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1. Introduction

In the Cox (1972) regression model for survival data, the hazard function λ(t|x) for an

individual with covariate vector x ∈ IRp is modeled semiparametrically as

λ(t|x) = λ0(t) exp(βTx), (1)

where β ∈ IRp is a vector of regression coefficients and λ0(t) is an unspecified baseline

hazard function λ0(t). Cox proposed drawing inference on β based on the notion of partial

likelihood, which was subsequently justified rigorously by Tsiatis (1981), who used classical

limit theory, and by Andersen and Gill (1982), who used a martingale theory approach.

In many applications, however, the covariate X is not measured exactly, but is subject

to measurement error of some degree, often substantial. Thus, instead of observing X, we

observe a surrogate measure W. Starting from Prentice (1982), a considerable literature has

been developed on inference for the Cox regression model with covariate error in various

contexts; see Zucker (2005) for a brief review.

The existing methods generally involve some model assumptions on the joint distribution

of the true covariate and the surrogate. Many of the methods make use of specific parametric

forms for this joint distribution. Other methods, such as those of Huang and Wang (2000) and

Kong and Gu (1999), avoid use of a specific parametric form but still rely on an assumption

that the covariate error is of independent additive structure. Some papers, such as Zhou

and Pepe (1995), Zhou and Wang (2000), and Chen (2002), present methods without this

additive error assumption for the internal validation design in which there is a subsample

of individuals with a measurement on both the true covariate and the surrogate. These

methods, however, have challenges as well. The approach taken by Zhou and Pepe (1995)

and by Zhou and Wang (2000) involves stratification or smoothing in the covariate space;

when the number of covariates is moderate to large, this approach breaks down due to

the “curse of dimensionality.” Chen (2002) assumes that it is possible to form a satisfactory
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initial estimate of the regression coefficient vector based on the validation sample alone. This

is not the case, however, for studies where the event rate is low to moderate, the main study

sample size is in the thousands to hundreds of thousands, and the validation study sample

size is, as in all applications we know of, only a few hundred. Under these circumstances, the

number of events in the validation study is very small, so that a satisfactory initial estimate

of the regression coefficient vector based on the validation sample alone cannot be obtained.

Thus, in such situations, which often arise in practice, Chen’s approach is problematic.

This paper presents a new method for the Cox model with covariate error, which overcomes

the limitations of previously proposed methods. The method involves a modified version

of the classical Cox partial likelihood score function, with the internal validation data

incorporated in a suitable way. Our approach is very simple in concept. It is in the spirit of

Lin and Ying’s (1993) work on Cox regression with incomplete covariate data. There is also

some resemblance to Huang and Wang’s (2000) method for Cox regression with covariate

error, and to work of Kulich and Lin (2000, 2004). The method requires no assumptions on

the form of the covariate error. It is especially designed for the internal validation design with

a relatively small validation sample and a moderate to large number of covariates, which, as

indicated above, is a challenging situation that often arises in epidemiological studies. The

method is easy to implement, and its practical utility is backed by large-sample theory and

small-sample simulations.

The outline of the remainder of the paper is as follows. Section 2 presents the proposed

method and its asymptotic properties, Section 3 a simulation study, Section 4 an application

to data from the Health Professionals Follow-Up Study (HPFS), and Section 5 a brief

summary. The Web Appendix provides theoretical details.
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2. The Proposed Method and Its Asymptotic Properties

2.1 The Proposed Method

We assume a classical survival data setup. We have i.i.d. observations on n individuals.

Associated with each individual i is a set of random variables (T ◦
i , Ci,Xi,Wi), with T ◦

i

representing the time to event, Ci representing the time to censoring, Xi representing a p-

vector of true covariate values, and Wi representing a p-vector of surrogate covariate values.

We assume that the covariates are arranged so that the first p1 covariates are the error-

prone covariates and the remaining p2 = p − p1 covariates are error-free. For the error-free

covariates, the relevant component of Wi is identical to the corresponding component of Xi.

We denote the maximum follow-up time by τ . The available data on all individuals consist

of (Ti, δi,Wi), where Ti = min(T ◦
i , Ci) is the follow-up time and δi = I(T ◦

i 6 Ci), with I(·)

being the indicator function, is the event indicator. In addition, within the main study we

have a random internal validation sample of size m of individuals with both Xi and Wi

observed. We take m = ceil(πn), where π is a specified number in (0, 1) and ceil(u) denotes

the smallest integer greater than or equal to u. We define ωi to be equal to 1 if individual i is

in the internal validation sample and 0 otherwise. Thus, the random vector (ω1, . . . , ωn) has

a uniform distribution over the finite set O(n,m) of vectors with m ones and n −m zeros

(i.e., O(n,m) expresses the various ways of selecting m elements from a set of n elements).

We write π̂ = m/n. Note that π̂ is not an estimate, but rather is fixed by design. Also, as

usual, we define Yi(t) = I(Ti > t) and Ni(t) = δiI(Ti 6 t). Left truncation is handled by

setting Yi(t) to zero until the time at which individual i comes under observation.

We assume, as usual, that T ◦
i and Ci are conditionally independent given Xi. We assume

further that the measurement error is noninformative in the sense that Wi is conditionally

independent of (T ◦
i , Ci) given Xi. We make no assumptions about the form of the measure-

ment error. Finally, we assume that the survival time T ◦
i follows the Cox model (1). We
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denote the true value of β by β∗. We present our development for the case of the classical

Cox relative risk function eβ
TXi , but it is straightforward to extend the development to more

general relative risk functions, as in Thomas (1981) and in Breslow and Day, 1993, Sec.

5.1(c).

We construct our procedure as follows. Let Ê denote empirical expectation, so that, for

example,

Ê[Y (t) exp(βTX)] =
1

n

n∑
j=1

Yj(t) exp(βTXj),

Ê[Y (t)X exp(βTX)] =
1

n

n∑
j=1

Yj(t)Xj exp(βTXj).

In the absence of measurement error, the Cox partial likelihood score function is given by

UCOX(β) =
1

n

n∑
i=1

δi

[
Xi −

{
Ê[Y (t)X exp(βTX)]

Ê[Y (t) exp(βTX)]

}
t=Ti

]
. (2)

When X is measured only for a sample of the individuals and only W is available for the

others, a naive Cox analysis involves simply substituting W in place of X for the individuals

without a measurement of X. In other words, defining W◦
i = ωiXi + (1− ωi)Wi, the naive

Cox analysis is based on the score function

UNAI(β) =
1

n

n∑
i=1

δi

[
W◦

i −

{
Ê[Y (t)W◦ exp(βTW◦)]

Ê[Y (t) exp(βTW◦)]

}
t=Ti

]
, (3)

with

Ê[Y (t) exp(βTW◦)] = S◦
0(t,β) =

1

n

n∑
j=1

Yj(t) exp(βTW◦
j ),

Ê[Y (t)W◦ exp(βTW◦))] = S◦
1(t,β) =

1

n

n∑
j=1

Yj(t)W
◦
j exp(βTW◦

j )

We denote the corresponding estimator by β̂NAI . The terms in UNAI(β) are of “observed −

expected” form, but the “expected” term is incorrect. Consequently, the naive score function

does not have zero asymptotic expectation under β∗, and therefore β̂NAI is biased.

