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Abstract

Gaussian graphical regression is a powerful approach for regressing the precision

matrix of a Gaussian graphical model on covariates, which permits the response vari-

ables and covariates to outnumber the sample size. However, traditional approaches

of fitting the model via separate node-wise lasso regressions overlook the network-

induced structure among these regressions, leading to high error rates, particularly

when the number of nodes is large. To address this issue, we propose a multi-task

learning estimator for fitting Gaussian graphical regression models, which incorpo-

rates a cross-task group sparsity penalty and a within-task element-wise sparsity

penalty to govern the sparsity of active covariates and their effects on the graph,

respectively. We also develop an efficient augmented Lagrangian algorithm for com-

putation, which solves subproblems with a semi-smooth Newton method. We further

prove that our multi-task learning estimator has considerably lower error rates than

the separate node-wise regression estimates, as the cross-task penalty enables bor-

rowing information across tasks. We examine the utility of our method through

simulations and an application to a gene co-expression network study with brain

cancer patients.

Keywords: subject-specific Gaussian graphical model, graphical model with co-

variates, multi-task learning, concentration inequality for dependent variables, co-

expression quantitative trait loci.
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1 Introduction

Gaussian graphical models are an effective tool for inferring the dependence among variables

of interest, such as the co-expression patterns among genes (Peng et al., 2009; Cai et al.,

2012; Chen et al., 2016) and functional connectivity between brain regions (Zhang et al.,

2019), because precision matrices for multivariate Gaussian variables have an interpretation

of conditional dependence (Lauritzen, 1996). That is, if (X1, . . . , Xp) ∼ Np(0,Σ), then

(Σ−1)jk = 0 implies that Xj and Xk are conditionally independent given all other variables.

While the literature on Gaussian graphical models is expanding, most existing models

assume a homogeneous population with a common graphical model (Meinshausen and

Bühlmann, 2006; Yuan and Lin, 2007; Friedman et al., 2008; Peng et al., 2009) or several

stratified graphical models (Guo et al., 2011; Danaher et al., 2014).

In numerous applications, graphical structures may depend on high dimensional exter-

nal continuous and discrete covariates. For example, the functional connectivity of brain

regions can be modulated by individual subject’s gender, age and genetic variants (Zhang

et al., 2022); genetic variants, clinical and environmental factors, may affect both the ex-

pression levels of individual genes and the co-expression relationships among genes (Wang

et al., 2012). Finding genetic variants that alter co-expression relationships, commonly re-

ferred to as co-expression quantitative trait loci, is of scientific interest (Wang et al., 2012;

van der Wijst et al., 2018). The identification of co-expression quantitative trait loci among

many SNPs can be framed as a problem that involves linking graphical models with high-

dimensional external covariates. An important goal is thus to ascertain how the covariates

modulate the individual-level graphical structures, and to recover both the population- and

subject-level graphs. This understanding of heterogeneity across individuals is critical for

precision health and medicine.
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Though much progress has been made for developing graphical models, less has been

done for covariate-dependent graphical models. Several works (Li et al., 2012; Cai et al.,

2012; Chen et al., 2016) considered covariate-dependent Gaussian graphical models, wherein

the mean of the nodes depends on covariates, while the network structure is the same

across all of the subjects. Guo et al. (2011) and Danaher et al. (2014) estimated several

stratified graphical models by preserving the common structure among them. Liu et al.

(2010) partitioned the covariate space into several subspaces and fitted separate Gaussian

graphical models for each subspace. Kolar et al. (2010) nonparametrically estimated the

dependence of a covariance matrix on one continuous covariate. Cheng et al. (2014) fitted

a conditional Ising model for binary data. Ni et al. (2019) proposed a directed acyclic

graph model that allows the graph structure to vary with a small number of covariates,

and assumed a hierarchical ordering of the nodes. None of these cited works, however,

can handle high-dimensional continuous and discrete covariates. More recently, Zhang and

Li (2022) proposed a Gaussian graphical regression framework that regresses the precision

matrix of a graphical model on high-dimensional covariates and estimates the parameters

using separate node-wise regressions. However, this separate regression approach ignored

the network-induced common structure among these regressions, potentially leading to

large errors, especially with many nodes.

In this work, we address these limitations by making several methodological, compu-

tational and theoretical contributions. Regarding the methodology, we propose a novel

approach within the Gaussian graphical regression framework that addresses the challenge

of having a large number of covariates in relation to the sample size. Specifically, we intro-

duce a cross-task group sparsity penalty that allows us to effectively borrow information

across different tasks, while accommodating the sparsity assumption on active covariates
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with nonzero effects on the graph. Additionally, we incorporate an element-wise sparsity

constraint to account for the potential sparse effects of active covariates. To speed up the

computation, we adapt an efficient inexact augmented Lagrangian algorithm to optimize the

cross-task objective function with the combined sparsity penalty. Our algorithm involves

invoking a semi-smooth Newton method to solve multiple subproblems; for a graphical

model of dimension p = 50 and number of covariates q = 300 resulting in about 750,000

parameters in total, the joint optimization can be solved in a few seconds on a personal

desktop. Our theoretical contributions address the main challenge that the regression tasks

are entangled in a general dependence structure. We establish a new and sharp tail prob-

ability bound for dependent heavy-tailed random variables with an arbitrary dependence

structure, which is meritorious even on its own. Moreover, as the combined sparsity penalty

is not decomposable, common techniques using decomposable regularizers and null space

properties (Negahban et al., 2012) are not applicable. Thus, our techniques may advance

high-dimensional regressions with simultaneously sparse structures. Finally, we prove that,

compared to Zhang and Li (2022), the error rate of the simultaneously estimated precision

parameters improves by a factor of p, the number of response variables. The improvement

is remarkable for a large p, as further corroborated in simulation studies.

