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Kidney transplantation is the most effective renal replacement therapy
for end stage renal disease patients. With the severe shortage of kidney sup-
plies and for the clinical effectiveness of transplantation, patient’s life ex-
pectancy post transplantation is used to prioritize patients for transplantation;
however, severe comorbidity conditions and old age are the most dominant
factors that negatively impact post-transplantation life expectancy, effectively
precluding sick or old patients from receiving transplants. It would be crucial
to design objective measures to quantify the transplantation benefit by com-
paring the mean residual life with and without a transplant, after adjusting
for comorbidity and demographic conditions. To address this urgent need, we
propose a new class of semiparametric covariate-dependent mean residual
life models. Our method estimates covariate effects semiparametrically effi-
ciently and the mean residual life function nonparametrically, enabling us to
predict the residual life increment potential for any given patient. Our method
potentially leads to a more fair system that prioritizes patients who would
have the largest residual life gains. Our analysis of the kidney transplant data
from the U.S. Scientific Registry of Transplant Recipients also suggests that a
single index of covariates summarize well the impacts of multiple covariates,
which may facilitate interpretations of each covariate’s effect. Our subgroup
analysis further disclosed inequalities in survival gains across groups defined
by race, gender and insurance type (reflecting socioeconomic status).

1. Introduction. About 15% of American adults have chronic kidney disease (Saran
et al., 2016), suffering worsened kidney functions with less fluid filtrated by the glomerular,
and losing kidney functions gradually but permanently over the cause of months or years.
According to the glomerular filtration rate (GFR), chronic kidney disease is classified into
five stages, where stage four (GFR between 15 and 29 ml/min/1.73m2) and stage five (GFR
less than 15 ml/min/1.73m2) kidney diseases are considered to be end stage renal disease
(ESRD), one of the most lethal diseases globally (Ferri, 2017; Feng et al., 2019). In the U.S.,
more than 600,000 individuals are living with ESRD, about 100,000 new ESRD cases are
diagnosed and 50,000 deaths occur each year (Salerno et al., 2021).

The most common treatment for ESRD is renal replacement therapy, including dialysis and
kidney transplant. As dialysis only provides partial kidney functions, dialysis patients tend
to have shorter survival than those receiving kidney transplants, which often lead to a longer
and a better quality of life (Evans et al., 1985; Wolfe et al., 1999; Liem et al., 2007). Due
to severe shortages in kidney supplies, however, there are far more ESRD patients who need
kidney transplants than donors available in the U.S. (Tonelli et al., 2011). For example, the
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U.S. Scientific Registry of Transplant Recipients (SRTR) reports that among 247,123 patients
awaiting kidney transplants during 2011-2018, only 139,270 patients actually received one,
leaving the remaining 107,853 still waiting (Hart et al., 2021).

Currently, decisions on patients’ priority of receiving kidney transplants are based on the
Estimated Post-Transplant Survival (EPTS) score, which predicts a patient’s life expectancy
post transplantation by using a Cox model with age, diabetes status, prior solid organ trans-
plant and time on dialysis as predictors (Time, 2012). Pre-existing conditions such as di-
abetes, prior solid organ transplants and long dialysis vintage are associated with shorter
survival (Cosio et al., 1998; Meier-Kriesche et al., 2000; Kasiske et al., 2001); thus patients
with these conditions tend to have a lower priority for transplantation (Cosio et al., 1998;
Molnar et al., 2011). On the other hand, younger age is found to be associated with better
outcomes and younger patients are likely to have a higher priority for transplantation. Thus,
age and severe comorbidity conditions have effectively become the most dominant factors
when deciding on who to receive transplants, which may preclude older and sicker patients
from benefiting from transplantation (Jassal, Schaubel and Fenton, 2005; Gore et al., 2009;
Weng et al., 2010). A more comprehensive system, however, should give a higher priority to
those who would benefit more from transplantation among patients with similar conditions,
and in the meantime triage candidates who may gain little or even suffer a loss in life ex-
pectancy. We propose to quantify the transplant benefit by comparing the improvement of
the patient’s expected residual life with and without transplantation. The expected residual
life characterizes the mean of the remaining survival time given that a patient has survived
up to a certain time (Hall and Wellner, 1981). Compared to overall survival, the residual life
expectancy provides a real time assessment of transplant benefits at any given time when a
kidney becomes available (Lin, Fei and Li, 2016). As demographic and clinical conditions
may be confounders affecting survival and should be adjusted for when assessing transplant
benefits (Cosio et al., 1998; Carrero et al., 2018), we aim at modeling and evaluating a pa-
tient’s potential residual life expectancy with or without transplant, based on the patient’s
covariate profile.

Much work on mean residual life models has been sparked by Oakes and Dasu (1990).
For example, Maguluri and Zhang (1994) proposed a univariate proportional mean residual
life model; Oakes and Dasu (2003) established the theoretical properties of the methods in
Oakes and Dasu (1990); Chen and Cheng (2005) estimated the coefficients of covariates in
a proportional mean residual life model by a partial-score approach, analogous to the partial
likelihood approach; Chen et al. (2005) employed the inverse probability weighting approach
for inference; Müller and Zhang (2005) extended the mean residual life model to incorporate
time-varying covariates; Chen and Cheng (2006) proposed an extended Buckley-James esti-
mator to estimate a linear residual life model and Chen (2007) further proposed an additive
mean residual life model. These works inspired median and quantile residual life models; see
for example, Jeong, Jung and Costantino (2008); Jung, Jeong and Bandos (2009); Ma and Yin
(2010) and Ma and Wei (2012). However, all these works imposed parametric dependency
of residual life on covariates as well as how long the patient has lived up to transplantation
(or “alive time” hereafter). Violations of the model assumptions will lead to biased estimates
and incorrect inferences (Chen, 2007; Chen et al., 2005). Our preliminary analysis of the
kidney transplant data from SRTR indicates that the mean residual life depends on alive time
and patients’ other covariates, such as treatment history, commorbidty conditions and demo-
graphics, through a complicated form which is challenging to model parametrically.

We propose a new class of semiparametric mean residual life models, with the goal of
detecting the effects of patients’ covariates on the residual life and identifying the patients
who may benefit most from transplantation. Our model does not impose any parametric as-
sumptions on the mean residual life function and, thus, the hazard function, and extends the
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model in Ma and Zhu (2012) and Ma and Zhu (2013) to accommodate censoring in response.
Moreover, given multiple covariates, we also propose a flexible dimension reduction method
to achieve a parsimonious model for efficiency and interpretability. To derive the estimators,
we employ a semiparametric method, in combination with a martingale treatment as in Zhao,
Ma and Lu (2022), to derive a semiparametrically efficient estimator (Bickel et al., 1994) for
the effects of covariates and an asymptotically normally distributed nonparametric estimator
of the mean residual life function. We apply the proposed method to analyze the SRTR kid-
ney transplant data and quantify transplantation gains by using the residual life expectancy.
Our analysis suggested that a single index of covariates summarize well the impacts of mul-
tiple covariates, which may facilitate interpretations of each covariate’s effect. Our subgroup
analysis further disclosed inequalities in survival gains across groups defined by race, gen-
der and insurance type (reflecting socioeconomic status). The results may inform the priority
rules for kidney transplantation.