An improved estimator can be obtained using regression calibration, which is an established

technique for measurement error problems; see, for example, Carroll et al. (2006, Chapter
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4). In regression calibration, we redefine W◦
i to be W◦

i = ωiXi + (1 − ωi)X̂i, with X̂ir

(r = 1, . . . , p1) defined as

X̂ir = α̂r0 +

p∑
s=1

α̂rsWis (4)

where α̂r0, . . . , α̂rp are the ordinary least squares estimates of the regression of Xir on Wi

based on the internal validation sample. Having redefined W◦
i , we redefine S◦

0(t,β) and

S◦
1(t,β) correspondingly. We denote the resulting estimator by β̂RC . In (4), for the sake of

generality, we have included all of the components of Wi in the regression, but in typical

applications of regression calibration the regression model for Xir includes only Wir and

perhaps one or two additional components of Wi. Substantial improvement is often achieved

with regression calibration approach, but the “expected” term is still not exactly correct,

and therefore the resulting estimator is not exactly consistent. The regression calibration

approximation is good when the degree of measurement error is small or the regression

coefficients of the error-prone covariates are small, but otherwise the approximation can be

unsatisfactory (Spiegelman, Rosner, and Logan, 2000).

We present an estimator that builds on the regression calibration estimator but is exactly

consistent. As in regression calibration, we use the regression model (4). However, we use

this model only as a working model, and it is not necessary for the model to be correct

for our estimator to be consistent. As with standard regression calibration, it is possible in

principle, as written in (4), to include all the components of Wi in the model, but in practice

we recommend using only Wir and perhaps one or two additional components.

The idea of our approach is to replace the incorrect “expected” term with a correct one.

Let α(r) be the column vector with components αr0, αr1, . . . , αrp, let α denote the vector

formed by stacking the vectors α(r) one on top of the other, and let α∗ denote the true value

of α. To emphasize the dependence of X̂ir on α, we denote the vector of Xir’s by X̂i(α).
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Define

S0a(t,β) =
1

n

n∑
j=1

ωjYj(t) exp(βTXj) (5)

S0b(t,β,α) =
1

n

n∑
j=1

(1− ωj)Yj(t) exp(βT X̂j(α)) (6)

S0c(t,β,α) =
1

n

n∑
j=1

ωjYj(t) exp(βT X̂j(α)) (7)

S1a(t,β) =
1

n

n∑
j=1

ωjYj(t)Xj exp(βTXj) (8)

S1b(t,β,α) =
1

n

n∑
j=1

(1− ωj)Yj(t)X̂j(α) exp(βT X̂j(α)) (9)

S1c(t,β,α) =
1

n

n∑
j=1

ωjYj(t)X̂j(α) exp(βT X̂j(α)) (10)

S̃1a(t,β,α) =
1

n

n∑
j=1

ωjYj(t)X̂j(α) exp(βTXj) (11)

S0(t,β,α) = S0a(t,β) +

{
S0a(t,β)

S0c(t,β,α)

}
S0b(t,β,α) (12)

φ̃(t,β,α) = S0b(t,β,α)/S0c(t,β,α) (13)

S1(t,β,α) = S1a(t,β) + S1b(t,β,α) + φ̃(t,β,α)
{

S̃1a(t,β,α)− S1c(t,β,α)
}

(14)

We then take the score function to be

UMS(β,α) =
1

n

n∑
i=1

δi

{
W◦

i −
S1(Ti,β,α)

S0(Ti,β,α)

}
. (15)

The estimator β̂MS is defined to be the solution to the score equation UMS(β, α̂) = 0. We

could have used φ̂ = (1− π̂)/π̂ = (n−m)/m in place of φ̃(t,β,α), but we found that better

finite-sample performance is achieved with φ̃(t,β,α).

The motivation behind UMS(β,α) is as follows. The regression calibration function URC(β)

can be written in counting process notation as

URC(β,α) =
1

n

n∑
i=1

∫ τ

0

{W◦
i − E(t,β,α)} dNi(t)
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with

E(t,β,α) =
S◦
1(t,β,α)

S◦
0(t,β,α)

.

Let us now define dMi(t) = dNi(t)− Yi(t)eβ
∗TXiλ0(t)dt. We can then write

URC(β,α) =
1

n

n∑
i=1

∫ τ

0

{W◦
i − E(t,β,α)}Yi(t)eβ

∗TXiλ0(t)dt

+
1

n

n∑
i=1

∫ τ

0

{W◦
i − E(t,β,α)} dMi(t)

=

∫ τ

0

{S◦◦
1 (t,β∗,α)− E(t,β,α)S0d(t,β

∗)}λ0(t)dt

+
1

n

n∑
i=1

∫ τ

0

{W◦
i − E(t,β,α)} dMi(t). (16)

where

S0d(t,β) =
1

n

n∑
j=1

Yj(t)e
βTXj

S◦◦
1 (t,β,α) =

1

n

n∑
j=1

Yj(t)W
◦
je

βTXj = S1a(β,α) +
1

n

n∑
j=1

(1− ωj)Yj(t)X̂j(α)eβ
TXj

Using counting process theory (Gill, 1984), it can be seen that the second term of (16)

has expectation zero. In the absence of measurement error, the value at β∗ of the quantity

in brackets in the first term of (16) is zero, so that the score function is unbiased. In the

presence of measurement error, the value at β∗ of this quantity is in general nonzero. We

need to redefine E(t,β,α) so that the limiting value of this quantity at β∗,α∗ is zero. Define

EX(t,β) = E[Y (t) exp(βTX)],

EXX(t,β) = E[Y (t)X exp(βTX)],

EWX(t,β,α) = E[Y (t)X̂(α) exp(βTX)].

The limiting value of S0d(t,β) is then EX(t,β,α) and the limiting value of S◦◦
1 (t,β,α) is

s1(t,β,α) = πEXX(t,β,α)+(1−π)EWX(t,β,α). We thus have to redefine E(t,β,α) so that

its limiting value is equal to s1(t,β,α)/EX(t,β,α). TakingE(t,β,α) = S1(t,β,α)/S0(t,β,α)

achieves this objective. At the same time, our estimator reduces to the usual Cox estimator



8 Biometrics, December 2008

under zero measurement error. We regard this reducibility property to be important for

measurement error correction methods.

We reiterate that our method makes no assumptions about the form of the covariate error,

and that the model (4) is only a working model, with our estimator still being consistent

even if the working model is misspecified. In addition, our method requires only estimation

of unconditional means involving Y , W, and X, and therefore does not require use of

smoothing methods. For this reason, a modestly-sized internal validation sample is sufficient.

By contrast, the approaches taken by Zhou and Pepe (1995) and by Zhou and Wang (2000)

require consistent estimates of conditional means, which involve stratification or smoothing

in the covariate space, and thus require a larger validation sample. In addition, since our

method is based on separate empirical averages for each risk set, a rare disease approximation

is not needed.