2 Multi-task Learning for Gaussian Graphical Regres-

sions

2.1 Gaussian Graphical Regressions

Denote by X = (X1, . . . , Xp)
⊤ the p-dimensional vector of response variables, for ex-

ample, gene expression levels. The standard Gaussian graphical model assumes that
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X ∼ Np(0,Σ), which after writing Ω = Σ−1 can be represented as regressions:

Xj =

p∑
k ̸=j

βjkXk + ϵj, j ∈ [p], (1)

where βjk = −Ωjk/Ωjj, Var(ϵj) = 1/Ωjj and ϵj is independent ofX−j = {Xk : k ̸= j ∈ [p]}.

As Ωjk ̸= 0 is equivalent to Xj and Xk being conditionally dependent given all other

variables, estimating the conditional dependence structure reduces to a model selection

problem (i.e., finding nonzero βjk’s) under the regression in (1).

Let U = (U1, . . . , Uq)
⊤ be the q-dimensional vector of covariates, such as age, sex and

genetic variants. We assume that

X |U = u ∼ Np(Γu,Σ(u)),

where Σ(u) is the conditional covariance, and Ω(u) = Σ−1(u) is the conditional precision

matrix linked to u via

−Ω(u)jk =

−σjj j = k,

β′
jk0 +

∑q
h=1 β

′
jkhuh j ̸= k,

(2)

where β′
jkh = β′

kjh for al j, k, h; see an illustration in Figure 1. We assume Ω(u)jj = σjj

to be free of u, and this is discussed shortly after (3) in Remark 1. A result fundamental

to our method is that the precision matrix in (2) is in fact connected to an interpretable

regression representation, termed Gaussian graphical regression (Zhang and Li, 2022). This

important result allows us to formulate the problem of estimating conditional dependence

as estimating a regression model. After centering Z = X − Γu = (Z1, . . . , Zp)
⊤, some

algebra shows that (2) can be represented as the following regression:

Zj =
∑p

k ̸=j
βjk0Zk +

∑p

k ̸=j

∑q

h=1
βjkh × uhZk︸ ︷︷ ︸
interaction term

+ϵj, (3)

where βjkh = β′
jkh/σ

jj, ϵj is independent of Z−j and Var(ϵj) = 1/σjj, for all j, k and h.

When βjkh = 0, (3) reduces to the usual Gaussian graphical model with Z |U = u ∼
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Figure 1: An illustration of multi-task learning in Gaussian graphical regression.

Np(0,Σ). Notably, model (3) provides a regression framework for estimating the precision

parameters in (2), by including the interactions between X−j and u. Correspondingly, the

partial correlation between Xj and Xk is modeled as a function of u.

Remark 1. The variance of the error term in (3) can be written as Var(ϵj) = 1/σjj,

where σjj is the diagonal element of Ω(u). Correspondingly, assuming σjj to be free of

u implies the residual variance of Zj, after accounting for the effects of u, Z−j and their

interactions, no longer varies with u. This assumption is reasonable in regression contexts,

as noted by Zhang and Li (2022), and greatly simplifies our methodology. In Section 7, we

discuss formulations where σjj may vary with u.

Remark 2. A natural sufficient condition that ensures the positive definiteness of

Ω(u)’s is diagonal dominance. Given (3), diagonal dominance in Ω(u) implies that

max(1, ∥u∥∞)∥βj∥1 < 1 where βj is a vector that collects all coefficients in (3). If we

restrict u
(i)
h to be within [-1,1] (if not, rescale it), we can simplify this sufficient condition

to ∥βj∥1 < 1, j ∈ [p]. This implies that, to maintain diagonal dominance, magnitudes of

the effects of u on partial correlations should not be too large. In finite sample cases and

to ensure the positive definiteness of estimated Ω(u)’s we can consider a posthoc rescaling

step; see Section 3.2 for details.
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2.2 A multi-task learning approach

Let βj = (βj10, . . . , βj,j−1,0, βj,j+1,0, . . . , βjp0, . . . , βj1q, . . . , βj,j−1,q, βj,j+1,q, . . . , βjpq)
⊤ be the

vector of (p− 1)(q+1) coefficients in (3) and write β = (β⊤
1 , . . . ,β

⊤
p )

⊤. To expose the key

ideas, we assume a known Γ in the ensuing development, and focus on the estimation of

β; extensions with unknown Γ are straightforward, but with more involved notation.

We impose on β simultaneous group sparsity and element-wise sparsity, with groups

illustrated in (1). First, we assume β is group sparse, stipulating that effective covariates,

that is, those with nonzero effects on edges, are sparse. Importantly, this group sparse

penalty is placed across p regressions, allowing us to borrow information across p regression

tasks when selecting effective covariates. We further assume β is element-wise sparse.

That is, effective covariates may influence only a few edges. These simultaneous sparsity

assumptions are well supported by genetic studies (van der Wijst et al., 2018).

With n independent data D = {(u(i),x(i)), i ∈ [n]}, let z(i) = x(i) − Γu(i) and w
(i)
−j =

z
(i)
−j ⊗ u(i), where ⊗ denotes the Kronecker product. To estimate β, we consider

argminβ
1

2n

p∑
j=1

n∑
i=1

(z
(i)
j −w

(i)
−j

⊤βj)
2 + λ1

q∑
h=1

∥bh∥2 + λ2∥β∥1, (4)

where bh = ((β1)(h), . . . , (βp)(h)) collects all coefficients related to uh with

(βj)(h) = (βj1h, . . . , βj,j−1,h, βj,j+1,h, . . . , βjph) and λ1, λ2 ≥ 0 are tuning parameters. Distin-

guishing from the node-wise estimation in Zhang and Li (2022), (4) considers p graphical

regressions simultaneously, with the group lasso penalty regulating bh cross tasks; see Fig-

ure 1. The convex regularizing terms, λ1
∑q

h=1 ∥bh∥2 and λ2∥β∥1, encourage group- and

element-wise sparsity, respectively, though the group sparse penalty is not applied to b0,

the intercept coefficients, as it determines the population level regulatory network.
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3 An Inexact Augmented Lagrangian Algorithm