This paper is organized as follows. Section 2 proposes the mean residual life model, and
Section 3 derives the estimators for the proposed model and discusses their properties. We
assess the finite sample properties of the methods by simulation studies in Section 5 and
apply it to analyze the kidney transplant data in Section 6. We conclude the paper with some
discussions in Section 7. We defer the regularity conditions and technical properties to the
Supplementary Materials.

2. Semiparametric regression of mean residual life. Denote by T the potential time
lag from being waitlisted for transplantation (i.e., became eligible) to death in the absence of
censoring and by X P Rp the baseline covariates, such as age, diabetes status, and prior solid
organ transplant, measured at the waitlisting time. Denote by W the time lag from waitlisting
to hypothetical transplant time that would have occurred in the absence of censoring. Our
focus is to model the difference of the mean residual life with and without transplant at any
time point t, given X and W observed up to t.

Let the indicator function IpW ď tq describe the time-dependent transplant status, with
IpW ď tq “ 0 and 1 corresponding to “Non-transplant” and “Transplant” at time t, respec-
tively. Following the missing data literature, we use WIpW ď tq to indicate the value of W
only when the transplant occurs before t. Given the history of transplantation status up to
time t, i.e., tIpW ď tq,WIpW ď tqu, we specify that the conditional hazard at t depends
only on the transplantation information at t, that is,

lim
hÑ0`

h´1P tt ď T ď t ` h | T ě t,X, IpW ď tq,WIpW ď tqu

“ λtt,X, IpW ď tq,WIpW ď tqu

“ λT pt ´ W,X,W qIpW ď tq ` λN pt,Xqt1 ´ IpW ď tqu,(1)

where the subscripts “T ” and “N” respectively stand for “Transplant” and “Non-transplant.”
Within the non-transplant group by time t, i.e. W ą t, the hazard function depends on the
time and covariates only; at and after transplantation, i.e. W ď t, the hazard function is to be
reset and is a function of t ´ W (the time lag since transplantation) because of immediate
surgical risks (Humar and Matas, 2005; Hernandez et al., 2006) and long term benefits of
receiving functional organs (Lin, Fei and Li, 2016). Additionally, W is considered as an
influential factor in λT because, for example, there is a clear survival advantage in favor of
preemptive kidney transplantation (Liem and Weimar, 2009).

A naive mean residual life (Maguluri and Zhang, 1994) would have been computed as
EpT ´ t | T ě t,X,W q. However, the conditioning part of this expectation looks beyond t
for a prospective W ą t, which is problematic as a patient would be guaranteed to survive
at least up to W when W ą t, coinciding with the notion that one cannot directly use time
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dependent treatment or, more broadly, “internal” time dependent covariates to predict survival
(Kalbfleisch and Prentice, 2011). Instead, at each time t, we compute the mean residual life
based on the hazard (1) that strictly conditions on the information available by then, that is,

EpT ´ t | T ě t,X, IpW ď tq,WIpW ď tqq

“ eΛT pt´W,X,W q

ż 8

t´W
e´ΛT ps,X,W qdsIpW ď tq ` eΛN pt,Xq

ż 8

t
e´ΛN ps,Xqdst1 ´ IpW ď tqu,

(2)

and will draw inference based on this valid model. Here, ΛN pt,Xq “
şt
0 λN ps,Xqds and

ΛT pt,X,W q “
şt
0 λT ps,X,W qds are the two cumulative hazard functions. This model uses

the “baseline" information at time t only (i.e., no look beyond t) to project future survival.
See details in Section 1 of the Supplementary Material.

For ease of notation, we rewrite as (2) as mtt,X, IpW ď tq,WIpW ď tqu “ mT pt ´

W,X,W qIpW ď tq ` mN pt,Xqt1 ´ IpW ď tqu, where

mT pt,X,W q “ eΛT pt,X,W q

ż 8

t
e´ΛT ps,X,W qds

and

mN pt,Xq “ eΛN pt,Xq

ż 8

t
e´ΛN ps,Xqds,

which may facilitate evaluation of the benefits of transplant at any given time. Particularly,
mT pt´W,X,W q ´mN pt,Xq quantifies the gain (or loss) of life expectancy of patients at t
with a transplant given at W ă t compared with those who would never receive a transplant;
candidates with close to zero or a negative value of mT pt ´ W,X,W q ´ mN pt,Xq would
benefit little from organ transplantation and would have lower priorities in the waiting list
(Chadban et al., 2020). This formulation suits the organ transplant setting: the severe shortage
of organs restricts the sources of donations and obliges us to compare the situation where an
immediate donation is received with the situation where donation is impossible at all.

To ensure estimability, we make a complete follow-up assumption (Tsiatis, 1990; Chen
et al., 2005; Chen and Cheng, 2005; Sun and Zhang, 2009), that is, the failure time T is
supported on a finite range p0, τq with τ ă 8, where in practice τ is the maximum follow-up
time; we relax this assumption in Supplement 5. We further assume the covariates X affect
T via index β, where β P Rpˆd is the coefficient matrix with d ď p. Then (1) and (2) can
respectively be expressed as

λtt,X, IpW ď tq,WIpW ď tqu

“ λT pt ´ W,βTX,W qIpW ď tq ` λN pt,βTXqt1 ´ IpW ď tqu,(3)

mtt,X, IpW ď tq,WIpW ď tqu

“ mT pt ´ W,βTX,W qIpW ď tq ` mN pt,βTXqt1 ´ IpW ď tqu,(4)

where λT , λN ,mT and mN are unspecified positive functions, which need to be esti-
mated. The model stipulates that the conditional mean of T ´ t depends on X via its d
indices, formed by projecting X to the columns of β, and the waiting time W . When
d “ 1, the model reduces to a single index model in terms of X; when 1 ă d ă p, it cor-
responds to a dimension reduction structure; when d “ p, the model is completely non-
parametric. Our analysis first focuses on a fixed d, followed by selecting d in a data
driven fashion as discussed in Section 6. Model (4) is general: it includes the proportional
mean residual life model, i.e., mtt,βTX, IpW ď tq,WIpW ď tqu “ m0ptq exppβTXq
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(Oakes and Dasu, 1990) as a special case by specifying mNtt,βTXu “ m0ptqeβ
TX,

mT tt ´ W,βTX,W u “ m0ptqeβ
TX`αW with α “ 0, and d “ 1; it reduces to the ad-

ditive model m0ptq ` βTX (Chen, 2007) by specifying mNtt,βTXu “ m0ptq ` βTX,
mT tt ´ W,βTX,W u “ m0ptq ` βTX ` αW with α “ 0, and setting d “ 1. By allow-
ing d to be larger than 1, model (4) extends these classical models by allowing more flex-
ible forms such as mtt,βTX, IpW ď tq,WIpW ď tqu “ m0ptqt

řd
k“1 exppβT

¨,kXqu and
mtt,βTX, IpW ď tq,WIpW ď tqu “ m0ptq `

řd
k“1β

T
¨,kX, where β¨,k is the kth column

of β. These special cases implicitly assume that transplant or the timing of transplantation
does not impact survival.