We have worked in the setting of time-independent covariates, but it is possible to con-

sider extension to the case of time-dependent covariates. When the covariate processes

are measured on an approximately continuous basis (W(t) for the full cohort and X(t)

for the internal validation sample), the method and its asymptotic theory carries over

with notational changes only. Since the method is based on separate empirical averages

for each risk set, changes over time in the measurement error distribution are handled

automatically. The method and the asymptotic theory also carry over to the case where

the covariate processes are measured only intermittently, as commonly occurs in practice,

but the processes vary slowly, so that carrying forward the last observed covariate value is a

reasonable approximation. In the case where the the covariate processes are measured only

intermittently and vary more rapidly, the extension to the case of time-dependent covariates

is more complex and is beyond the scope of this paper.
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2.2 Asymptotic Properties

The asymptotic properties of the estimator are presented in the following theorem.

Theorem 1: Under the regularity conditions stated in the Web Appendix, β̂MS con-

verges almost surely to β∗, and
√
n(β̂MS − β∗) is asymptotically mean-zero multivariate

normal with covariance matrix that can be estimated consistently by the sandwich-type esti-

mator described below.

We present here a sketch of the proof of this result. The details are presented in the Web

Appendix.

The consistency proof hinges on the fact that, as explained above, UMS(β,α) is con-

structed so that it converges to a limit u(β,α) for which u(β∗,α∗) = 0. We can then appeal

to arguments of Foutz (1977) to obtain the consistency result.

The asymptotic normality proof is based on estimating equations theory, and uses an

argument along the lines of Lin and Wei (1989). Setting θ = (β,α), we can define the

estimator θ̂ of θ to be the solution θ̂ to U(θ) = 0 with U(θ) = (U(1),U(2)), where U(1)(θ)

is the UMS(β,α) defined in (15) and U(2)(θ) is given by stacking the vectors

U(2)
r (α) =

1

n

n∑
i=1

ωi

 1

Wi

[Xir − αr0 −
p∑
s=1

αrsWis

]

where we include U
(2)
r only for covariates that are subject to measurement error. We can

write

U(2)(θ) =
1

n

n∑
i=1

ωiZ
(12)
i (θ)

with

Z
(12)
i (θ) = (xi ⊗wi)− (Ip1 ⊗ (wiw

T
i ))α

where xi consists of Xi1, . . . , Xip1 , wi consists of a 1 followed by the components of Wi, ⊗

denotes the Kronecker product, and Ib denotes the b× b identity matrix. The vector U(2)(θ)
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is of length (p + 1)p1. When the model for a given Xir includes only some of the Wis’s, we

delete the superfluous elements of α and Z
(12)
i (θ).

In the Web Appendix we show that U(1)(θ∗) is asymptotically equivalent to the quantity

U(1)∗(θ∗) = π̂

{
1

m

n∑
i=1

ωiZ
(11)
i (θ∗)

}
+ (1− π̂)

{
1

n−m

n∑
i=1

(1− ωi)Z(21)
i (θ∗)

}

where {Z(11)
i (θ) : ωi = 1} and {Z(21)

i (θ) : ωi = 0} are each sets of i.i.d. vectors with mean

zero under θ = θ∗, the expressions for which are presented in the Web Appendix. Thus,

the solution to U(θ∗) = 0 is asymptotically equivalent to the solution to U∗(θ∗) = 0, with

U∗ = (U(1)∗,U(2)). Let Z
(1)
i denote the stacked vector formed by Z

(11)
i and Z

(12)
i and let Z

(2)
i

denote the stacked vector formed by Z
(21)
i and the zero vector of length (p + 1)p1. We can

then write

U∗(θ) = π̂

{
1

m

n∑
i=1

ωiZ
(1)
i (θ∗)

}
+ (1− π̂)

{
1

n−m

n∑
i=1

(1− ωi)Z(2)
i (θ∗)

}
.

Define C1 = Cov(Z
(1)
i ), C2 = Cov(Z

(2)
i ), and C = π̂C1 + (1 − π̂)C2. We see that

the asymptotic distribution of
√
nU∗(θ∗) is mean-zero normal with covariance matrix C.

Consequently
√
n(β̂MS − β∗) is asymptotically mean-zero normal with covariance matrix

V = RCRT , where R is the matrix consisting of the first p rows of d(θ)−1, where d(θ) is

the limiting value of the matrix D(θ) given by −1 times the Jacobian of U(θ). In principle,

we can estimate V by V̂ = R̂ĈR̂, where R̂ consists of the first p rows of D(θ̂)−1 and

Ĉ = π̂Ĉ1 + (1− π̂)Ĉ2, where Ĉs is the sample covariance of Z
(s)
i (θ), i.e.

Ĉs =
1

n

n∑
i=1

Z
(s)
i (θ)Z

(s)
i (θ)T . (17)

In actuality, the terms of U(1)∗ involve additional unknown quantities, so we compute Ĉs

using the sample covariance of the vectors Ẑ
(s)
i (θ̂) defined by replacing these quantities with

consistent estimates. The detailed derivations of the expressions for Z
(11)
i (θ),Z

(21)
i (θ), and

and D(θ) are presented in the Web Appendix.
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3. Simulation Study

We examined the performance of the proposed method in a simulation study. We constructed

the simulation setup so as to be representative of a typical epidemiological cohort study. We

considered a setup where the time metameter is age, with age at entry to the study being

uniformly distributed over the interval 30 to 50 years. The study horizon was 12 years. We

took the censoring distribution to be exponential with a rate of 1% per year. We took the

baseline survival function to be Weibull with shape parameter 5, as in Zucker and Spiegelman

(2004, 2008). In terms of the sample size and the event rate (determined by the Weibull

scale parameter), we considered two scenarios: a rare event scenario with n = 10, 000 and

a cumulative event rate of about 5% (so that the number of events is about 500), and a

common event scenario with n = 500 and a cumulative event rate of about 25% (so that the

number of events is about 125). The internal validation sample size was 200. Thus, in the

rare event case, the internal validation sample size included a mere handful of events, which

may hamper the use of Chen’s (2002) approach.

We carried out two sets of simulations. In the first set, we worked with a single covariate

X, generated from a standard normal distribution. We considered two measurement error

models, as follows:

Independent Measurement Error Model: W = X + ε with ε ∼ N(0, a) independently of X

Dependent Measurement Error Model: W = X + ε with ε|X ∼ N(0, a(1 + |X|))

We chose a range of a values corresponding to the following range of values for the correlation

between X and W : 0.9, 0.7, 0.5. Finally, we took eβ = 1.5, 2.5, or 4. We compared our

proposed estimator (MS) against Chen’s (2002) estimator (CH), the regression calibration

estimator obtained by replacing X by X̂ in the Cox score function (RC), the “complete

case” (CC) estimator based only on the data with a measurement of X, In the second

set of simulations, we worked with five covariates X1, . . . , X5, with X1 error-prone and the
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other covariates error-free. We took the five covariates to be N(0, 1) random variables, either

independent or equally-correlated with a correlation of 0.2. We took the hazard function to

be λ(t) = λ0(t) exp(β1x1 + β2x2 + β3x3 + β4x4 + β5x5) with β2 = β3 = β4 = β5 = log(1.5),

where, as before, we took λ0(t) to be Weibull with shape parameter 5 and eβ = 1.5, 2.5,

or 4. The other settings were as in the the first set of simulations. The simulation results

were based on 10,000 replications. If the zero-finding procedure with our method failed to

converge, we used the RC estimate. In the univariate simulations this usually occurred in

less than 1% of the replications, and the worst instance it occurred in 6% of the replications.