The combined sparsity penalty in (4) is referred to as the sparse group lasso penalty (Simon

et al., 2013). Our sparse group lasso optimization problem is challenging as there are an

order of p2q parameters in (4). For example, when p = 100 and q = 100, nearly 1,000,000

parameters need to be optimized. Existing algorithmic solutions to the sparse group lasso

problem include, for example, gradient descent methods (e.g., Liu et al., 2009; Simon et al.,

2013), block coordinate descent methods (e.g., Li et al., 2015), alternating direction method

of multipliers (ADMM) (e.g., Boyd et al., 2011). These algorithms are first-order methods

applied directly to the primal problem. There is another line of research on group lasso

with an overlapping or hierarchical group structure (Jenatton et al., 2011; Yuan et al., 2011;

Yan and Bien, 2017; Yu and Bien, 2017; Won et al., 2019; Qi and Li, 2022), these methods

can be applied to solve the sparse group lasso problem but may not be computationally

efficient due to the large number of q + p overlapping groups. In our approach, we deal

with the dual problem of (4), which naturally leads to an augmented Lagrangian algorithm

(Hestenes, 1969), in conjunction with a semi-smooth Newton method (Kummer, 1988;

Zhang et al., 2020). Compared with these first order methods, the semi-smooth Newton

augmented Lagrangian method is more computationally efficient by exploiting the second

order information while leveraging sparsity in the generalized Jacobian, and requires fewer

iterations to converge (Li et al., 2018a,b; Zhang et al., 2020). We also compare our algorithm

with an efficient accelerated proximal gradient descent method SLEP (Liu et al., 2009), and

obtained favorable results, as reported in Section 5. We present our algorithm as follows.

Write W =


W−1 · · · 0n×(p−1)(q+1)

...
. . .

...

0n×(p−1)(q+1) · · · W−p

, where W−j = [w
(1)
−j ; . . . ;w

(n)
−j ], and
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y = (z
(1)
1 , . . . , z

(n)
1 , z

(1)
2 , . . . , z

(n)
p ) ∈ Rnp. Correspondingly, (4) can be written as

argminβ
1

2n
∥Wβ − y∥22 + λ1

q∑
h=1

∥bh∥2 + λ2∥β∥1, (5)

and its dual problem takes a form as specified in Zhang et al. (2020):

min
a,g

⟨y,a⟩+ 1

2
∥a∥22 + h∗(g) (6)

s.t. W⊤a+ g = 0,

where ⟨·, ·⟩ denotes vector inner product and h∗(·) is the Fenchel conjugate function of

h(β) := λ1
∑q

h=1 ∥bh∥2 + λ2∥β∥1, defined as h∗(g) = supβ{⟨β, g⟩ − h(β)}. We augment

the Lagrangian objective for solving (6) with

⟨y,a⟩+ 1

2
∥a∥22 + h∗(g) + v⊤(W⊤a+ g) +

τ

2
∥W⊤a+ g∥22, (7)

where v is the Lagrangian multiplier corresponding to the constraint of (6) and the

quadratic term τ
2
∥W⊤a + g∥22, with τ > 0, is the augmentation. The augmented term

does not change the original problem (6), because it is zero when satisfying the constraint.

But it does make the new objective strongly convex when τ is large (Hestenes, 1969). Next,

(7) can be rewritten as

Lτ (a, g;v) = ⟨y,a⟩+ 1

2
∥a∥22 + h∗(g) +

τ

2
∥W⊤a+ g − τ−1v∥22 −

1

2τ
∥v∥22. (8)

The augmented Lagrangian then proceeds to iteratively update (a, g) and v, with the most

challenging step of finding mina,g Lτ (a, g;v) given v and τ . To proceed, we first define the

proximal mapping of any function f(·) to be

Proxf (u) = argmin
x

{
f(x) +

1

2
∥x− u∥22

}
,

and it follows that, with a fixed,

argmin
g

Lτ (a, g;v) = Proxh∗/τ (τ
−1v −W⊤a). (9)
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Algorithm 1 An augmented Lagrangian method for solving (4)

Let τ0 > 0 be given, and choose (a0, g0,v0). Iterate the following steps for k = 0, 1, . . . ,

until convergence.

Step 1: compute ak+1 = argmina ψτk(a;v
k) and gk+1 = Proxh∗/τk(τ

−1
k vk −W⊤ak+1);

Step 2: compute vk+1 = vk − τk(W⊤ak+1 + gk+1);

Step 3: update τk+1 such that τk+1 > τk.

Then, with g replaced by (9) in Lτ (a, g;v), coupled with the Moreau identity that Proxth(u)+

tProxh∗/t(u/t) = u, we define a subproblem of mina ψτ (a;v), where ψτ (a;v) is defined as

⟨y,a⟩+ 1

2
∥a∥22 + h∗{Proxh∗/τ (τ−1v −W⊤a)}+ τ

2
∥Proxh(τ−1v −W⊤a)∥22 −

1

2τ
∥v∥22.

Correspondingly, the augmented Lagrangian is solved via iterations as summarized in Al-

gorithm 1. We choose τk+1 = 3τk in Step 3 as suggested in Zhang et al. (2020), and discuss

the handling of W in Section A1.1 of the supplement.