We further assume that T is subject to random right censoring so that C T | W,X, where
C is the censoring time and we observe Z “ minpT,Cq and ∆ “ IpT ď Cq. In our dataset,
W (or transplant) can only be observed while the patient is still at risk, that is, before death
or censoring occurs. We assume the observed tXi,Zi,∆i, IpWi ď Ziq,WiIpWi ď Ziqu,
i “ 1, . . . , n be independently and identically distributed realizations of tX,Z,∆, IpW ď

Zq,WIpW ď Zqu. This notation stipulates that W is subject to censoring due to Z , with an
indicator of IpW ď Zq. To make (4) identifiable and estimable, we fix the upper dˆ d block
of β to be Id, and estimate the lower pp´ dq ˆ d block of β. Corresponding to the upper and
lower parts of β, we write X “ pXT

u ,X
T
l qT, where Xu P Rd and Xl P Rp´d.

3. A semiparametrically efficient estimator. Denote the conditional survival function,
cumulative hazard function, hazard function and probability density function of the censoring
time C by Scpz,Xq “ prpC ě z | Xq, Λcpz,Xq “ ´logScpz,Xq, λcpz,Xq “ BΛcpz,Xq{Bz
and fcpz,Xq “ ´BScpz,Xq{Bz with z ă τ , where 0 ă τ ă 8 is the upper bound of the
follow-up time. Let ppXq ” prpC “ τ | Xq, and it follows that Scpτ,Xq “ fcpτ,Xq “ ppXq,
and λcpτ,Xq “ 1. Here, λcpz,Xq and fcpz,Xq are absolutely continuous on p0, τq, but with
a discontinuity point at τ .

To estimate mT pt ´ W,βTX,W q ´ mN pt,βTXq, which quantifies the gain (or loss) of
mean residual life after t with transplant given at W ď t, we need to estimate β and the
functionals of mT and mN , for which we consider a likelihood-based approach.

Under independent censoring, the joint partial probability density function [for mixed ran-
dom variables (Casella and Berger, 2001)] of tX,Z,∆,WIpW ď Zqu, conditional on a ran-
dom variable IpW ď Zq, is

fX,Z,∆,WIpWďZq|IpWďZqtx, z, δ,wIpw ď zq | Ipw ď zqu

“ tλT pz ´ w,βTx,wquδe´
şw

0
λN ps,βTxqds´

şz

w
λT ps´w,βTx,wqdsλcpz,xq1´δe´

şz

0
λcps,xqds

ˆfX,W |WďZpx,wqIpw ď zq

`tλN pz,βTxquδe´
şz

0
λN ps,βTxqdsλcpz,xq1´δe´

şz

0
λcps,xqdsfX|WąZpxqt1 ´ Ipw ď zqu,

(5)

where the last equality stems from (1)–(3). We do not need to specify the distribution of
X | W ą Z or the joint distribution of X,W | W ď Z as our ensuing estimation is conditional
on the observed W , X and W ď Z .

We view the probability function in (5) as a semiparametric model where all unknown
components, except for β, are infinite dimensional nuisance parameters. The parameters β
are parameters of interest with a finite dimension. We will estimate β by using a geometric
approach, which avoids decomposing λp¨q to be λ˚pzqeβ

TX as in a proportional hazards
model. This entails more flexibility for the model.

Let Y ptq “ IpZ ě tq and Nptq “ IpZ ď tq∆ be the at-risk and counting process, respec-
tively. Define the filtration Ft “ σtNpuq, Y puq,X, IpW ď uq,WIpW ď uq,0 ď u ă tu, and
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let Mptq “ Nptq ´
şt
0 Y psqλts,βTX, IpW ď sq,WIpW ď squds be the martingale with re-

spect to Ft.

3.1. Construction of Efficient Score Functions. Given the regular score by differentiat-
ing the joint partial probability density function (5) with respect to β, an efficient score, as
derived in Supplementary 2.1, is

Sefft∆,Z,β0
TX, IpW ď Zq,WIpW ď Zqu

“

ż 8

0

"

m12ts,β0
TX, IpW ď sq,WIpW ď squ

m1ts,βT
0 X, IpW ď sq,WIpW ď squ ` 1

´
m2ts,β0

TX, IpW ď sq,WIpW ď squ

mps,β0
TX, IpW ď sq,WIpW ď sqq

*

b

«

Xl ´
E
␣

XlScps,Xq | β0
TX

(

E
␣

Scps,Xq | β0
TX

(

ff

dMts,β0
TX, IpW ď sq,WIpW ď squ,

(6)

where m1ps,v, ¨, ¨q ” Bmps,v, ¨, ¨q{Bs, m2ps,v, ¨, ¨q ” Bmps,v, ¨, ¨q{Bv, m12ps,v, ¨, ¨q ”

Bm2ts,v, ¨, ¨u{Bs, and Xl is the lower p ´ d components in X.

3.2. Construction of Semiparametrically Efficient Estimator of β. A consistent estimat-
ing equation can be obtained from ErSefft∆,Z,X, IpW ď Zq,WIpW ď Zqu | Xs “ 0 as
the integrand in the above integral is predictable and Mts,βT

0 X, IpW ď sq,WIpW ď squ

is a martingale. Hence, to preserve the mean zero property and to simplify the compu-
tation, we can replace the part in the form of m12{pm1 ` 1q ´ m2{m within the curly
brackets in (6) by an arbitrary function of s, β0

TX, IpW ď sq, and WIpW ď sq, say
gts,β0

TX, IpW ď sq,WIpW ď squ, and still obtain

E

ˆ
ż 8

0
gts,β0

TX, IpW ď sq,WIpW ď squ

b

«

Xl ´
E
␣

XlScps,Xq | β0
TX

(

E
␣

Scps,Xq | β0
TX

(

ff

dMts,β0
TX, IpW ď sq,WIpW ď squ

¸

“ 0.

This provides a richer class of estimators than the estimator based on Seff alone. For example,
assigning a simple gts,β0

TX, IpW ď sq,WIpW ď squ yields a useful estimating equation
whose solution is consistent and often easy to get due to its simplicity. It is usually adopted as
an initial value for the efficient estimator proposed later to avoid local solutions in the finite
sample situations.