In the multivariate simulations, convergence failure usually occurred in less than 5% of the

replications, and in the worst instance it occurred in 10% of the replications. In both the

univariate and multivariate simulation, the worst instance was with highest value of β1 and

highest degree of measurement error. The results for the rare event scenario are presented

in Tables 1-6. The corresponding results for the common event scenario are presented in the

Supplementary Web Materials in Tables S1-S6.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

The naive estimator was seriously biased in all cases studied, often dramatically. In the

single covariate setup, the MS method exhibited low bias across the board, while the RC

method often exhibited appreciable bias, especially under the dependent error model, with

the bias increasing as the true β increases and as the degree of measurement error increases.
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In the rare disease case, as expected, the CC method had very high variance, while the

variance of the MS method was usually considerably lower. In the common disease case,

the MS method had lower variance than the CC method in most configurations, although

there are some configurations in which the CC method had lower variance. As expected,

Chen’s method performed very well in the common disease setup, where the MS method

and Chen’s method are comparable in terms of bias, variance and coverage probability. In

the rare disease setup, Chen’s estimator had low bias is some cases and considerable bias in

other cases. In addition, the standard deviation of Chen’s estimator was substantially greater

than that of the MS estimator, in some cases around 3 times greater. Also, the estimate of

the standard deviation tended to underestimate, leading to considerably lower than nominal

confidence interval coverage rates.

In the multiple-covariate setup, MS method exhibited noticeable bias in some configura-

tions, but the bias with the MS method was typically lower than with the RC method, often

considerably so. The patterns were similar across the disease incidence levels (common/rare)

and the measurement error models (independent/dependent). The performance of the MS

method with dependent covariates was similar to that with independent covariates, and

no systematic trends emerged between the dependent covariate case and the independent

covariate case in the relative performance of the MS method as compared with the other

methods. Chen’s method had a noticeably lower standard deviation than the MS method in

the multivariate common disease setting with for large β and moderate correlation between

the surrogate and the true exposure (Tables S3-S6 in the Web Appendix, bottom panel).

To explore the relative performance of the two methods further, we conducted additional

simulations with eβ = 4 under an “intermediate event rate” scenario with n = 500, validation

sample size of 200, and a cumulative event rate of about 15% (Table S7 in the Web Appendix)

In these simulations, Chen’s method again had a noticeably lower standard deviation than
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the MS method; at the same time, Chen’s estimate of the standard deviation of the estimate

was noticeably lower than the empirical standard deviation. As a rough practical guide, we

suggest that the MS estimator is to be preferred when the number of events in the validation

study is very low, while Chen’s estimator is to be preferred when the number of events in

the validation study is 30 or more, with some caution needed with Chen’s estimate of the

standard deviation of the estimator.

In both the single-covariate and the multiple-covariate setups, the empirical coverage rate

of the asymptotic confidence interval based on the MS method is generally close to the

nominal level of 95%, while for the RC method the coverage rate tended to be considerably

below nominal for eβ = 4.

For the multiple-covariate setup, we conducted additional simulations to examine the bias

of the MS method for larger sample sizes. These results are reported in the Supplementary

Web Materials in Tables S8-S9. When the sample size is increased, the bias decreases,

eventually to a very small level.

4. Example

We illustrate the method on data from the Health Professionals Follow-Up Study (HPFS),

a prospective cohort study of 51,529 middle-aged (age 40-75 years at baseline) male health

professionals. Participants were recruited in 1986 and were mailed questionnaires every other

year to assess health status and lifestyle. Here, we analyze the relationship between onset

of Type 2 diabetes (T2D) and a diet score relating to intake of carbohydrates, protein, and

fat (de Koning et al., 2011). The diet score ranged from 0 to 30, with the score increasing

under a decrease in carbohydrate intake or an increase in protein or fat intake. The analysis

included the 41,616 study participants who were free of T2D, cardiovascular disease, or

cancer at baseline, among whom there were 2,790 cases of incident T2D during follow-up.

Diet was assessed with a 131-item semiquantitative food frequency questionnaire (FFQ),
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an instrument which is subject to substantial measurement error. In a subsample of 105

participants, another diet assessment was carried out using a more accurate diet record (DR).

The analysis was stratified by age and adjusted for body mass index (BMI). We analyzed

the data using the naive Cox method, the RC method, the complete case method, Chen’s

method, and our proposed MS method. There were only 6 events among the 105 individuals

in the validation sample, which puts Chen’s method and the complete case method at a very

severe disadvantage. Table 5 presents the results for the various methods. For the regression

coefficient for the diet score, the RC estimate is considerably larger than the naive estimate,

and the MS and complete case estimates are noticeably larger than the RC estimate. The

estimate with Chen’s method was lower than that with the naive method. The standard

error with Chen’s method was a bit over 1.5 times the standard error with the MS method.

For the regression coefficient for BMI, the estimates were similar across all methods, and the

standard error with Chen’s method was 2.7 times that of the standard error with the MS

method.

[Table 7 about here.]

5. Summary and Discussion

We have developed a new method for covariate error correction in the Cox survival regression

model, given internal validation data. The method can handle covariate error of arbitrary

form, not just independent additive measurement error. Only a modestly-sized internal

validation sample is required. The method can handle the case where the number of covariates

in moderate to large. In a simulation study, the method was found to perform very well in

terms of bias reduction and confidence interval coverage.

We have worked in the setting of time-independent covariates, but it is possible to con-

sider extension to the case of time-dependent covariates. When the covariate processes are
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measured on an approximately continuous basis (W(t) for the full cohort and X(t) for

the internal validation sample), the method and its asymptotic theory carries over with

notational changes only. The same is true in the case where the covariate processes are

measured only intermittently, as commonly occurs in practice, but the processes vary slowly,

so that carrying forward the last observed covariate value is a reasonable approximation.

If the association between W and X is very weak, the proposed estimate will remain

consistent and asymptotically normal, but the variance will be very high. If there is no

association at all between W and X, then W is not a suitable surrogate for X and no

correction method will help. If the relationship between W and X is highly nonlinear, the

working model (4) can be modified to include nonlinear W terms. A plot of Xir versus Wir for

the individuals in the internal validation sample can be used to examine whether nonlinear

W terms are needed in the working model for Xir.

6. Supplementary Materials

The Web Appendix, referenced in Sections 2 and 3, is available with this paper at the

Biometrics website on Wiley Online Library, as is the code we used to implement the various

method.
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Table 1
Simulation results for the single-covariate rare disease case with independent measurement error. β∗ is the true

value of β. Bias(%) is the relative bias, i.e. Bias(%)=100 × (β̂ − β∗)/β∗. IQR is 0.74 times the interquartile range

of the β̂ values. SE is the mean of the estimated standard error of β̂. SD is the empirical standard deviation of the β̂
values. CR is the empirical coverage rate of the asymptotic 95% confidence interval. Methods considered: MS =

modified score, CH = Chen, RC = regression calibration, CC = complete case, NA = naive.

