, where

Λ̂ = 1

n

n∑

i=1

∑

t>s

{
Wi,ts(θ̂)

}⊗2
, Υ̂ = 1

n

n∑

i=1

{
∑

t>s

ε̂i,tsWi,ts(θ̂)

}⊗2

,
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ε̂i,ts = Yit − Yis − ∑t
d=s+1 ĝd − ∑p

j=1

(∑t
d=1 γ̂d j Xit, j −∑s

d=1 γ̂d j Xis, j
)
, and

Wi,ts(θ) is defined by (2.4).

3 Numerical Study

We evaluate the performance of the proposed method via extensive simulations. Data
are generated from

Yit = ft + βt,1Xit,1 + βt,2Xit,2 + αi + εi t , i = 1, . . . , n and t = 1, . . . , T ,

where ft = F(t), βt,1 = F(T + t), and βt,2 = F(T + 2t) with F(x) = I (x <

3) + 2I (3 ≤ x < 6) + 3I (6 ≤ x < 8) + 4I (8 ≤ x < 11) + 2I (11 ≤ x <

17) + 3.5I (17 ≤ x < 23) + 2.5I (x ≥ 23). The random effect, αi , is assumed to
follow N (0, 1), and the random error is generated from εi t = 0.5εi,t−1 + ηi t , where
the ηi t ’s are independently and identically distributed standard normal variables and
εi0 = 0. We generate the covariates {Xit, j } via following two settings.

Setting 1 For each j = 1, 2, {Xit, j } is generated from the AR(1) process with Xit, j =
0.5Xi(t−1), j + eit, j , t = 1, . . . , T and Xi0, j = 0, where the eit, j ′s are independent
standard normal random variable.

Setting 2 {Xit,1} is generated from theAR(1) process with Xit, j = 0.5Xi(t−1), j +eit, j
and Xit,2 from Xit,2 = r × Xit,1 + √

1 − r2 × eit,1. In this case, the correlation
coefficient between Xit,1 and Xit,2 at a given t is approximately equal to r = 0.5
or r = 0.8, where the eit, j ′s, j = 1, 2 are independent standard normal random
variables.

We consider two different sample sizes, n = 100 and n = 200, and two different
total number of time points, T = 5 and T = 10. For each simulation configuration,
a total of 500 data sets are generated. Given the subset ϑ ≡ {ϑk, k = 1, . . . , K } ⊂
{ ft , βt, j : t = 1, . . . , T , j = 1, 2}, the performance of the estimators for ϑ is assessed
based on Bias = {K−1∑K

k=1(E ϑ̂k −ϑk)
2}1/2, SD = {K−1∑K

k=1 E(ϑ̂k −E ϑ̂k)
2}1/2,

and the mean squared error (MSE), which is defined as MSE = Bias2 + SD2, where
E ϑ̂k is approximated by the sample mean of ϑ̂k based on the 500 simulations.

For each simulation configuration, we use (2.5) to select λ. The proposed method is
compared with the ordinary least squares estimator without penalty (termed “Naive”)
and the least squares estimator with the known jump points for ft and βt (termed
“Oracle”). To our knowledge, the naive estimator is the only available method to
analyze time-varying panel data as distinct parameters at various time points t . The
results of thesemethods are reported inTables 1, 2, and3.Theperformances of all of the
method tend to improvewhen the sample sizes increase or the correlations between the
covariate processes decrease. However, in most cases, the proposed estimator presents
considerably smaller MSE than the Naive estimator.

Moreover, the SDs and MSEs of the proposed estimator are comparable to those of
the oracle estimator, especially when the sample size is large, which hints the oracle
property of the proposed estimator.
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Furthermore, we examine the performance of the proposed criterion for selecting
λ as in (2.5). Figure 3 depicts BIC versus ‖θ̂ − θ0‖ for a “typical” sample of Setting 1
with T = 10 and λ ranges from 0.05 to 1 for two different sample sizes n = 100 and
n = 200. Figure 3 reveals that BIC tends to increase as ‖θ̂ − θ0‖ increases. Therefore,
it is expected that the λ selected by BIC would minimize ‖θ̂ − θ0‖.