The fraction within the square brackets in (6) satisfies, when t ď τ ,

E
␣

XlScpt,Xq | β0
TX

(

E
␣

Scpt,Xq | β0
TX

( “
E
␣

XlY ptq | β0
TX, IpW ď tq,WIpW ď tq

(

E
␣

Y ptq | β0
TX, IpW ď tq,WIpW ď tq

( ;(7)

see Supplement 2.1.2 for further discussion at the tail when t ą τ . We then verify that

E

˜

ż 8

0
gts,β0

TX, IpW ď sq,WIpW ď squ b

«

Xl ´
E
␣

XlScps,Xq | β0
TX

(

E
␣

Scps,Xq | β0
TX

(

ff

dNpsq

¸

“ 0.

(8)
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Note that (7) and (8), proved in Supplement 2.1.2, imply that we can construct estimating
equations that depend on the transplantation status as follows:

(9)

n
ÿ

i“1

∆igtZi,β0
TXi, IpWi ď Ziq,WiIpWi ď Ziqu

b

«

Xli ´
pE
␣

XliYipZiq | βTXi, IpWi ď Ziq,WiIpWi ď Ziq
(

pE
␣

YipZiq | βTXi, IpWi ď Ziq,WiIpWi ď Ziq
(

ff

“ 0,

where gp¨q is any non-random function and pE
␣

YipZiq | βTXi, IpWi ď Ziq,WiIpWi ď Ziq
(

and pE
␣

XliYipZiq | βTXi, IpWi ď Ziq,WiIpWi ď Ziq
(

are given in Supplement 2.2.1. Here,
pEtYipZiq | βTXi, IpWi ď Ziq,WiIpWi ď Ziqu ” pEtYiptq | βTXi, IpWi ď Ziq,WiIpWi ď

Ziqu|t“Zi
and similarly for the other terms.

As such, we obtain the efficient estimator of β by solving
n
ÿ

i“1

∆i

„

pm12tZi,β
TXi, IpWi ď Ziq,WiIpWi ď Ziqu

pm1tZi,β
TXi, IpWi ď Ziq,WiIpWi ď Ziqu ` 1

´
pm2tZi,β

TXi, IpWi ď Ziq,WiIpWi ď Ziqu

pmtZi,β
TXi, IpWi ď Ziq,WiIpWi ď Ziqu

ȷ

b

«

Xli ´
pE
␣

XliYipZiq | βTXi, IpWi ď Ziq,WiIpWi ď Ziq
(

pE
␣

YipZiq | βTXi, IpWi ď Ziq,WiIpWi ď Ziq
(

ff

“ 0,(10)

where pm1pt,v, ¨, ¨q, pm2pt,v, ¨, ¨q, pm12pt,v, ¨, ¨q are estimators for the derivatives of mpt,v, ¨, ¨q
with respect to the first two elements given in Supplement 2.2.1. The results on efficiency are
given in Theorem 2.

3.3. Nonparametric Estimation of Mean Residual Life Functions. We estimate mtt,βTX, IpW ď

tq,WIpW ď tqu nonparametrically via pΛT tt ´ W,βTX,W uIpW ď tq ` pΛNtt,βTXut1 ´

IpW ď tqu based on a kernel smoothed version of the Nelson-Aalen estimator (Ramlau-
Hansen, 1983; Andersen et al., 1993). For any t, W (such that W ă t), and βTX, the esti-
mators, pΛT tt,βTX,W u and pΛNtt,βTXu, have the forms of

pΛT pt,βTX,W q “

n
ÿ

i“1

ż t

0

IpWi ď sqKhpβTXi ´ βTX,Wi ´ W q
řn

j“1 YjpsqIpWj ď sqKhpβTXj ´ βTX,Wj ´ W q
dNipsq,

pΛN pt,βTXq “

n
ÿ

i“1

ż t

0

IpWi ą sqKhpβTXi ´ βTXq
řn

j“1 YjpsqIpWj ą sqKhpβTXj ´ βTXq
dNipsq,

with a multivariate kernel function Khpu1, u2, ..., uqq “
śq

i“1Kpui{hiq{hi, where h “

ph1, . . . , hqq is a bandwidth vector and Kp¨q is a standard univariate kernel function satis-
fying Kpuq ě 0 and

ş8

´8
Kpuqdu “ 1 (Wand, 1994).

Following Maguluri and Zhang (1994), we obtain

(11)
pmT pt,βTX,W q “ e

pΛT pt,βTX,W q

ż 8

t
e´pΛT ps,βTX,W qds;whenW ď t;

pmN pt,βTXq “ e
pΛN pt,βTXq

ż 8

t
e´pΛN ps,βTXqds;whenW ą t.

It is worth noting that when computing pΛT pt,βTX,W q or pmT pt,βTX,W q, we use only the
transplanted observations, whereas when computing pΛN pt,βTXq or pmN pt,βTXq, we use
the full data but censor those who have received the transplant at the transplantation time.
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4. Asymptotic properties and semiparametric efficiency. We develop a series of the-
orems and establish that the estimators of β are

?
n-consistent, asymptotically normally dis-

tributed and semiparametrically efficient, and the nonparametric estimators, pmT pt,βTX,W q

and pmN pt,βTXq in (11), are asymptotically normally distributed. We defer the required con-
ditions, lemmas and all the proofs to the Supplementary Material.

Theorem 1. Under the regularity conditions in Supplement 4.1, pβ, the estimator ob-
tained by solving (9) or (10), is consistent, i.e. pβ ´ β Ñ 0 in probability when n Ñ 8.

Theorem 2. Under the regularity conditions in Supplement 4.1, the estimator, pβ, ob-
tained by solving (9) or (10) satisfies

?
nppβ´βq Ñ Np0,A´1BA´1Tq in distribution when

n Ñ 8, where A and B are given in Supplement 4.4.
Further, the estimator, pβ, obtained by solving (10) is semiparametrically efficient and

satisfies
?
nppβ ´ βq Ñ Nt0, pErSb2

eff t∆,Z,X, IpW ď Zq,WIpW ď Zquq´1u

in distribution, where SefftZ,βTX, IpW ď Zq,WIpW ď Zqu is given in (6).

Theorem 3. Under the regularity conditions in Supplement 4.1, the nonparametric esti-

mators pmN pt, pβ
T
Xq and pmT pt, pβ

T
X,W q satisfy

?
nh

!

pmN pt, pβ
T
Xq ´ mN pt,βTXq

)

Ñ Nt0, σ2
N pt,βTXqu

?
nh

!

pmT pt, pβ
T
X,W q ´ mT pt,βTX,W q

)

Ñ Nt0, σ2
T pt,βTX,W qu

in distribution for all t, W (such that W ă t) and X, where σ2
N pt,βTXq and σ2

T pt,βTX,W q

are given in Supplement 4.5.