A main challenge of executing Algorithm 1, however, lies in solving mina ψτk(a;v
k)

in Step 1. We address this issue as follows. Because ψτk(a;v
k) is strongly convex and

continuously differentiable with

∇aψτk(a;v
k) = y + a− τkWProxh(τ

−1vk −W⊤a),

the solution to mina ψτk(a;v
k) can be obtained by solving ∇aψτk(a;v

k) = 0. Although

∇aψτk(a;v
k) is non-smooth, it is semi-smooth (Kummer, 1988) with respect to its Clarke

generalized Jacobian (Clarke, 1990), a generalization of the Jacobian for a smooth function

to non-smooth functions; see Section A1.2 in the supplement for the semi-smoothness of

∇aψτk(a;v
k). We adopt the semi-smooth Newton method (Mifflin, 1977), a generalization

of the Newton method by using the generalized Jacobian, to solve ∇aψτk(a;v
k) = 0, as

detailed in Section A1.2 of the supplement.

10



3.1 Convergence of Algorithm 1

The following theorem states the conditions needed for Theorem 1 to converge. See its

proof and discussions on the convergence of inexact augmented Lagrangian algorithms in

Section A1.3 of the supplement.

Theorem 1 Let {ak, gk,vk} be a sequence of estimates generated by Algorithm 1 with the

stopping criterion of

∥∇ψτk(ak+1;vk)∥2 ≤ ek/
√
2τk,

∞∑
k=0

ek <∞.

Then vk converges to the optimal solution of the primal problem in (5) and {ak, gk} con-

verges to the optimal solution of the dual problem in (6). If, additionally, the following

stopping criterion is also met:

∥∇ψτk(ak+1;vk)∥2 ≤ (ηk/
√
2τk)∥vk+1 − vk∥2,

∞∑
k=0

ηk <∞,

then vk and {ak, gk} converge to the optimal solutions of (5) and (6), respectively, with

linear convergence rates when k is sufficiently large and both linear rates go to 0 as τk

increases to +∞.

The theorem guarantees the convergence of Algorithm 1 if the subproblem∇aψτk(a;vk) = 0

can be solved with sufficient accuracy. The theoretical results on SSN algorithm in Li et al.

(2018b) (Theorem 3) ensures that the SSN iterates in Algorithm 1 converge to the solution

of ∇aψτk(a;vk) = 0 at a superlinear rate. This, combined with Theorem 1, ensures the

convergence of Algorithm 1.

3.2 Tuning and post-hoc processing

We select λ1 and λ2 in (4) jointly via L-fold, for example, L = 5, cross validation. Rewrite

λ1 = (1 − α)λ0 and λ2 = αλ0, where α reflects the weight of the lasso penalty relative to
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the group lasso penalty and λ0 reflects the total amount of regularization. We assess a set

of values for α ∈ [0, 1]; for each α, a grid of λ0 values are considered in cross validation.

The search can be easily parallelized for different α’s. To ensure symmetry of the estimated

Ω(u), we propose a post-processing step as done in Meinshausen and Bühlmann (2006)

and Cheng et al. (2014). Specifically, denote by β̂0
jkh = −σ̂jjβ̂jkh, where β̂jkh is estimated

from (4) and σ̂jj from the residuals of (4) for all j, k and h. We enforce symmetry by

setting β′
jkh = β′

hjk = β̂0
jkh1{|β̂0

jkh|<|β̂0
kjh|} + β̂0

kjh1{|β̂0
jkh|>|β̂0

kjh|}.

In finite sample cases, we further adopt a post-hoc re-scaling step to ensure the positive

definiteness of the final estimator. Assuming the true precision matrix is diagonal dominant

and the covariates are within known ranges, the re-scaling step gives the same estimator

asymptotically as guaranteed by Theorem 3. Specifically, without loss of generality, assume

uh ∈ [0, 1] (if not, rescale uh first). For any j such that ∥β̂′
j∥1 > σ̂jj, we set the final estimate

of βj to β̂j/∥β̂j∥1. Note that this rescaling step does not alter the sparsity pattern in

the estimated parameters. See simulation results in Section A2.3 of the supplement that

compare the estimators with and without this step.

4 Theoretical Results

We establish the non-asymptotic ℓ2 error rate of the sparse group lasso estimator from (4).

One main challenge is that the p tasks in (4) are involved in a complicated dependence

structure and this differs from the usual multi-task learning with group sparsity (Lounici

et al., 2011), where the tasks are independent. To address this, we have made a key advance

in Theorem 2 that gives a new tail bound for the sum of dependent heavy-tailed, such as

sub-exponential, variables with an arbitrary dependence structure.

There are also a few other challenges. First, because the design matrix in (4) includes
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high-dimensional interactions between z(i) and u(i), and the variance of z(i) is a function

of u(i), characterizing the joint distribution of each row in W−j is difficult and requires

a delicate treatment. Second, as the combined penalty term λ1
∑q

h=1 ∥bh∥2 + λ2∥β∥1 is

not decomposable, the classic techniques for decomposable regularizers and null space (Ne-

gahban et al., 2012) are not applicable. By utilizing a novel concentration inequality for

the sum of dependent variables in (4), we derive two interrelated bounds for the stochastic

term, whose combination yields a sharp upper bound of the stochastic term. We, therefore,

show that our proposed estimator can have an improved ℓ2 error bounds compared to the

lasso and the group lasso when the true coefficients are simultaneously sparse, and, more

importantly, the error rate of the multi-task estimates improves by a factor of p, compared

to the separate node-wise estimates obtained by Zhang and Li (2022).

4.1 New concentration inequality for sum of dependent variables

The concentration results for dependent random variables are often derived under specific

dependence structures, such as weak dependence (Merlevède et al., 2011) and asymptotic

independence (Ko and Tang, 2008). These structures are unlikely to be applicable to our

setting because the error terms in (4) from the p tasks, ϵ1, . . . , ϵp, depend on, for example,

the expressions of p genes, and are dependent via a complicated co-expression network. To

bound
∑

j ϵj, we employ a novel idea that partitions the index set of p response variables

into mutually exclusive subsets such that the variables within each subset are independent.