Finally, we test the accuracy of our standard error formula given in Sect. 2. The
standard deviations, denoted by SD in Table 2, of 500 estimated ft and βt j , based
on 500 simulations, can be regarded as the true standard errors. The average and the
standard deviation of 500 estimated standard errors, denoted by SEave and SEstd ,
summarize the overall performance of the standard error formula. The performance
of the standard error formula is quite satisfactory.

4 Analyzing Risk Factors of the Collection Rate of Contributions to
Public Pension

The collection rate of public pension contributions (CRCP), the response variable,
along with the explanatory variables, including per capita disposable income (PCDI),
consumer price index (CPI), enterprise scale (ES), unemployment rate (UR), pro-
portion of state-owned enterprise workers’ salary to the total society wages (PWS),
and insurance collection institutions (ICI), which is a binary indicator with ICI = 0 if
social security agencies; 1 if local tax agencies, were collected from 30 provinces from
the years 2002 to 2015. In particular, PCDI has been suggested to reduce contribution
evasions [40]. The rising cost of living is reflected in CPI, which might negatively
affect the proportion of pension contributions [18]. We included ES since it represents
the proportion of employees working for large- or medium-sized enterprises, which
may affect the CRCP since employees in small enterprises are more likely to practice
evasion due to their general lack of oversight and short survival times [45]. A high
UR often implies a high sense of insecurity among insurers, motivating their pension
contributions. We included PWS because state-owned enterprises typically have strict
pension plans in China to prevent their employees from escaping the pension contri-
butions [45]. The inclusion of ICI, identifying social security agencies versus local
tax agencies, is due to the conjecture that local tax agencies are more efficient and
forceful in collecting contributions [30].

We consider the following model:

CRCPit = ft + αi + βt,1PCDIit+βt,2CP Iit+βt,3ESit+βt,4URit+βt,5PWSit
+βt,6 IC Iit + εi t ,

where i = 1, . . . , 30, t = 2002, . . . , 2015. The tuning parameter λ was chosen by
(2.5). The plot of the BIC versus λ is presented in Fig. 4a, which suggests that λ = 0.07
is the best choice. The resulting time-varying coefficient functions along with their
95% confidence intervals are shown in Fig. 4b–h. The SDs are estimated by themethod
described in Sect. 2.
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Table 1 Simulation results for Setting 1 with T = 5, 10

n = 100 n = 200

Proposed Naive Oracle Proposed Naive Oracle

T = 5

{ f1, f2} Bias 0.00004 0.00146 0.00000 0.00000 0.00216 0.00000

SD 0.00678 0.08109 0.00000 0.00000 0.05847 0.00000

MSE 0.00005 0.00658 0.00000 0.00000 0.00342 0.00000

{ f3, f4, f5} Bias 0.00834 0.00478 0.00299 0.00182 0.00415 0.00232

SD 0.13253 0.14868 0.11009 0.08828 0.10797 0.07951

MSE 0.01763 0.02213 0.01213 0.00780 0.01168 0.00633

{β1,1, β2,1} Bias 0.00231 0.00277 0.00231 0.00201 0.00212 0.00223

SD 0.08238 0.10394 0.08234 0.05941 0.07302 0.05934

MSE 0.00679 0.01081 0.00679 0.00353 0.00534 0.00353

{β3,1, β4,1, β5,1} Bias 0.00045 0.00126 0.00046 0.00065 0.00164 0.00066

SD 0.06722 0.09844 0.06720 0.04833 0.06832 0.04836

MSE 0.00452 0.00969 0.00452 0.00234 0.00467 0.00234

{β1,2, β2,2, β3,2,
β4,2, β5,2}

Bias 0.00395 0.00471 0.00386 0.00097 0.00213 0.00093
SD 0.05354 0.09935 0.05249 0.03703 0.06892 0.03704