5. Simulation. The section features four simulation studies for evaluating the finite sam-
ple performance of our method. For comparisons, we additionally implement a semiparamet-
ric proportional mean residual life model, denoted as “PM” (Chen and Cheng, 2005), which
implicitly assumes d “ 1.
Study 1: We generate event times with hazard functions of λN pt,βTXq “ teβ

TX and
λT pt,βTX,W q “ 10eβ

TX`W `1
t`1 so that the true mean residual life is

mN pt,βTXq “ e
t2

2eβ
TX Φ

ˆ

´
t

?
eβ

TX

˙

?
2π,

mT pt,βTX,W q “
t ` 1

10eβ
TX`W

,

where Φ is the cumulative distribution function of the standard normal distribution. Each
component of X is generated independently from the standard normal distribution and W is
generated independently from a uniform distribution over r0,10s. We consider d “ 1, p “ 9
and set the true parameters to be β “ p1,´0.6,0.0,´0.3,´0.1,0.0,0.1,0.3,´0.5qT. The
sample size is n “ 300 and we randomly assign one third of samples to take the transplant.
Study 2: We generate event times with hazard functions of λN pt,βTXq “ 2t

eβTX`t2
and

λT pt,βTX,W q “ ϕtlnptq ´3´W {100`0.1p1´
?
2βTXq2u{trΦt´ lnptq `3`W {100´
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0.1p1 ´
?
2βTXq2us so that the true mean residual life is

mN pt,βTXq “

ˆ

1 `
t2

eβ
TX

˙"

π

2
´ tan´1

ˆ

t

eβ
TX

˙*

,

mT pt,βTX,W q “ Φ
!

´ lnptq ` 3 ` W {100 ´ 0.1p1 ´
?
2βTXq2

)

ˆ

ż 8

t

1

Φt3 ` W {100 ´ lnpsq ´ 0.1p1 ´
?
2βTXq2u

ds,

where ϕ is the probability density function of the standard normal distribution. Each com-
ponent of X is generated independently from the standard normal distribution and W is
generated independently from uniform distribution over r0,200s. We consider d “ 1, p “ 9
and set the true parameters to be β “ p1,´0.6,0,´0.3,´0.1,0,0.1,0.3,´0.5qT. The sample
size is n “ 1,000 and we randomly assign one third of samples to take the transplant.
Study 3: The hazard functions are λN pt,βTXq “ t2{5

řd
i“1 e

βi
TX and λT pt,βTX,W q “

t7{5W
řd

i“1 e
βi

TX, with the corresponding mean residual lives of

mN pt,βTXq “ e
5

7
t7{5

řd
i“1 e

βi
TX

ż 8

t
e´ 5

7
s7{5

řd
i“1 e

βi
TX

ds,

mT pt,βTX,W q “ e
5

12
t12{5

řd
i“1 e

βi
TX

W

ż 8

t
e´ 5

12
s12{5

řd
i“1 e

βi
TX

ds.

Each component of X is generated independently from the standard normal distribution.
The waiting time W is generated independently from a uniform distribution over p0,1q.
We consider d “ 2, p “ 6 and set the true parameters to be β “ pβ¨1,β¨2q “ pp1,0,´0.65,
´0.5,´0.25,0.25qT, p0,1,´0.5,0.5,´0.4,0.25qTqT. The sample size is n “ 2,000 and we
randomly assign around one third of samples to take the transplant.
Study 4: This setting mimics the real data application. The hazards are set to be

λN pt,βTXq “
1

200
et{200`arctanpβTXq`π{2 ´

1

200
,

and

λT pt,βTX,W q “
1

300
et{300`arctanpβTX´W {5`10q`π{2 ´

1

300
,

with the corresponding mean residual lives of

mN pt,βTXq “ 200e´t{200´arctanpβTXq´π{2,

mT pt,βTX,W q “ 300e´t{300´arctanpβTX´W {5`10q´π{2.

We consider d “ 1, p “ 9 and set the true parameters to be β “ p0.4,1,´0.4,´1.50,
´1.1,1.4,´0.1,´0.7qT. The transplantation time W is generated from the uniform distribu-
tion on p0,maxpTN qq. The sample size is n “ 2,000 with a censoring rate of 26%, and about
half of the samples receive the transplantation during followup. Study 4 mimics the features
of real data that the mean residual life functions are decreasing gradually as t increases. The
transplant group accounts for W : the improvement mT pt´W,X,W q´mN pt,Xq is negative
when W is close to 0, and approaches 0 positively as W increases.
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TABLE 1
Results of Study 1, based on 1000 simulations with sample size 300. “Prop.” is the semiparametric method,

“PM” is the proportional mean residual life method. “emp sd” is the sample standard deviation of the
corresponding estimators; “est sd" is the estimated standard deviation; “CP” is the estimated coverage

probability of confidence intervals.

β2 β3 β4 β5 β6 β7 β8 β9

truth -0.6 0.0 -0.3 -0.1 0.0 0.1 0.3 -0.5
No censoring

Prop. point estimate -0.597 0.002 -0.290 -0.096 0.000 0.073 0.302 -0.504
emp sd 0.229 0.442 0.180 0.438 0.437 0.437 0.171 0.206
est sd 0.164 0.474 0.166 0.470 0.474 0.469 0.166 0.165
CP(%) 88.8 96.2 94.4 96.0 95.8 96.1 94.9 91.2

PM point estimate 0.442 -0.978 5.697 -20.47 0.986 -13.60 5.893 -3.780
emp sd 57.8 95.11 155.9 583.0 36.7 352.5 212.5 156.5

20% censoring
Prop. point estimate -0.590 -0.003 -0.289 -0.086 0.007 0.101 0.289 -0.486

emp sd 0.178 0.379 0.153 0.373 0.379 0.368 0.148 0.165
est sd 0.156 0.406 0.146 0.404 0.407 0.406 0.145 0.152
CP(%) 92.8 96.7 94.1 96.7 97.1 96.9 95.6 94.8

PM point estimate -0.774 0.067 -0.236 -0.027 0.150 0.176 0.339 -0.577
emp sd 2.235 3.794 1.380 3.693 5.911 3.563 1.570 3.981

40% censoring
Prop. point estimate -0.518 0.020 -0.260 -0.079 0.020 0.088 0.266 -0.434

emp sd 0.168 0.368 0.136 0.368 0.387 0.362 0.142 0.159
est sd 0.149 0.392 0.140 0.396 0.391 0.389 0.140 0.144
CP(%) 89.0 96.9 94.7 97.4 96.0 96.2 94.9 89.9

PM point estimate 7.493 -7.316 -1.349 9.838 -21.588 -19.11 2.057 5.720
emp sd 262.6 160.8 116.7 367.1 570.9 762.8 63.4 185.9

The results for the estimation of β under Study 1 are given in Table 1, with three censoring
rates, 0%, 20% and 40%. The proposed method has much smaller biases and standard devi-
ations, whereas “PM" is biased with larger standard deviations. The performances of all of
the estimators deteriorate when the censoring rate increases, though our method still outper-
forms the others. We also demonstrate the true and error plots in Figure S1–S3, demonstrate
that our method fare well for estimating mpt,βTxq when t and βTx are not too extreme.
The contour plots reveal that bias increases as censoring rate increases and the estimation
deteriorates when t is large. These results show an overall satisfactory performance of our
semiparametric method. Figure S1–S3 reveals that the performance of our method is better
when t is in the interior of the range because more observations are available for the local
estimation, as opposed to a larger t with fewer observations available. In contrast, regard-
less of the magnitude of t, the mean residual life function estimated by “PM” is severely
biased, as shown in the last two rows from Figure S1–S3. This is because this model assume
a pre-determined functional form of the mean residual life, which in this case is misspecified.