Mean Median

Corr(X,W ) exp(β∗) β∗ Method β̂ Bias(%) β̂ Bias(%) IQR SE SD CR

0.90 1.5 0.4055 MS 0.4050 -0.1 0.4011 -1.1 0.0577 0.0525 0.0517 0.965

CH 0.4230 4.3 0.4313 6.4 0.1621 0.1373 0.1743 0.879

RC 0.4036 -0.5 0.4032 -0.6 0.0562 0.0511 0.0506 0.957

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.3287 -18.9 0.3309 -18.4 0.0404 0.0402 0.0386 0.543

0.70 1.5 0.4055 MS 0.4088 0.8 0.4040 -0.4 0.0737 0.0738 0.0753 0.945

CH 0.4277 5.5 0.4403 8.6 0.2545 0.2126 0.2979 0.855

RC 0.4029 -0.6 0.4032 -0.6 0.0704 0.0688 0.0690 0.965

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.1993 -50.9 0.2011 -50.4 0.0346 0.0313 0.0306 0.000

0.50 1.5 0.4055 MS 0.4129 1.8 0.4103 1.2 0.1081 0.1099 0.1186 0.938

CH 0.4326 6.7 0.4459 10.0 0.3006 0.2518 0.3558 0.859

RC 0.4030 -0.6 0.4004 -1.3 0.1052 0.0976 0.1011 0.938

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.1022 -74.8 0.1036 -74.4 0.0237 0.0224 0.0223 0.000

0.90 2.5 0.9163 MS 0.9279 1.3 0.9221 0.6 0.0750 0.0720 0.0721 0.949

CH 0.9401 2.6 0.9289 1.4 0.1857 0.1599 0.2120 0.875

RC 0.9098 -0.7 0.9045 -1.3 0.0619 0.0584 0.0575 0.973

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.7412 -19.1 0.7406 -19.2 0.0393 0.0409 0.0395 0.004

0.70 2.5 0.9163 MS 0.9449 3.1 0.9376 2.3 0.1269 0.1279 0.1324 0.957

CH 0.9545 4.2 0.9511 3.8 0.2756 0.2394 0.3477 0.867

RC 0.8944 -2.4 0.8910 -2.8 0.0904 0.0878 0.0845 0.949

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.4434 -51.6 0.4438 -51.6 0.0272 0.0315 0.0307 0.000

0.50 2.5 0.9163 MS 0.9620 5.0 0.9460 3.2 0.2069 0.2263 0.2401 0.957

CH 0.9577 4.5 0.9601 4.8 0.3152 0.2761 0.4026 0.855

RC 0.8785 -4.1 0.8766 -4.3 0.1345 0.1263 0.1258 0.914

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.2254 -75.4 0.2270 -75.2 0.0191 0.0224 0.0223 0.000

0.90 4.0 1.3863 MS 1.4214 2.5 1.4080 1.6 0.1166 0.1162 0.1196 0.930

CH 1.4359 3.6 1.4159 2.1 0.2352 0.2004 0.2625 0.875

RC 1.3464 -2.9 1.3476 -2.8 0.0718 0.0687 0.0651 0.906

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 1.0967 -20.9 1.0997 -20.7 0.0449 0.0426 0.0422 0.000

0.70 4.0 1.3863 MS 1.4862 7.2 1.4587 5.2 0.2271 0.2405 0.2590 0.957

CH 1.4654 5.7 1.4196 2.4 0.3281 0.2837 0.3986 0.856

RC 1.2863 -7.2 1.2901 -6.9 0.1112 0.1079 0.1020 0.781

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 0.6384 -53.9 0.6388 -53.9 0.0337 0.0319 0.0312 0.000

0.50 4.0 1.3863 MS 1.4992 8.1 1.4446 4.2 0.3384 0.3698 0.3786 0.944

CH 1.4752 6.4 1.4155 2.1 0.3636 0.3168 0.4497 0.863

RC 1.2358 -10.9 1.2302 -11.3 0.1650 0.1496 0.1490 0.739

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 0.3206 -76.9 0.3228 -76.7 0.0227 0.0225 0.0221 0.000
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Table 2
Simulation results for the single-covariate rare disease case with dependent measurement error. β∗ is the true value

of β. Bias(%) is the relative bias, i.e. Bias(%)=100 × (β̂ − β∗)/β∗. IQR is 0.74 times the interquartile range of the

β̂ values. SE is the mean of the estimated standard error of β̂. SD is the empirical standard deviation of the β̂
values. CR is the empirical coverage rate of the asymptotic 95% confidence interval. Methods considered: MS =

modified score, CH = Chen, RC = regression calibration, CC = complete case, NA = naive.

Mean Median

Corr(X,W ) exp(β∗) β∗ Method β̂ Bias(%) β̂ Bias(%) IQR SE SD CR

0.90 1.5 0.4055 MS 0.4043 -0.3 0.4012 -1.1 0.0558 0.0525 0.0516 0.957

CH 0.4255 4.9 0.4314 6.4 0.1628 0.1345 0.1729 0.871

RC 0.4005 -1.2 0.4009 -1.1 0.0517 0.0499 0.0497 0.949

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.3299 -18.6 0.3315 -18.3 0.0392 0.0400 0.0382 0.531

0.70 1.5 0.4055 MS 0.4071 0.4 0.4055 0.0 0.0739 0.0730 0.0729 0.953

CH 0.4272 5.4 0.4406 8.7 0.2622 0.2126 0.3012 0.867

RC 0.3992 -1.5 0.3980 -1.8 0.0694 0.0669 0.0667 0.957

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.1974 -51.3 0.1985 -51.0 0.0322 0.0308 0.0301 0.000

0.50 1.5 0.4055 MS 0.4156 2.5 0.4111 1.4 0.1020 0.1122 0.1175 0.953

CH 0.4267 5.2 0.4287 5.7 0.3036 0.2509 0.3561 0.855

RC 0.4016 -1.0 0.3995 -1.5 0.1007 0.0974 0.0995 0.949

CC 0.4188 3.3 0.4163 2.7 0.3120 0.3384 0.3684 0.945

NA 0.1023 -74.8 0.1042 -74.3 0.0224 0.0223 0.0224 0.000

0.90 2.5 0.9163 MS 0.9226 0.7 0.9091 -0.8 0.0763 0.0840 0.0801 0.949

CH 0.9386 2.4 0.9283 1.3 0.1835 0.1623 0.2210 0.859

RC 0.8798 -4.0 0.8778 -4.2 0.0579 0.0550 0.0552 0.887

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.7247 -20.9 0.7229 -21.1 0.0354 0.0392 0.0376 0.000

0.70 2.5 0.9163 MS 0.9415 2.8 0.9221 0.6 0.1341 0.1433 0.1346 0.961

CH 0.9492 3.6 0.9506 3.7 0.2732 0.2431 0.3613 0.867

RC 0.8631 -5.8 0.8669 -5.4 0.0861 0.0807 0.0779 0.879

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.4268 -53.4 0.4264 -53.5 0.0261 0.0297 0.0292 0.000