MSE 0.00288 0.00989 0.00277 0.00137 0.00475 0.00137

T = 10

{ f1, f2} Bias 0.00000 0.00356 0.00000 0.00000 0.00011 0.00000

SD 0.00000 0.08450 0.00000 0.00000 0.05700 0.00000

MSE 0.00000 0.00715 0.00000 0.00000 0.00325 0.00000

{ f3, f4, f5} Bias 0.01509 0.00290 0.00358 0.00925 0.00361 0.00312

SD 0.13206 0.15684 0.11389 0.09014 0.10953 0.07940

MSE 0.01767 0.02461 0.01298 0.00821 0.01201 0.00631

{ f6, f7} Bias 0.02096 0.00383 0.00616 0.01076 0.00417 0.00336

SD 0.15257 0.16093 0.13630 0.10979 0.11812 0.10129

MSE 0.02372 0.02591 0.01862 0.01217 0.01397 0.01027

{ f8, f9, f10} Bias 0.02960 0.00929 0.00814 0.01294 0.00402 0.00297

SD 0.14075 0.15616 0.12731 0.10004 0.11383 0.09358

MSE 0.02069 0.02447 0.01627 0.01018 0.01297 0.00877

{β1,1, β2,1, β3,1,
β4,1, β5,1, β6,1}

Bias 0.00035 0.00169 0.00011 0.00075 0.00197 0.00073
SD 0.05317 0.09899 0.05262 0.03595 0.06837 0.03593

MSE 0.00283 0.00980 0.00277 0.00129 0.00468 0.00129

{β7,1, β8,1,
β9,1, β10,1}

Bias 0.00257 0.00303 0.00250 0.00107 0.00294 0.00107
SD 0.06075 0.10000 0.06074 0.04258 0.07059 0.04257

MSE 0.00370 0.01001 0.00370 0.00181 0.00499 0.00181

{β1,2, β2,2} Bias 0.00178 0.00425 0.00369 0.00236 0.00126 0.00119

SD 0.08225 0.10229 0.07947 0.05771 0.07295 0.05768

MSE 0.00677 0.01048 0.00633 0.00334 0.00532 0.00333
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Table 1 continued

n = 100 n = 200

Proposed Naive Oracle Proposed Naive Oracle

{β3,2, β4,2, β5,2,
β6,2, β7,2, β8,2,
β9,2, β10,2}

Bias 0.00036 0.00408 0.00024 0.00138 0.00386 0.00137
SD 0.04242 0.09880 0.04147 0.02991 0.06907 0.02990

MSE 0.00180 0.00978 0.00172 0.00090 0.00479 0.00090

Table 2 True and estimated standard errors for Setting 1 with T = 10 and n = 200

SD SEave SEstd SD SEave SEstd

g2 = 0.0 0.00000 0.00000 0.00000 g7 = 0.0 0.00000 0.00000 0.00000

g3 = 1.0 0.10350 0.07843 0.00427 g8 = 1.0 0.07930 0.07724 0.00412

g4 = 0.0 0.00000 0.00000 0.00000 g9 = 0.0 0.00000 0.00000 0.00000

g5 = 0.0 0.00000 0.00000 0.00000 g10 = 0.0 0.00000 0.00000 0.00000

g6 = 1.0 0.09693 0.07815 0.00349

γ1,1 = 2.0 0.03104 0.03532 0.00225 γ2,1 = 3.5 0.05917 0.05720 0.00421

γ1,2 = 0.0 0.00000 0.00000 0.00000 γ2,2 = 0.0 0.00000 0.00000 0.00000

γ1,3 = 0.0 0.00000 0.00000 0.00000 γ2,3 = − 1.0 0.06171 0.06191 0.00428

γ1,4 = 0.0 0.00000 0.00000 0.00000 γ2,4 = 0.0 0.00000 0.00000 0.00000

γ1,5 = 0.0 0.00000 0.00000 0.00000 γ2,5 = 0.0 0.00000 0.00000 0.00000

γ1,6 = 0.0 0.00000 0.00000 0.00000 γ2,6 = 0.0 0.00000 0.00000 0.00000

γ1,7 = 1.5 0.04948 0.05435 0.00440 γ2,7 = 0.0 0.00000 0.00000 0.00000

γ1,8 = 0.0 0.00000 0.00000 0.00000 γ2,8 = 0.0 0.00000 0.00000 0.00000

γ1,9 = 0.0 0.00000 0.00000 0.00000 γ2,9 = 0.0 0.00000 0.00000 0.00000

γ1,10 = 0.0 0.00000 0.00000 0.00000 γ2,10 = 0.0 0.00000 0.00000 0.00000

As suggested by the reviewer, we also fit a conventional model (without time-
dependent effects) as a comparison for the panel data:

Yit = ft +
p∑

j=1

β j Xit, j + αi + εi t , i = 1, . . . , n, t = 1, . . . , T . (4.1)

Taking the difference of Yit and Yis for t > s to avoid the effect of αi , we have

Yit − Yis =
t∑

d=s+1

gd +
p∑

j=1

β j (Xit, j − Xis, j ) + εi,ts, (4.2)

where εi,ts = εi t − εis , i = 1, . . . , n, 0 ≤ s < t, and 1 ≤ t ≤ T . Thus, we compared
the proposed approach with the naive approach and the model (4.1) in Fig. 4b–h.

The results for the proposed and the naive methods showed similar trends, but the
naive estimates had much wider 95% confidence intervals. Consequently, the naive
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Table 3 Simulation results for Setting 2 with T = 5 and r = 0.5, 0.8

n = 100 n = 200

Proposed Naive Oracle Proposed Naive Oracle

r = 0.5

{ f1, f2} Bias 0.00013 0.00021 0.00000 0.00000 0.00142 0.00000

SD 0.00290 0.08216 0.00000 0.00000 0.06087 0.00000

MSE 0.00001 0.00675 0.00000 0.00000 0.00371 0.00000

{ f3, f4, f5} Bias 0.00864 0.00842 0.00638 0.00069 0.00775 0.00623

SD 0.13344 0.14908 0.11136 0.08652 0.10678 0.07883

MSE 0.01788 0.02230 0.01244 0.00749 0.01146 0.00625

{β1,1, β2,1} Bias 0.00335 0.00236 0.00329 0.00214 0.00044 0.00201

SD 0.08272 0.12133 0.08195 0.05923 0.08526 0.05914

MSE 0.00685 0.01473 0.00673 0.00351 0.00727 0.00350

{β3,1, β4,1, β5,1} Bias 0.00189 0.00489 0.00183 0.00076 0.00326 0.00077

SD 0.06972 0.11612 0.06942 0.05122 0.08326 0.05118

MSE 0.00487 0.01351 0.00482 0.00262 0.00694 0.00262

{β1,2, β2,2, β3,2, β4,2, β5,2} Bias 0.00176 0.00406 0.00169 0.00034 0.00366 0.00035

SD 0.05599 0.13014 0.05549 0.04021 0.09197 0.04022

MSE 0.00314 0.01695 0.00308 0.00162 0.00847 0.00162

r = 0.8

{ f1, f2} Bias 0.00013 0.00021 0.00000 0.00000 0.00142 0.00000

SD 0.00290 0.08216 0.00000 0.00000 0.06087 0.00000

MSE 0.00001 0.00675 0.00000 0.00000 0.00371 0.00000

{ f3, f4, f5} Bias 0.00868 0.00842 0.00638 0.00069 0.00775 0.00623

SD 0.13352 0.14908 0.11136 0.08652 0.10678 0.07883

MSE 0.01790 0.02230 0.01244 0.00749 0.01146 0.00625

{β1,1, β2,1} Bias 0.00618 0.00019 0.00219 0.00233 0.00180 0.00178

SD 0.10686 0.18532 0.10105 0.07275 0.13055 0.07269

MSE 0.01146 0.03434 0.01022 0.00530 0.01705 0.00529

{β3,1, β4,1, β5,1} Bias 0.00057 0.00676 0.00073 0.00045 0.00568 0.00100

SD 0.09137 0.17687 0.08821 0.06534 0.12603 0.06531

MSE 0.00835 0.03133 0.00778 0.00427 0.01592 0.00427

{β1,2, β2,2, β3,2, β4,2, β5,2} Bias 0.00311 0.00586 0.00244 0.00008 0.00529 0.00051

SD 0.08393 0.18784 0.08009 0.05804 0.13275 0.05805

MSE 0.00705 0.03532 0.00642 0.00337 0.01765 0.00337

method failed to detect the significance of ft on CRCP, whereas the proposed method
identified ft significantly negative from 2009 to 2013. The estimates from the fixed
effect model were significantly different from the proposed and the naive methods,
especially for β1 and β5. This suggests that the fixed effect model may be not suitable
for fitting the data.