Tables 2 and 3 report the results of Studies 2 and 3 related to pβ, respectively. We also
provide the error plots of pmpt,βTxq ´ mpt,βTxq in Study 2 using a contour plot in Figure
S4–S6. The proposed method performs better than the competitor. For Study 3, we provide
the error plots of pmpt,β1

Tx,β2
Txq ´ mpt,β1

Tx,β2
Txq fixed at β1

Tx “ 0 and β2
Tx “ 0

in Figure S7 and S8. Similar to the conclusion in the first simulation study, the performance of
estimating β by our proposed estimator is satisfactory. The performance of the mean residual
life estimation is better when t is smaller, deteriorates when t and βTx becomes extreme,
and is better for smaller censoring rates.

The results for Study 4 are presented in Table 4 which displays the estimated vector pβ
for both methods. Notably, the PM method exhibits a significantly larger bias compared to
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TABLE 2
Results of Study 2, based on 1000 simulations with sample size 1000. “Prop.” is the semiparametric method,

“PM” is the proportional mean residual life method. “emp sd” is the sample standard deviation of the
corresponding estimators; “est sd" is the estimated standard deviation; “CP” is the estimated coverage

probability of confidence intervals.

β2 β3 β4 β5 β6 β7 β8 β9

truth -0.60 0.00 -0.30 -0.10 0.00 0.10 0.30 -0.50
No censoring

Prop. point estimate -0.611 0.002 -0.308 -0.101 -0.005 0.101 0.310 -0.505
emp sd 0.140 0.106 0.114 0.104 0.106 0.104 0.114 0.127
est sd 0.135 0.118 0.122 0.118 0.118 0.118 0.122 0.129
CP(%) 95.0 97.4 97.5 98.1 97.4 97.6 97.3 95.8

PM point estimate -0.601 0.003 -0.301 -0.099 0.006 0.096 0.300 -0.506
emp sd 0.069 0.083 0.073 0.074 0.083 0.088 0.097 0.084

20% censoring
Prop. point estimate -0.596 0.003 -0.306 -0.100 0.001 0.094 0.303 -0.499

emp sd 0.140 0.116 0.126 0.113 0.109 0.110 0.123 0.137
est sd 0.135 0.119 0.123 0.119 0.119 0.119 0.123 0.130
CP(%) 94.7 95.8 94.4 96.5 97.0 96.1 96.0 94.5

PM point estimate -0.604 0.000 -0.305 -0.114 -0.023 0.092 0.299 -0.501
emp sd 0.146 0.380 0.121 0.355 0.373 0.384 0.132 0.133

40% censoring
Prop. point estimate -0.596 0.001 -0.300 -0.098 -0.004 0.098 0.295 -0.498

emp sd 0.156 0.129 0.136 0.131 0.125 0.127 0.140 0.148
est sd 0.147 0.129 0.134 0.130 0.129 0.130 0.134 0.142
CP(%) 95.1 95.0 95.4 94.8 95.9 95.6 93.5 93.9

PM point estimate -0.553 0.495 -0.242 0.220 0.114 -0.216 0.379 -0.565
emp sd 1.805 15.895 2.105 10.373 4.706 10.316 2.535 1.833

TABLE 3
Results of Study 3, based on 1000 simulations with sample size 2000. “emp sd” is the sample standard deviation

of the corresponding estimators; “est sd" is the estimated standard deviation; “CP” is the estimated coverage
probability of confidence intervals.

β31 β41 β51 β61 β32 β42 β52 β62

truth -0.65 -0.50 -0.25 0.25 -0.50 0.40 -0.40 0.25
No censoring

point estimate -0.662 -0.551 -0.237 0.253 -0.492 0.465 -0.407 0.251
emp sd 0.152 0.117 0.136 0.129 0.169 0.121 0.137 0.129
est sd 0.139 0.125 0.145 0.146 0.147 0.131 0.152 0.154
CP(%) 91.3 93.4 95.5 96.1 89.9 93.5 96.6 97.8

20% censoring
point estimate -0.608 -0.401 -0.252 0.238 -0.480 0.301 -0.363 0.236

emp sd 0.105 0.097 0.097 0.091 0.110 0.098 0.098 0.090
est sd 0.103 0.094 0.107 0.107 0.108 0.098 0.111 0.112
CP(%) 93.4 81.2 94.9 96.1 93.1 81.8 95.9 98.0

40% censoring
point estimate -0.587 -0.420 -0.234 0.227 -0.456 0.316 -0.357 0.228

emp sd 0.084 0.071 0.080 0.073 0.089 0.082 0.078 0.074
est sd 0.092 0.083 0.092 0.093 0.098 0.087 0.097 0.098
CP(%) 93.3 87.3 97.5 97.7 95.2 85.4 97.3 98.1

our method. We also assess the error of pmT pt ´ w,βTx,wq ´ pmN pt,βTxq using a contour
plot in Figure S9. Our proposed method outperforms the competitor across various scenarios.
This difference in performance is particularly evident when βTX ą 0, where the PM method
struggles to accurately estimate the mean residual life function of the transplanted objects.
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This discrepancy can be attributed to the PM method’s limited ability to handle the nonlinear
structure inherent in the mean residual life function.

Finally, we have assessed the use of the Validated Information Criterion (VIC) (Ma and
Zhang, 2015) for determining the number of indices, d, of the dimension reduction model
in these 4 study settings; the d with the smallest VIC value would be selected. In Study 1,
VIC selects d with an accuracy of 100% under all the three censoring rates, whereas the
accuracies of selecting d via VIC are 97.1%, 100% and 100% in Study 2 and are 100%,
99.8% and 99.8% in Study 3, respectively corresponding to the censoring rates of 0%, 20%
and 40%. Moreover, the accuracy of determining d via VIC in Study 4 is 97.8%. These high
accuracies validate the utility of using VIC to select d across the examined settings.

TABLE 4
Results of Study 4, based on 1000 simulations with sample size 2000. “emp sd” is the sample standard deviation

of the corresponding estimators; “est sd" is the estimated standard deviation; “CP” is the estimated coverage
probability of confidence intervals.