This can be done by exploring the topology of a graph and solving a vertex coloring

problem (Lewis, 2015); see the proof of Theorem 2 in the supplement. With that, we

present a concentration inequality result under a general dependence structure.

Theorem 2 Consider N dependent mean zero sub-exponential random variables Yj, j ∈
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[N ] and an induced network G(V,E) with a node set V = {1, . . . , N} and an edge set

E = {(j, k) : Yj ̸⊥ Yk}. Denote the maximum node degree of G(V,E) by dmax and let

cG = min

(
dmax + 1,

1+
√

8|E|+1

2

)
. For any t ≥ 0 and a constant c > 0, it holds that

P

(
N∑
j=1

Yj ≥ t

)
≤ cG exp

[
−cmin

{
t2

c2G
∑N

j=1 ∥Yi∥2ψ1

,
t

cGmaxj ∥Yi∥ψ1

}]
,

where ∥ · ∥ψ1 is the sub-exponential norm, ∥Xi∥ψ1 = supp≥1 p
−1(E|Xi|p)1/p.

The results are inclusive. For example, when Y1, . . . , YN are mutually independent, we

have cG = 1, and the inequality reduces to the usual form for independent sub-exponential

random variables (Vershynin, 2010); if the variables are dependent with cG = O(1), we

obtain a tail probability in the same order as when the variables are independent. The

theorem leads to a corollary (see Corollary 1 in the supplement) that gives a sharp bound

on the sum of dependent chi-squared random variables, which is critical for our proof.

4.2 Error rate analysis

Let S be the element-wise support set of β and G be the group-wise support set of β such

that G = {h : bh ̸= 0, h ∈ [q]}, and denote by se = |S| and sg = |G|, that is, se and

sg are the numbers of nonzero entries and nonzero groups, respectively. Without loss of

generality, we assume σjj = 1. We state the needed regularity conditions.

Assumption 1 Suppose u(i) are independently and identically distributed mean zero ran-

dom vectors with a covariance matrix satisfying λmin(Cov(u
(i))) ≥ 1/ϕ0 for some constant

ϕ0 > 0. Moreover, there exists a constant M > 0 such that |u(i)h | ≤M for all i and h.

Assumption 2 Suppose ϕ1 ≤ λmin(Cov(z
(i))) ≤ λmax(Cov(z

(i))) ≤ ϕ2 for some constants

ϕ1, ϕ2 > 0.
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Assumption 3 The dimensions p, q and sparsity se satisfy log p+ log q = O(nδ) and se =

o(nδ) for δ ∈ [0, 1/6]. The maximum column ℓ0 norm of Ω(u) is bounded above by a positive

constant d0.

Assumption 1 assumes that u(i)’s are element-wise bounded, which is needed in character-

izing the distribution of each row in W . This condition is not restrictive as genetic variants

are often coded to be {0, 1} or {0, 1, 2} (Chen et al., 2016). Assumptions 1 and 2 impose

bounded eigenvalues on Cov(u(i)) and Cov(z(i)). Assumption 3 is a sparsity condition,

useful in establishing a restricted eigenvalue condition (Bickel et al., 2009) for W⊤W/n.

Let sλ denote the number of nonzero entries in a candidate model such that se < sλ ≤ n.

In parameter tuning, given an sλ satisfying the conditions in Theorem 3, we choose the

range of λ0 for each α, respectively corresponding to an empty model with no variables

selected and a sparse model with sλ variables selected.

Theorem 3 Suppose that Assumptions 1-3 hold, sλ(log p + log q) = O(
√
n) and n ≥

A1{sglog(eq/sg) + selog(ep)} for some constant A1 > 0. Then the sparse group lasso esti-

mator β̂ in (4) with

λ1 = C
√
log(eq/sg)/n+ 2selog(ep)/(nsg), λ2 =

√
sg/seλ1 (10)

satisfies, with probability at least 1− C1 exp[−C2{sglog(eq/sg) + selog(ep)}],

∥β̂ − β∥22 ≾
1

n
{sglog(eq/sg) + selog(ep)}, (11)

where C, C1, and C2 are positive constants.

In Theorem 3, the condition sλ(log p + log q) = O(
√
n) upper bounds the number of

nonzero entries in β̂, which in turn helps to bound the stochastic term ⟨ϵ,W∆⟩ in the

proof. Theorem 3 also shows that our proposed estimator enjoys an improved ℓ2 error
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bound over estimators with only a lasso or a group lasso penalty on β. Specifically, given

that the dimension of β is p(p − 1)(q + 1) and sg ≤ se, applying the standard lasso

regularizer λ∥β∥1 alone would yield an error bound of (se/n)log(pq) (Negahban et al.,

2012), which is slower than that in (11) when logp/logq = o(1) and sg/se = o(1). If we

utilize a group lasso regularizer λg∥β∥1,2 that includes b0, the estimator would have an

ℓ2 error bound of (sg/n)log q + (sg/n)p(p − 1) (Lounici et al., 2011), which is slower than

that in (11) when logq/{p(p − 1)} = o(1) and se/sg = o(p(p − 1)/logp). Notably, the

separate node-wise regressions considered in Zhang and Li (2022) yield an error rate of

1
n
{psglog(eq/sg) + selog(ep)}, slower than that in (11) by a factor p if selogp = O(sglogq);

as p often far exceeds n, the improvement with the multi-task learning approach can be

considerable.

5 Numerical Experiments

We compare the finite sample performance of our proposed method defined in (4) (referred

to as MtRegGMM), with those of three competing solutions, namely, a benchmarking standard

Gaussian graphical model estimated by the neighborhood selection method (Meinshausen

and Bühlmann, 2006) (IID), a lasso estimator (Jointlasso) with

argminβ
1

2n

p∑
j=1

n∑
i=1

(z
(i)
j −W

(i)
−j

⊤βj)
2 + λ∥β∥1,

and the separate regressions (Zhang and Li, 2022) (RegGMM). For computational feasibility,

the Jointlasso is estimated with the method in Section 3 by setting λ1 = 0, which is the

same algorithm as proposed in Li et al. (2018a). We have also considered the joint group

lasso estimator, and reported the results in Section A2.4 of the supplement.