Moreover, Fig. 4c–h illustrate the estimated curves for the effect functions corre-
sponding to the six risk factors. The effect estimates of CPI, ES, and PWS were not
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Fig. 3 BIC versus ‖θ̂ − θ0‖ when λ changes over the interval (0.05, 1) for the generated data with Setting
1 with T = 10

significantly different fromzero, suggesting that theymight not influence the collection
rates from 2002 to 2015.

However, the effect coefficients of PCDI (βt,1), UR (βt,4), and ICI (βt,6) were
significantly different from zero. The estimate of βt,1 was significantly negative in
2008. This change might be attributed to a change in employees’ perspectives on
public pensions, as the soaring real estate market might have caused high-income
employees to invest more in real estate than in public pension. The financial crisis in
2008might have led to a positive estimate ofβt,4. This resulted in a high unemployment
rate, forcing the employed insurers to increase the level of pension contributions. The
estimate of βt,6 was significantly negative from 2002 to 2014 and it has an increase
from2002 to 2005,with a peak in 2005. Thismight be because in 2005, the government
decreased the individual payment ratio from 11 to 8% to temporarily stimulate public
pension contributions. The result has largely confirmed the previous conjectures [30,
45].

5 Conclusion

We propose a flexible and computationally feasible approach to draw inferences
on time-varying coefficients models for panel data with fixed time points. The
proposed estimator is shown to have desirable theoretical properties, such as the n1/2-
consistency, asymptotic normality, and oracle property, indicating that this estimator
is as efficient as if the jump points of ft and βt were known. Simulation studies
validate the finite sample performance. We applied the proposed method to identify
influential factors among PCDI, CPI, ES, UR, PWS, and ICI for the endowment insur-
ance payment rate. The proposed method sheds light on mechanisms of the pension
contribution system, which were unknown before.
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Fig. 4 The estimators of the time-varying coefficient functions for the CRCP. The solid black line represents
the proposed estimator and the dark shadow shows the 95% confidence limit (CL) of the proposed estimator.
The dashed gray line represents the Naive estimator and the light shadow indicates the 95%CL of the Naive
estimator. The dashed brown line represents the no time-independent effect estimator and the brown shadow
indicates the 95% CL of the Naive estimator (Color figure online)
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As a future research direction, designing an efficient method to estimate province-
specific effects would allow for proper predictions of the CRCP for each province.
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Appendix

Proof of Theorem 1

Let αn = n−1/2 + an . Denote by θ0 the true value of θ . We want to show that for any
given ε > 0, there exists a large constant C such that

Pr

{
inf‖u‖=C

Ln(θ0 + αn · u) > Ln(θ0)

}
≥ 1 − ε. (5.1)

This implies with a probability larger than 1 − ε that there exists a local minimum
in the ball {θ0 + αn · u : ‖u‖ ≤ C}. Hence, there exists a local minimizer such that
‖θ̂ − θ0‖ = Op(αn).

Define θ∗ = θ0 + αn · u = (θ∗
1 , . . . , θ∗

T p+T−1)
′, using pλ(0) = 0, we have

Dn(θ
∗) = Ln(θ

∗) − Ln(θ0) ≥ S(θ∗) − S(θ0) +
m∑

j=1

{pλ(|θ∗
j |) − pλ(|θ j0|)},

where S(θ) = 1
n

∑n
i=1

∑
t>s

{
Yit − Yis − ∑t

d=s+1 gd − ∑p
j=1

(∑t
d=1 γd j Xit, j

− ∑s
d=1 γd j Xis, j

)}2
, m is the number of components of θ

(1)
0 . Let Ṡ be the gradi-

ent vector of S; by the standard argument of the Taylor expansion, we have

Dn(θ
∗) ≥ Ṡ(θ0)

′(θ∗ − θ0) + (θ∗ − θ0)
′ S̈(θ0)(θ

∗ − θ0){1 + op(1)}

+
m∑

j=1

[ ṗλ(|θ j0|)sgn(θ j0)(θ
∗
j − θ j0) + p̈λ(|θ j0|)