β2 β3 β4 β5 β6 β7 β8 β9

0.4 1 -0.4 -1.50 -1.1 1.4 -0.1 -0.7
Prop. point estimate 0.409 0.912 -0.396 -1.263 -0.945 1.344 -0.109 -0.606

emp sd 0.300 0.638 0.427 1.191 0.647 0.647 0.312 0.478
est sd 0.279 0.776 0.473 1.225 0.769 0.763 0.467 0.519
CP(%) 90.3 96.5 97.5 94.8 95.7 97.4 97.6 92.0

PM point estimate 0.646 0.950 0.205 -0.776 -0.303 0.790 1.557 -0.090
emp sd 22.847 6.882 2.545 3.545 1.879 4.259 8.725 1.556

6. Analysis of the Kidney Transplant Data. We apply the proposed method to analyze
a kidney transplant data set from the U.S. Scientific Registry of Transplant Recipients (SRTR)
mentioned in the introduction. Briefly, the registry is maintained by the United Network for
Organ Sharing and Organ Procurement and Transplantation Network (UNOS/OPTN) and
includes all waitlisted kidney transplant candidates and transplant recipients in the U. S.
(https://unos.org/). For assessing possible benefits of transplantation, we use the
residual life to estimate how much longer a patient can survive if she or he receives a trans-
plant than otherwise.

To avoid confounding cohort effects and also to have a sufficiently long followup, we focus
on the patients who were waitlisted in the same year of 2011. There were 43,140 patients in
this cohort with an average followup of 907 days after waitlisting. During the followup, a
total of 22,183 patients received kidney transplants. The response variable is the survival
time in days (Ti) starting from waitlisting. Among patients who got a transplantation, 5.86%
of the observations were censored, and the censoring rate was 26.43% among those without a
transplantation. The covariates X included in our analysis were gender (X1), race (X2), max
cold ischemia time (X3), insurance coverage (X4), body mass index (X5), diagnosis type
(X6), peak PRA/CPRA (X7), previous malignancy status (X8) and diabetes indicator (X9),
all of which were used for computing the EPTS score (Time, 2012). The waiting time W is
also considered in our model as proposed in (1) and (2). Our analytical goal was to use model
(2) to quantify the potential residual life increment if a patient receives a kidney transplant
given the covariate profile. The model mimics a real waitlisting to transplantation process by
stipulating that all of the patients started by belonging in the non-transplant group, while those
who got a transplantation were viewed as censored at transplantation; once transplanted, a
patient would switch his or her membership to join the transplant group.

To proceed, we first determine the number of indices d using VIC (Ma and Zhang, 2015).
In our analysis, d “ 1 is chosen with the smallest VIC “ 143.66, indicating a single index is
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Fig 1: Mean residual life improvement from UNOS/OPTN data. Panels from left to right:
βTx “ ´0.8,0,0.8.

sufficiently informative; see Table 5. Subsequently, we normalize the index vector by fixing
the first component (gender) at 1, and report 8 coefficient estimates. All of the covariates,
except for the max cold ischemia time (X3) and the body mass index (X5), have significant
effects on the mean residual life, which agrees with the previous studies (Friedman et al.,
2003; Webster et al., 2017).

The max cold ischemia time (X3) that refers to the tolerable amount of time from when a
kidney is removed from the donor to the time it is transplanted into the recipient. Although
the max cold ischemia time reflects the patient’s physiological conditions indirectly, it is not
as significant as the real cold ischemia time in determining the post-operative risk (Iida et al.,
2008; Kayler et al., 2011). BMI (X5) is commonly suggested as a “paradox” risk factor in
the literature (Kalantar-Zadeh et al., 2005; Ahmadi et al., 2016). A popular explanation is
that the BMI cannot differentiate between fat and muscle, thus high BMI patients may gain a
survival advantage (Beddhu, 2004; Mafra, Guebre-Egziabher and Fouque, 2008).

On the other hand, race (X2) and insurance coverage (X4) have significant impacts on
survival. It has been widely accepted that race and insurance coverage are highly correlated
with patients’ socioeconomic status, which plays an crucial role in the choice of chronic
kidney disease treatment, especially for the end-stage patients(Lewis et al., 2010; Muntner
et al., 2012; Nicholas, Kalantar-Zadeh and Norris, 2013; Webster et al., 2017). The other
significant variables are also known risk factors for the ESRD mortality in the literature
(Kauffman et al., 2005; Mehdi and Toto, 2009; Kayler et al., 2011; Pyram et al., 2012; Lim,
Chapman and Wong, 2015).

Given a patient with characteristics x, alive at time t, and waiting time w, pmT pt ´

w, pβ
T
x,wq ´ pmN pt, pβ

T
xq provides an estimate of the patient’s mean residual life improve-

ment after receiving a kidney transplant at w. Because the difference is a function of t, pβ
T
x

and w, we present the difference using various plots. Figure 1 plots contours that change with
t and pβ

T
x at several fixed w values.

TABLE 5
Parameter estimation of the kidney transplant data. “est." is the estimation of parameter, “s.d." is the estimated

standard deviation of pβ.

pβ2
pβ3

pβ4
pβ5

pβ6
pβ7

pβ8
pβ9

est. -0.097 -0.003 -0.174 -0.029 -0.119 0.030 -0.162 0.004
s.d. 0.011 0.007 0.010 0.007 0.009 0.005 0.016 0.011

p-value 0.000 0.866 0.000 0.073 0.000 0.000 0.000 0.008
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Fig 2: Mean residual life improvement from UNOS/OPTN data. Representative strata by
Race, Gender, and Insurance Status with minimum βTx per stratum.

Several important observations can be made. First, with the waiting time being close to 0
in each panel of Figure 1, kidney transplant led to less survival gains compared to dialysis
treatment, possibly because patients transplanted without waiting were likely to be high-risk
patients and postoperative complications, such as cardiovascular and urological complica-
tions, increase mortality risk among them (Rahnemai-Azar, Gilchrist and Kayler, 2015; den
Dekker et al., 2020). Second, as the waiting time w increases, kidney transplant could re-
sult in a reasonably larger improvement compared to dialysis. This is because these patients
tended to be more stable, allowing kidney transplant to provide a notable survival advantage
(Ingsathit et al., 2013; Schold et al., 2014; Bui, Kilambi and Mehrotra, 2019). Moreover, with
t and w fixed, complex relationships existed between the patient’s index value βTx and the
survival improvement. The improvement is larger at βTx “ 0 than that at βTx “ ´0.8,0.8.
It is very likely that large or small values of βTx were resulted by extreme health conditions
which led to the worse improvement. Thus, this index in general measured patients’ overall
health condition.