We simulate n samples {(u(i),x(i)), i ∈ [n]} from (2), with x(i) ∈ Rp, such as genes,

and external covariate u(i) ∈ Rq, such as SNPs. The u
(i)
j ’s are generated independently
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Table 1: Estimation accuracy of β andΩ in simulations with varying sample size n, network

size p and covariate dimension q. TPR and FPR represent the true and false positive rates,

respectively.
n p, q Method TPRβ FPRβ Error of β Error of Ω

100

p = 20
q = 100

MtRegGMM 0.985 (0.013) 0.0001 (0.0000) 0.534 (0.032) 0.405 (0.046)
Jointlasso 0.942 (0.015) 0.0003 (0.0000) 0.762 (0.033) 0.712 (0.067)
RegGMM 0.922 (0.020) 0.0013 (0.0001) 1.146 (0.045) 1.984 (0.153)
IID - - - 1.764 (0.034)

p = 20
q = 200

MtRegGMM 0.983 (0.021) 0.0001 (0.0000) 0.549 (0.037) 0.436 (0.060)
Jointlasso 0.918 (0.030) 0.0002 (0.0000) 0.848 (0.040) 0.912 (0.088)
RegGMM 0.923 (0.016) 0.0009 (0.0001) 1.207 (0.036) 2.223 (0.199)
IID - - - 1.777 (0.026)

p = 100
q = 200

MtRegGMM 0.964 (0.013) 0.0000 (0.0000) 0.612 (0.034) 0.489 (0.055)
Jointlasso 0.896 (0.020) 0.0000 (0.0000) 0.846 (0.038) 0.786 (0.069)
RegGMM 0.918 (0.020) 0.0003 (0.0000) 2.620 (0.060) 5.845 (0.329)
IID - - - 5.119 (0.890)

200

p = 20
q = 100

MtRegGMM 1.000 (0.000) 0.0000 (0.0000) 0.251 (0.013) 0.099 (0.011)
Jointlasso 0.996 (0.003) 0.0000 (0.0000) 0.296 (0.019) 0.133 (0.017)
RegGMM 0.996 (0.003) 0.0006 (0.0001) 0.584 (0.033) 1.111 (0.538)
IID - - - 1.637 (0.020)

p = 20
q = 200

MtRegGMM 1.000 (0.000) 0.0000 (0.0000) 0.251 (0.008) 0.089 (0.006)
Jointlasso 0.998 (0.002) 0.0000 (0.0000) 0.346 (0.018) 0.158 (0.015)
RegGMM 0.998 (0.002) 0.0003 (0.0000) 0.626 (0.029) 0.717 (0.124)
IID - - - 1.642 (0.016)

p = 100
q = 200

MtRegGMM 0.994 (0.006) 0.0000 (0.0000) 0.266 (0.039) 0.123 (0.039)
Jointlasso 1.000 (0.000) 0.0000 (0.0000) 0.385 (0.007) 0.280 (0.102)
RegGMM 1.000 (0.000) 0.0001 (0.0000) 1.530 (0.051) 5.636 (2.322)
IID - - - 2.087 (0.058)

and identically from Bernoulli(0.5). Details for generating Σ(u(i))’s are collected in Section

A2.1 of the supplement. For each simulation configuration, we generate 50 independent

data sets; given u(i), we determine Ω(u(i)) and Σ(u(i)), and generate the ith sample x(i)

from N (Γu(i),Σ(u(i))), i ∈ [n]. For a fair comparison, tuning parameters in all of the

methods are selected via 5-fold cross validation.

To evaluate the estimation accuracy, we report in Table 1 the estimation errors ∥β̂ − β∥2.

For selection accuracy, we report the true positive and false positive rates. Also reported

is the average estimation error of the precision matrix defined to be
∑n

i=1 ∥Ω̂i−Ωi∥2F,off/n.

The proposed MtRegGMM outperforms the alternative methods in estimation and selection

accuracy for various n, p and q. The estimation errors of MtRegGMM increases with p and q

17



25 30 35 40 45 50 55 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

estimation error with q=200
er

ro
r o

f b
et

a
MtRegGMM
RegGMM

50 100 150 200 250 300

0
5

10
15

20
25

computing time with q=50

p

tim
e 

(s
ec

on
ds

)

50 100 150 200 250 300

0
5

10
15

20
25

computing time with p=50

q

tim
e 

(s
ec

on
ds

)

50 100 150 200 250 300

0
2

4
6

8
10

12

tim
e(
s)

MtRegGMM
Joint Lasso
RegGMM
IID

50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

qvec

tim
e(
s)

MtRegGMM
Joint Lasso
RegGMM
IID

50 100 150 200 250 300

0
2

4
6

8
10

12

pvec
tim
e(
s)

MtRegGMM
Joint Lasso
RegGMM
IID

50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

qvec

tim
e(
s)

MtRegGMM
Joint Lasso
RegGMM
IID

   
  t

im
e 

(s
)

   
  t

im
e 

(s
)

computing time with q=50 computing time with p=50

p p q

Figure 2: Estimation errors and computing time.

and decreases with n, confirming the results of Theorem 3. It seen that the error of RegGMM

scales roughly with p while the error of MtRegGMM remains relatively stable as p increases,

again confirming Theorem 3. The left panel of Figure 2 shows additional estimation error

comparison of RegGMM and MtRegGMM across varying p. We also assess the computation

cost. Figure 2 show the computation time of all methods given tuning parameter values.