(
θ∗
j − θ j0

)2 {1 + o(1)}]

=̂ I1 + I2 + I3. (5.2)

Noting that E{Ṡ(θ0)} = 0 and Var{Ṡ(θ0)} = O(n−1), by the central limit theory we
have

I1 =
{
E{Ṡ(θ0)} + Op

(√
Var(Ṡ(θ0)

)}
(θ∗ − θ0) = Op

(
αn√
n

)
. (5.3)
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Similarly, we get

I2 = O(α2
nC

2). (5.4)

For I3, it is easy to see that it is bounded by

mαnanC + α2
n max{| p̈λ(|θ j0|)| : |θ j0| 
= 0}C2. (5.5)

From (5.3), (5.4), and (5.5), I1 and I3 are dominated by I2. Hence, by choosing a
sufficiently large C , (5.1) holds. ��

Proof of Theorem 2

We first show that with a probability tending to 1, for any given θ(1) satisfying ‖θ(1) −
θ

(1)
0 ‖ = Op(n−1/2) and any constant C ,

Ln((θ
(1)′, 0′)′) = min

‖θ(2)‖≤Cn−1/2
Ln((θ

(1)′, θ(2)′)′). (5.6)

To show (5.6), by Taylor’s expansion, we have

∂Ln(θ)

∂θr
= −2

n

n∑

i=1

∑

t>s

⎧
⎨

⎩Yit−Yis−
t∑

d=s+1

gd−
p∑

j=1

(
t∑

d=1

γd j Xit, j −
s∑

d=1

γd j Xis, j

)⎫⎬

⎭

× ∂

∂θr

⎧
⎨

⎩

t∑

d=s+1

gd +
p∑

j=1

(
t∑

d=1

γd j Xit, j −
s∑

d=1

γd j Xis, j

)⎫⎬

⎭

+ ṗλ(|θr |)sgn(θr ).

By the central limit theorem, we have

∂Ln(θ)

∂θr
= λ{−λ−1 ṗλ(|θr |)sgn(θr ) + Op(n

−1/2/λ)},

where lim inf
n→∞ lim inf

θ→0+ λ−1 ṗλ(θ) > 0 and n−1/2/λ → 0. The sign of the derivative is

completely determined by that of θr . Hence (5.6) follows.
By (5.6), Part (a) follows. Now we prove Part (b). It can be shown that there exists

θ̂ (1) in Theorem 1 that is a n1/2- consistent local maximizer of Ln((θ
(1)′, 0′)′), which

is regarded as a function of θ(1), and that satisfies the following equation:

∂Ln(θ)

∂θr

∣∣∣∣
θ=(θ(1),0)′

= 0, for r = 1, . . . ,m.
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Note that θ̂ (1) is a constant estimator. Thus, we have

0 = ∂Ln(θ)

∂θr

∣∣∣∣
θ=(θ(1),0)′

= S(θ)

∂θr

∣∣∣∣
θ=(θ(1),0)′

+ ṗλ(|θ̂r |)sgn(θ̂r )

= ∂S(θ0)

∂θr
+

m∑

l=1

{
∂2S(θ0)

∂θrθl
+ o(1)

}
(θ̂l − θl0)

+ ṗλ(|θr0|)sgn(θr0) + { p̈λ(|θr0|) + op(1)}(θ̂r − θr0).

Furthermore, we have

∂2S(θ0)

∂θ(1)∂θ(1)′ = 2Λ(1 + op(1)),

where

Λ= lim
n→∞

1

n

n∑

i=1

∑

t>s

⎡

⎣ ∂

∂θ(1)

⎧
⎨

⎩

t∑

d=s+1

gd+
p∑

j=1

⎛

⎝
t∑

d=1

γd j Xit, j −
s∑

d=1

γd j Xis, j

⎞

⎠

⎫
⎬

⎭

⎤

⎦
⊗2
∣∣
θ=θ0

.

Hence following by Slutsky’s theorem we have

√
n(2Λ + Σ)

{
θ̂ (1) − θ

(1)
0 + (2Λ + Σ)−1b

}
= √

n
∂S(θ0)

∂θ(1)
+ op(1).

This completes the proof of Part (b). ��
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