Figure 2–4 further reveal the mean residual life improvement stratified by gender (X1),
race (X2), and insurance coverage (X4) at different values of βTx. Several inequalities are
noteworthy. First, patients with private insurance performed better than those with public
insurance in most of cases, possibly due to socioeconomic status differences and the afford-
ability for disease maintenance and treatment (Goldfarb-Rumyantzev et al., 2006; Nicholas,
Kalantar-Zadeh and Norris, 2015). Second, the life gains were not very similar across male
and female patients, especially the patterns differed between them. Females tended to have
life gains positively related to the index; in contrast, males tended to have higher residual
life gains at small absolute index. It is likely that heterogeneous kidney disease progression
rates and lifestyles might lead to the pattern discrepancy (Baylis, 2009; Okada et al., 2014;
Pscheidt et al., 2015), though the negligible difference in quantity between genders exem-
plified the “canceled survival advantage between genders” phenomenon (Øien et al., 2006;
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Fig 3: Mean residual life improvement from UNOS/OPTN data. Representative strata by
Race, Gender, and Insurance Status with median βTx per stratum.
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Fig 4: Mean residual life improvement from UNOS/OPTN data. Representative strata by
Race, Gender, and Insurance Status with maximum βTx per stratum.

Carrero, 2010; Cobo et al., 2016). More detailed illustrations can be found in Figure S10–
S12.
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Survival gains of African Americans with public insurance were not monotonically related
to the index regardless of gender given t; further, it was observed that African American
females experienced greater life expansion compared to their male counterparts. Interest-
ingly, we found the survival gains of African Americans were comparable with those of non-
Hispanic Whites, even though these two racial groups had very different mortality among
the general population (Lewis et al., 2010). However, the African American groups exhib-
ited markedly different indices compared to the non-Hispanic white groups, possibly due to
lifestyles and lack of access to healthcare among those groups (Kasiske, London and Ellison,
1998; Nicholas, Kalantar-Zadeh and Norris, 2013; Fedewa et al., 2014).

The Hispanic patients displayed consistent patterns in relation to their insurance type.
Notably, there was minimal improvement in life gains when w was less than 500 and when
βTx ą ´1.2. However, at βTx “ ´1.8, life gains showed a notable increase as w increased.
The most significant decrease in life gains was observed under specific conditions: when t
and w were small, and βTx ă ´1.5. These trends held true for both genders and across
different insurance types.

Among the Asian patients, a distinct pattern emerged in life gains with respect to t and w.
Initially, life gains exhibited a rising trend, followed by a subsequent decline, with fluctua-
tions observed along these dimensions. However, when βTx ă 0, the alterations in life gains
were less pronounced. Remarkably, the impact of insurance type on survival outcomes varied
between genders. For the female patients, the choice between private and public insurance did
not yield significantly divergent survival gains. Conversely, among the male patients, private
insurance demonstrated a better outcomes when compared to public insurance.

7. Discussion. Addressing a severe shortage of organs that are needed to sustain ESRD
patients’ life, this work aims to design a feasible strategy to increase the potential efficiency
brought by each available kidney. Instead of evaluating the patients’ expected survival time,
as is done in the literature, we consider the potential residual life prolonged by kidney trans-
plant. By comparing patients’ expected residual life with and without transplant, we use their
difference to gauge the potential benefit gained from the transplant; patients with larger dif-
ferences may have a higher priority for organ allocations than those with smaller values. As
the primary purpose of the project is to improve the donor distribution strategy by assessing
the post-transplantation performance, particularly with very limited organ donations, render-
ing the measurement of the entire lifespan is likely to be more pertinent (Assfalg et al., 2020)
than focusing solely on a limited portion of future life, which the restricted mean survival
time (RMST) is designed for. In addition, the choice of the length of the follow up window
may complicate the organ distribution strategy. Therefore, we opt for the proposed model
which is established on the premise of improving the overall residual life.

A natural extension of our model is to compute the causal effect between two groups.
In the absence of a strong confounder “age", it is impossible to draw causal conclusion in
this study. However, our comparison between two groups has a capability to analyze the
causality as long as all confounders are included. On the other hand, our model compares the
transplant cohort to a special case of the nontransplant cohort in which the transplantation
would never happen in the future. A more general model will be studied in the future that
transplant occurred at any time. Therefore, excepting comparing the mean residual life, many
other quantities such as all-cause survivals and hazard ratio will be considered (Aalen, Cook
and Røysland, 2015; Andersen, Syriopoulou and Parner, 2017; Syriopoulou, Rutherford and
Lambert, 2020).

Our semiparametric regression model of mean residual life relaxes the parametric assump-
tions on the dependence of mean residual life on covariates and how long a patient has lived.
To strike a balance between interpretation and flexibility, our procedure enables one to re-
duce the covariate dimensions from p to d: when d “ 1, the model falls to the single index
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model, while d “ p corresponds to a completely nonparametric model. We suggest to use the
Validated Information Criterion (Ma and Zhang, 2015) to choose d, which seems to fare well
in practice.

In our model, both the transplant and non-transplant groups are characterized by the same
set of indices denoted as β throughout the study. An alternative would be to conduct separate
estimation processes to distinguish the effects of these indices on different transplantation
statuses. While our method can accommodate this suggestion by applying the model sepa-
rately to each group, this separation approach may imply independent progressions for the
same patient before and after the transplant. This may be beyond the scope of our primary ob-
jective of consistently quantifying survival improvements. To estimate the mean residual life
enhancement attributable to inherent factors which reflect patient functional status, we intend
to treat each patient’s progression as a cohesive whole. This seems reasonable in the realm of
kidney transplantation as studies showed that transplant does not interact significantly with
patients’ pre-operative functional status and is “associated with substantial improvement in
all stages of functional capacity" (Ali et al., 2021).

To ensure estimability, we have assumed the complete follow-up condition, which is rea-
sonable in clinical studies with high event rates and long followup (Sun, Song and Zhang,
2012), such as in studies with advanced stage cancer patients (Chen et al., 2005) and ESRD
patients (Mansourvar, Martinussen and Scheike, 2016). Our data example features renal fail-
ure patients with a long followup, which may satisfy the assumption. We also acknowledge
that, while the complete follow-up condition is a common assumption (Chen et al., 2005;
Chen and Cheng, 2005; Tsiatis, 1990; Sun and Zhang, 2009), it incurs some limitations. For
example, Ying (1993) pointed out that this assumption implies that the knowledge of the sup-
port is obtained in advance to assure a reasonable maximum followup time τ . Sun, Song and
Zhang (2012), Chen and Cheng (2006) and Mansourvar, Martinussen and Scheike (2015)
proposed various ways of selecting a reasonable τ , all requiring certain pre-knowledge. Due
to these limitations, in Supplement 5, we further relax the complete followup condition,
where we allow an unbounded support for the event time and only require a tail condition on
the distribution similar to but weaker than the sub-Gaussian type. Finally, we are aware that
the kidney transplant data from the U.S. SRTR may represent a biased sample, that is, the
included patients were those with access to transplantation. In order to make results general-
izable to a more general population, it is vital to take the probability of accessing transplan-
tation into account. Estimation of this probability, however, is challenging because of many
tangible and intangible factors involved in the process (Axelrod et al., 2008; Weng et al.,
2010; Kucirka, Purnell and Segev, 2015; Carrero et al., 2018). More research is warranted.
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