0.50 2.5 0.9163 MS 0.9616 4.9 0.9365 2.2 0.2144 0.2861 0.2327 0.953

CH 0.9367 2.2 0.9367 2.2 0.3046 0.2777 0.3913 0.871

RC 0.8675 -5.3 0.8698 -5.1 0.1360 0.1257 0.1246 0.902

CC 0.9380 2.4 0.9259 1.0 0.3401 0.3590 0.4109 0.941

NA 0.2230 -75.7 0.2246 -75.5 0.0202 0.0219 0.0226 0.000

0.90 4.0 1.3863 MS 1.4056 1.4 1.3595 -1.9 0.1087 0.2276 0.2203 0.928

CH 1.4280 3.0 1.4047 1.3 0.2489 0.2089 0.2907 0.883

RC 1.2652 -8.7 1.2619 -9.0 0.0659 0.0635 0.0608 0.508

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 1.0416 -24.9 1.0429 -24.8 0.0417 0.0392 0.0386 0.000

0.70 4.0 1.3863 MS 1.4559 5.0 1.4036 1.2 0.2359 0.3021 0.2920 0.939

CH 1.4517 4.7 1.4043 1.3 0.3466 0.2888 0.4162 0.859

RC 1.2086 -12.8 1.2094 -12.8 0.0963 0.0962 0.0906 0.535

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 0.5969 -56.9 0.5988 -56.8 0.0304 0.0288 0.0284 0.000

0.50 4.0 1.3863 MS 1.4663 5.8 1.4039 1.3 0.3186 0.3821 0.3793 0.934

CH 1.4564 5.1 1.3922 0.4 0.3705 0.3192 0.4530 0.856

RC 1.2105 -12.7 1.1978 -13.6 0.1572 0.1490 0.1478 0.696

CC 1.4460 4.3 1.4134 2.0 0.3881 0.4063 0.4590 0.957

NA 0.3135 -77.4 0.3149 -77.3 0.0239 0.0214 0.0221 0.000
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Table 3
Simulation results for the multiple-covariate rare disease case with independent covariates and independent

measurement error. β∗ is the true value of β. Bias(%) is the relative bias, i.e. Bias(%)=100 × (β̂ − β∗)/β∗. IQR is

0.74 times the interquartile range of the β̂ values. SE is the mean of the estimated standard error of β̂. SD is the

empirical standard deviation of the β̂ values. CR is the empirical coverage rate of the asymptotic 95% confidence
interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete case,

NA = naive.

Mean Median

Corr(X,W ) exp(β∗) β∗ Method β̂ Bias(%) β̂ Bias(%) IQR SE SD CR

0.90 1.5 0.4055 MS 0.4118 1.6 0.4101 1.1 0.0512 0.0684 0.0573 0.949

CH 0.4136 2.0 0.4106 1.3 0.1962 0.1352 0.2432 0.772

RC 0.4074 0.5 0.4063 0.2 0.0486 0.0523 0.0507 0.945

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.3321 -18.1 0.3337 -17.7 0.0420 0.0410 0.0408 0.567

0.70 1.5 0.4055 MS 0.4175 3.0 0.4067 0.3 0.0761 0.0860 0.0814 0.957

CH 0.4292 5.8 0.4518 11.4 0.3221 0.2026 0.4050 0.749

RC 0.4066 0.3 0.4074 0.5 0.0700 0.0709 0.0684 0.949

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.1997 -50.8 0.2017 -50.2 0.0333 0.0319 0.0320 0.000

0.50 1.5 0.4055 MS 0.4300 6.1 0.4148 2.3 0.1105 0.1402 0.1340 0.952

CH 0.4274 5.4 0.4542 12.0 0.3518 0.2358 0.4852 0.749

RC 0.4081 0.6 0.4065 0.3 0.1050 0.1016 0.0986 0.957

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.1013 -75.0 0.1021 -74.8 0.0248 0.0228 0.0228 0.000

0.90 2.5 0.9163 MS 0.9429 2.9 0.9289 1.4 0.1076 0.1272 0.1230 0.937

CH 0.9757 6.5 0.9480 3.5 0.2110 0.1596 0.2607 0.785

RC 0.9109 -0.6 0.9133 -0.3 0.0536 0.0595 0.0569 0.961

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.7424 -19.0 0.7429 -18.9 0.0441 0.0415 0.0418 0.016

0.70 2.5 0.9163 MS 0.9657 5.4 0.9398 2.6 0.1901 0.2015 0.2146 0.955

CH 1.0211 11.4 0.9778 6.7 0.3117 0.2287 0.4124 0.754

RC 0.8962 -2.2 0.8896 -2.9 0.0883 0.0901 0.0865 0.930

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.4408 -51.9 0.4428 -51.7 0.0311 0.0318 0.0333 0.000

0.50 2.5 0.9163 MS 1.0264 12.0 0.9356 2.1 0.3004 0.3131 0.3227 0.938

CH 1.0330 12.7 1.0100 10.2 0.3453 0.2602 0.4751 0.762

RC 0.8868 -3.2 0.8738 -4.6 0.1235 0.1308 0.1308 0.930

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.2228 -75.7 0.2244 -75.5 0.0221 0.0226 0.0236 0.000

0.90 4.0 1.3863 MS 1.4395 3.8 1.4175 2.3 0.1245 0.1333 0.1490 0.943

CH 1.5051 8.6 1.4591 5.2 0.3151 0.2087 0.4670 0.769

RC 1.3467 -2.9 1.3496 -2.6 0.0732 0.0705 0.0683 0.902

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 1.0974 -20.8 1.0969 -20.9 0.0440 0.0438 0.0453 0.000

0.70 4.0 1.3863 MS 1.5253 10.0 1.4410 3.9 0.3180 0.3329 0.3486 0.936

CH 1.5592 12.5 1.5045 8.5 0.4789 0.2822 0.5824 0.741

RC 1.2853 -7.3 1.2782 -7.8 0.1074 0.1110 0.1091 0.805

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 0.6327 -54.4 0.6349 -54.2 0.0354 0.0326 0.0347 0.000

0.50 4.0 1.3863 MS 1.5407 11.1 1.4472 4.4 0.4363 0.4511 0.4404 0.925

CH 1.5903 14.7 1.5255 10.0 0.5249 0.3138 0.6286 0.706

RC 1.2423 -10.4 1.2252 -11.6 0.1481 0.1546 0.1546 0.789

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 0.3156 -77.2 0.3164 -77.2 0.0238 0.0229 0.0236 0.000
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Table 4
Simulation results for the multiple-covariate rare disease case with independent covariates and dependent

measurement error. β∗ is the true value of β. Bias(%) is the relative bias, i.e. Bias(%)=100 × (β̂ − β∗)/β∗. IQR is

0.74 times the interquartile range of the β̂ values. SE is the mean of the estimated standard error of β̂. SD is the

empirical standard deviation of the β̂ values. CR is the empirical coverage rate of the asymptotic 95% confidence
interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete case,

NA = naive.