The simulations were run on an iMac with a 3.6 GHz Intel Core i9 processor. Because the

number of parameters is in the order of p2q, the total computing cost is expected to be in

the order of p2q, as seen in Figure 2. It is seen that the computation cost of MtRegGMM is

on par with that of Jointlasso.

We also consider simulations with both discrete and continuous covariates. Specifically,

we set half of the covariates (q/2) to be discrete and the other half (q/2) to be continuous.

Discrete covariates are generated independently from Bernoulli(0.5) and continuous covari-

ates are generated independently from Uniform[0, 1]. Other settings remain the same as

in Table 1. Table 2 reports the average criteria with standard errors in the parentheses.

It is seen that MtRegGMM achieves the best performance in both selection and estimation

accuracy. Simulation results with p > n and p > q are reported in A2.2 of the supplement.

Finally, we compare with SLEP (Liu et al., 2009), a popular accelerated proximal
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Table 2: Estimation accuracy of β and Ω in simulations with varying p, q while n = 100.

TPR and FPR represent the true and false positive rates, respectively.
p, q Method TPRβ FPRβ Error of β Error of Ω

p = 20
q = 100

MtRegGMM 0.951 (0.022) 0.0003 (0.0000) 0.612 (0.036) 0.471 (0.042)
Jointlasso 0.909 (0.025) 0.0005 (0.0001) 0.824 (0.039) 0.783 (0.076)
RegGMM 0.901 (0.025) 0.0016 (0.0001) 1.153 (0.036) 4.565 (1.184)
IID - - - 1.764 (0.034)

p = 20
q = 200

MtRegGMM 0.947 (0.017) 0.0001 (0.0000) 0.599 (0.039) 0.474 (0.060)
Jointlasso 0.893 (0.020) 0.0001 (0.0000) 0.802 (0.033) 0.713 (0.053)
RegGMM 0.898 (0.021) 0.0007 (0.0001) 1.165 (0.039) 3.016 (0.453)
IID - - - 5.119 (0.890)

p = 100
q = 200

MtRegGMM 0.989 (0.011) 0.0000 (0.0000) 0.647 (0.089) 0.645 (0.175)
Jointlasso 0.959 (0.023) 0.0000 (0.0000) 0.962 (0.103) 1.105 (0.246)
RegGMM 0.959 (0.023) 0.0002 (0.0000) 2.746 (0.299) 9.172 (1.225)
IID - - - 5.515 (1.208)

gradient algorithm that can be used to estimate sparse group lasso problems. For MtRegGMM,

the algorithm is terminated when the relative duality gap |objp−objd|/(1+ |objp|+ |objd|),

where objp and objd denote the primal and dual function values, respectively, and relative

dual infeasibility (∥W⊤a+g∥2)/(∥1+∥a∥2) are both less than 10−6. For SLEP, the algorithm

is terminated when the relative difference of objective functions between adjacent iterations

is less than 10−6 (SLEP does not give a dual sequence). Other parameters for SLEP are set

to their default values 1, and both MtRegGMM and SLEP are implemented in MATLAB. We

set p = 50, 100, q = 100, 200 and n = 100, while keeping the other settings same as in

Table 1. We compare the two methods in computing time (in seconds) and the area under

the ROC curve (ROC AUC). For a fair comparison, the same tuning parameters λ1 and

λ2 are used in MtRegGMM and SLEP when comparing computing time and error of β, and

they are selected using cross validation with MtRegGMM. Table 3 reports the average criteria

with standard errors in the parentheses. It is seen that MtRegGMM enjoys an improved

computational efficiency and estimation accuracy.

1The SLEP method is implemented using software at http://www.yelabs.net/software/SLEP/
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Table 3: Computing time and estimation accuracy with varying p, q while n = 100.

Computing time is shown in seconds and AUC represents the area under the ROC curve.
p, q Method Computing time Error of β AUC

50,100
MtRegGMM 1.110 (0.054) 0.681 (0.023) 0.997 (0.002)
SLEP 1.221 (0.075) 0.712 (0.024) 0.994 (0.002)

50,200
MtRegGMM 2.362 (0.105) 0.730 (0.021) 0.989 (0.003)
SLEP 2.762 (0.140) 0.746 (0.020) 0.989 (0.003)

100,100
MtRegGMM 4.078 (0.144) 0.755 (0.023) 0.991 (0.012)
SLEP 4.639 (0.479) 0.787 (0.020) 0.985 (0.004)

6 Co-expression Quantitative Trait Loci Analysis

Glioblastoma multiforme is the most aggressive and fatal subtype of brain cancer (Bleeker

et al., 2012), and existing therapies remain largely ineffective (Bleeker et al., 2012). It is

imperative to explore effective treatment, such as new gene therapies (Kwiatkowska et al.,

2013), and the characterization of the molecular underpinning of the disease is the key. We

analyze the REMBRANDT trial (GSE108476), with a subcohort of n = 178 glioblastoma

multiforme patients, who had undergone microarray and single nucleotide polymorphism

(SNP) chip profiling, with both gene expression and SNP data available for analysis. The

raw data were pre-processed and normalized using standard pipelines (Gusev et al., 2018).

The response variables are the expression levels of p = 73 genes belonging to the human

glioma pathway in the Kyoto Encyclopedia of Genes and Genomes database (Kanehisa and

Goto, 2000); see Figure A1. The covariates include local SNPs (within 2kb upstream and

0.5kb downstream of the 73 genes), resulting in a total of 118 SNPs. SNPs are coded with

“0” indicating homozygous in the major allele and “1” otherwise. Age and gender are also

included in analysis. We construct the population-level gene co-expression network, and

examine if and how age, gender and SNPs modulate the network.