Mean Median

Corr(X,W ) exp(β∗) β∗ Method β̂ Bias(%) β̂ Bias(%) IQR SE SD CR

0.90 1.5 0.4055 MS 0.4098 1.1 0.4057 0.1 0.0558 0.0564 0.0546 0.948

CH 0.4157 2.5 0.4113 1.4 0.2128 0.1334 0.2410 0.760

RC 0.4045 -0.2 0.4017 -0.9 0.0482 0.0511 0.0504 0.949

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.3339 -17.6 0.3367 -16.9 0.0417 0.0408 0.0406 0.571

0.70 1.5 0.4055 MS 0.4141 2.1 0.4062 0.2 0.0735 0.0833 0.0800 0.957

CH 0.4250 4.8 0.4472 10.3 0.3061 0.2026 0.4028 0.733

RC 0.4036 -0.5 0.4043 -0.3 0.0710 0.0690 0.0678 0.953

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.1984 -51.1 0.1994 -50.8 0.0331 0.0315 0.0320 0.000

0.50 1.5 0.4055 MS 0.4312 6.4 0.4123 1.7 0.1164 0.1460 0.1453 0.957

CH 0.4299 6.0 0.4346 7.2 0.3686 0.2346 0.4725 0.753

RC 0.4084 0.7 0.4070 0.4 0.1048 0.1017 0.1004 0.953

CC 0.4717 16.3 0.4533 11.8 0.3626 0.3782 0.4538 0.961

NA 0.1019 -74.9 0.1031 -74.6 0.0260 0.0227 0.0233 0.000

0.90 2.5 0.9163 MS 0.9414 2.7 0.9183 0.2 0.0839 0.1050 0.1148 0.956

CH 0.9741 6.3 0.9437 3.0 0.2253 0.1617 0.2700 0.782

RC 0.8828 -3.7 0.8821 -3.7 0.0492 0.0562 0.0548 0.891

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.7284 -20.5 0.7276 -20.6 0.0411 0.0399 0.0400 0.004

0.70 2.5 0.9163 MS 0.9504 3.7 0.9223 0.7 0.1275 0.1366 0.1429 0.935

CH 1.0096 10.2 0.9775 6.7 0.3164 0.2295 0.4197 0.754

RC 0.8686 -5.2 0.8685 -5.2 0.0795 0.0833 0.0803 0.883

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.4271 -53.4 0.4276 -53.3 0.0298 0.0302 0.0318 0.000

0.50 2.5 0.9163 MS 1.0023 9.4 0.9252 1.0 0.2244 0.2382 0.2352 0.928

CH 1.0173 11.0 0.9848 7.5 0.3487 0.2594 0.4739 0.750

RC 0.8800 -4.0 0.8685 -5.2 0.1307 0.1311 0.1323 0.906

CC 1.0757 17.4 1.0305 12.5 0.3716 0.4151 0.4676 0.945

NA 0.2219 -75.8 0.2228 -75.7 0.0235 0.0221 0.0238 0.000

0.90 4.0 1.3863 MS 1.4155 2.1 1.3822 -0.3 0.1549 0.1720 0.1881 0.942

CH 1.4825 6.9 1.4324 3.3 0.3299 0.2126 0.4456 0.764

RC 1.2701 -8.4 1.2703 -8.4 0.0645 0.0654 0.0639 0.571

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 1.0474 -24.4 1.0466 -24.5 0.0405 0.0405 0.0424 0.000

0.70 4.0 1.3863 MS 1.4339 3.4 1.3776 -0.6 0.3308 0.3563 0.3666 0.930

CH 1.5297 10.3 1.4711 6.1 0.4686 0.2837 0.5652 0.732

RC 1.2156 -12.3 1.2144 -12.4 0.1054 0.0997 0.0980 0.567

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 0.5969 -56.9 0.6004 -56.7 0.0320 0.0297 0.0320 0.000

0.50 4.0 1.3863 MS 1.4985 8.1 1.3904 0.3 0.4507 0.4740 0.4678 0.926

CH 1.5673 13.1 1.5050 8.6 0.5324 0.3130 0.6322 0.710

RC 1.2240 -11.7 1.2001 -13.4 0.1560 0.1549 0.1561 0.758

CC 1.6563 19.5 1.5847 14.3 0.4873 0.5055 0.5971 0.945

NA 0.3112 -77.6 0.3120 -77.5 0.0249 0.0220 0.0234 0.000
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Table 5
Simulation results for the multiple-covariate rare disease case with dependent covariates and independent

measurement error. β∗ is the true value of β. Bias(%) is the relative bias, i.e. Bias(%)=100 × (β̂ − β∗)/β∗. IQR is

0.74 times the interquartile range of the β̂ values. SE is the mean of the estimated standard error of β̂. SD is the

empirical standard deviation of the β̂ values. CR is the empirical coverage rate of the asymptotic 95% confidence
interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete case,

NA = naive.

Mean Median

Corr(X,W ) exp(β∗) β∗ Method β̂ Bias(%) β̂ Bias(%) IQR SE SD CR

0.90 1.5 0.4055 MS 0.4095 1.0 0.4045 -0.2 0.0526 0.0570 0.0589 0.957

CH 0.4199 3.6 0.4149 2.3 0.1793 0.1364 0.2120 0.825

RC 0.3954 -2.5 0.3916 -3.4 0.0503 0.0482 0.0510 0.941

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.3221 -20.6 0.3215 -20.7 0.0393 0.0378 0.0398 0.375

0.70 1.5 0.4055 MS 0.4139 2.1 0.4063 0.2 0.0787 0.0902 0.0883 0.949

CH 0.4355 7.4 0.4363 7.6 0.2904 0.2044 0.3414 0.774

RC 0.3768 -7.1 0.3721 -8.2 0.0596 0.0638 0.0657 0.910

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.1861 -54.1 0.1840 -54.6 0.0304 0.0288 0.0305 0.000

0.50 1.5 0.4055 MS 0.4320 6.5 0.3959 -2.4 0.1214 0.1533 0.1429 0.941

CH 0.4391 8.3 0.4414 8.9 0.3502 0.2381 0.3977 0.770

RC 0.3603 -11.1 0.3601 -11.2 0.0824 0.0885 0.0870 0.906

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.0916 -77.4 0.0905 -77.7 0.0204 0.0203 0.0212 0.000

0.90 2.5 0.9163 MS 0.9375 2.3 0.9201 0.4 0.0837 0.1190 0.1109 0.937

CH 0.9507 3.8 0.9219 0.6 0.1921 0.1569 0.2324 0.840

RC 0.8767 -4.3 0.8719 -4.8 0.0541 0.0543 0.0581 0.875

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.7140 -22.1 0.7141 -22.1 0.0453 0.0373 0.0395 0.000

0.70 2.5 0.9163 MS 0.9738 6.3 0.9403 2.6 0.1825 0.2151 0.2035 0.934

CH 0.9886 7.9 0.9670 5.5 0.2972 0.2296 0.3536 0.809

RC 0.8191 -10.6 0.8130 -11.3 0.0862 0.0801 0.0827 0.699

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.4042 -55.9 0.4042 -55.9 0.0306 0.0280 0.0297 0.000

0.50 2.5 0.9163 MS 1.0112 10.4 0.9172 0.1 0.2953 0.3348 0.3250 0.928

CH 0.9965 8.8 0.9604 4.8 0.3475 0.2607 0.4162 0.805

RC 0.7736 -15.6 0.7737 -15.6 0.1150 0.1118 0.1099 0.683

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.1975 -78.4 0.1969 -78.5 0.0216 0.0196 0.0206 0.000

0.90 4.0 1.3863 MS 1.4361 3.6 1.3980 0.8 0.1537 0.2373 0.1928 0.938

CH 1.4638 5.6 1.3997 1.0 0.2668 0.2105 0.3759 0.824

RC 1.2871 -7.2 1.2805 -7.6 0.0675 0.0648 0.0665 0.606

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 1.0479 -24.4 1.0419 -24.8 0.0425 0.0392 0.0421 0.000

0.70 4.0 1.3863 MS 1.5063 8.7 1.4175 2.3 0.2952 0.3454 0.3020 0.920

CH 1.5515 11.9 1.4604 5.3 0.3985 0.2887 0.5080 0.807

RC 1.1605 -16.3 1.1516 -16.9 0.1026 0.0986 0.0994 0.383

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.5725 -58.7 0.5714 -58.8 0.0348 0.0285 0.0310 0.000

0.50 4.0 1.3863 MS 1.4931 7.7 1.4066 1.5 0.3796 0.4436 0.4172 0.918

CH 1.5455 11.5 1.4421 4.0 0.4568 0.3185 0.5594 0.792

RC 1.0735 -22.6 1.0742 -22.5 0.1330 0.1334 0.1296 0.367

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.2753 -80.1 0.2737 -80.3 0.0256 0.0197 0.0209 0.000
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Table 6
Simulation results for the multiple-covariate rare disease case with with dependent covariates and dependent

measurement error. β∗ is the true value of β. Bias(%) is the relative bias, i.e. Bias(%)=100 × (β̂ − β∗)/β∗. IQR is

0.74 times the interquartile range of the β̂ values. SE is the mean of the estimated standard error of β̂. SD is the

empirical standard deviation of the β̂ values. CR is the empirical coverage rate of the asymptotic 95% confidence
interval. Methods considered: MS = modified score, CH = Chen, RC = regression calibration, CC = complete case,

NA = naive.

Mean Median

Corr(X,W ) exp(β∗) β∗ Method β̂ Bias(%) β̂ Bias(%) IQR SE SD CR

0.90 1.5 0.4055 MS 0.4132 1.9 0.4034 -0.5 0.0535 0.0638 0.0717 0.949

CH 0.4256 5.0 0.4184 3.2 0.1716 0.1510 0.2117 0.840

RC 0.3882 -4.3 0.3845 -5.2 0.0475 0.0467 0.0494 0.930

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.3201 -21.1 0.3190 -21.3 0.0385 0.0373 0.0389 0.363

0.70 1.5 0.4055 MS 0.4097 1.0 0.3965 -2.2 0.0741 0.0937 0.0875 0.953

CH 0.4247 4.7 0.3979 -1.9 0.3105 0.2402 0.3989 0.832

RC 0.3656 -9.8 0.3627 -10.5 0.0552 0.0612 0.0621 0.875

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.1804 -55.5 0.1782 -56.0 0.0308 0.0280 0.0294 0.000

0.50 1.5 0.4055 MS 0.4249 4.8 0.3938 -2.9 0.1226 0.1663 0.1591 0.936

CH 0.3966 -2.2 0.3846 -5.2 0.3626 0.2814 0.4833 0.816

RC 0.3519 -13.2 0.3498 -13.7 0.0848 0.0876 0.0842 0.890

CC 0.4373 7.8 0.4208 3.8 0.3744 0.3529 0.3891 0.961

NA 0.0897 -77.9 0.0885 -78.2 0.0226 0.0200 0.0209 0.000

0.90 2.5 0.9163 MS 0.9330 1.8 0.9018 -1.6 0.0899 0.1134 0.1229 0.929

CH 0.9425 2.9 0.9136 -0.3 0.2188 0.1830 0.2600 0.871

RC 0.8400 -8.3 0.8350 -8.9 0.0495 0.0512 0.0541 0.625

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.6922 -24.5 0.6923 -24.4 0.0386 0.0356 0.0370 0.000

0.70 2.5 0.9163 MS 0.9499 3.7 0.9150 -0.1 0.1512 0.1800 0.1843 0.921

CH 0.9770 6.6 0.9371 2.3 0.3183 0.2731 0.4340 0.855

RC 0.7789 -15.0 0.7735 -15.6 0.0799 0.0733 0.0742 0.484

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.3834 -58.2 0.3838 -58.1 0.0297 0.0262 0.0273 0.000

0.50 2.5 0.9163 MS 0.9763 6.5 0.8980 -2.0 0.2604 0.3032 0.2847 0.896

CH 0.9659 5.4 0.9285 1.3 0.3232 0.3116 0.4971 0.863

RC 0.7554 -17.6 0.7568 -17.4 0.1147 0.1110 0.1063 0.641

CC 0.9886 7.9 0.9803 7.0 0.3273 0.3707 0.4115 0.961

NA 0.1929 -79.0 0.1929 -78.9 0.0214 0.0189 0.0200 0.000

0.90 4.0 1.3863 MS 1.4213 2.5 1.3515 -2.5 0.1523 0.1813 0.1713 0.870

CH 1.4668 5.8 1.4018 1.1 0.2839 0.2350 0.4104 0.832

RC 1.2054 -13.1 1.1996 -13.5 0.0561 0.0602 0.0609 0.160

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.9925 -28.4 0.9893 -28.6 0.0387 0.0362 0.0386 0.000

0.70 4.0 1.3863 MS 1.4304 3.2 1.3619 -1.8 0.2769 0.3131 0.3011 0.870

CH 1.5199 9.6 1.4261 2.9 0.3573 0.3232 0.5417 0.848

RC 1.0864 -21.6 1.0744 -22.5 0.0961 0.0883 0.0886 0.129

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.5337 -61.5 0.5336 -61.5 0.0309 0.0259 0.0281 0.000

0.50 4.0 1.3863 MS 1.4489 4.5 1.3289 -4.1 0.3643 0.4592 0.4374 0.871

CH 1.5204 9.7 1.4437 4.1 0.3662 0.3563 0.5615 0.848

RC 1.0487 -24.4 1.0493 -24.3 0.1392 0.1332 0.1277 0.324

CC 1.6191 16.8 1.5145 9.2 0.4535 0.4886 0.7240 0.969

NA 0.2686 -80.6 0.2676 -80.7 0.0230 0.0188 0.0204 0.000
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Table 7
HPFS Results. SE = standard error of estimate. SE Ratio = Ratio between the standard error of the estimate and
the standard error of the modified score estimate. Methods considered: MS = modified score, CH = Chen, RC =

regression calibration, CC = complete case, NA = naive.

Diet Score Coefficient BMI Coefficient

Method Estimate SE SE Ratio Estimate SE SE Ratio

Naive 0.0216 0.0027 0.1107 0.0867 0.0019 0.2346
CC 0.0788 0.0738 3.0246 0.0913 0.1335 16.4815
RC 0.0485 0.0096 0.3934 0.0867 0.0078 0.9630
CH 0.0136 0.0383 1.5697 0.0800 0.0220 2.7160
MS 0.0712 0.0244 1.0000 0.0865 0.0081 1.0000