We have used the proposed method to construct the population level network as shown

in the left panel of Figure 3. Most of the connected genes in this network are known
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Figure 3: The population-level gene co-expression network (left), where the size of each

node is proportional to the mean expression level and effects of SNPs on edges (middle and

right), with edges with positive and negative partial correlations are shown in red dashed

and black solid lines, respectively.

to be oncogenes. For example, PIK3CA is a protein coding gene and is one of the most

highly mutated oncogenes identified in human cancers (Samuels and Velculescu, 2004).

The PIK3CA gene is a part of the PI3K/AKT/MTOR signaling pathway, which is one of

the core pathways in human glioblastoma multiforme and other types of cancer (Network

et al., 2008). In the left panel of Figure 3, we can identify several core pathways in human

glioblastoma multiforme including the PI3K/ AKT/MTOR, Ras-Raf-MEK-ERK and cal-

cium signaling pathways. We also considered the IID method, estimated via neighborhood

selection (Meinshausen and Bühlmann, 2006); the graphical lasso (Friedman et al., 2008)

gives a similar but denser solution. Figure 4 reveals that the IID estimator shares many

patterns similar to that from MtRegGMM, albeit yielding a more noisy network.

We next examine the covariate effects on the network. Identified by our method are

nine co-expression quantitative trait loci, namely, rs6701524, rs10519201, rs1347069,

rs9303511, rs503314, rs7286558, rs759950, rs306098, rs25919. The network effects of

rs6701524 are shown in the middle panel of Figure 3. This single nucleotide polymorphism,

residing in MTOR, is found to affect co-expressions of genes in the PI3K/ AKT/MTOR
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Figure 4: Comparison of the population-level gene co-expression networks estimated via

IID (left) and MtRegGMM (right).

pathway. This is an interesting finding as PI3K/MTOR is a key pathway in glioblastoma

multiforme development and progression, and inhibition of PI3K/MTOR signaling was

found effective in increasing survival with glioblastoma multiforme (Batsios et al., 2019).

This co-expression quantitative trait locus can potentially play an important role in acti-

vating the PI3K/MTOR pathway. Shown in the right panel of Figure 3 are the network

effects of rs1347069, a variant of MAP2K1, indicating that this variant mostly affects the

co-expressions of genes in the Ras-Raf-MEK-ERK pathway.

Moreover, we have found some novel co-expression quantitative trait loci. For example,

rs10519201 regulates the co-expressions of PDGFB and GADD45A; rs9303511 is asso-

ciated with the co-expressions of GADD45A and CALML4; rs503314 influences the co-

expressions of CCND1 and PLCG2, CALML3; rs7286558 may modify the co-expressions

of EGFR and PRKCA; rs759950 modulates the co-expressions of MAP2K1 and HRAS;

rs306098 influences the co-expressions of PIK3CD and CAMK2D; rs25919 may alter the

co-expressions of CAMK2A and GADD45G.
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7 Discussion

While we had assumed the diagonal σjj’s to be free of u in model (2), our modeling

framework can be extended to allow σjj’s to depend on u, for example, via σjj(u) =

g(ν⊤
j u). Here, g(·) is a link function, e.g., g(x) = exp(x), and νj is a vector of unknown

coefficients. We can rewrite (3) as

Zj × g(ν⊤
j u) =

p∑
k ̸=j

θjk0Zk +

p∑
k ̸=j

q∑
h=1

θjkhuhZk + ϵ̃j, (12)

where θjkh = −β′
jkh and Var(ϵ̃j) = g(ν⊤

j u). In this case, parameters νj and θj =

(θj10, . . . , θjp0, . . . , θj1q, . . . , θjpq) can be estimated by considering a joint loss function:

1

2n

p∑
j=1

n∑
i=1

(
z
(i)
j × g(ν⊤

j u
(i))−w

(i)
−j

⊤
θj

)2
,

subject to regularizations on νj and θj as specified in (4). The extension is nontrivial,

requiring an iterative estimation of νj and βj and a new theoretical analysis.
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Supplementary Materials for “Multi-task Learning for Gaussian

Graphical Regressions with High Dimensional Covariates”

A1 Details of Algorithm 1

A1.1 The matrix W in Algorithm 1

We introduceW for notational ease. Our implementation indeed avoids the creation of such

a large matrix of W . Instead, it represents W as a sparse matrix, wherein only the non-

zero elements, along with their corresponding row and column indices, are stored. When

operating matrix-vector multiplications, only the non-zero elements in W are multiplied

with the corresponding components of the target vector. As a result, the computational

complexity and memory efficiency of computing W⊤a is the same as
∑p

j=1W
⊤
−jak, where

a = (a⊤
1 , . . . ,a

⊤
p )

⊤.

A1.2 Semi-smoothness and semi-smooth Newton

The following definition on semi-smooth is adopted from Kummer (1988). Let O ∈ Rn be

an open set and F : O → Rm be a locally Lipschitz continuous function on O. We call

F semi-smooth on O with respect to a set-valued mapping K : Rn → Rm×n, if for any

x ∈ O and V ∈ K(x + ∆x) with ∆x → 0, F is directionally differentiable at x and also

F (x+∆x)−F (x)−V ∆x = o(∥∆x∥2). Additionally, F is said to be strongly semi-smooth

if for any x ∈ O and V ∈ K(x+∆x) with ∆x → 0, F is directionally differentiable at x

and also F (x+∆x)−F (x)−V ∆x = O(∥∆x∥22). For example, continuous piecewise linear

functions are strongly semi-smooth everywhere. The notion of semi-smooth functions en-

ables the application of certain efficient algorithms commonly used for smooth optimization

problems, including the Newton method.

1



Recall that Step 1 in Algorithm 1 requires solving F (a) = 0, where

F (a) := ∇aψτk(a;v
k) = y + a− τkWProxh(τ

−1vk −W⊤a),

and h(β) = λ1
∑q

h=1 ∥bh∥2 + λ2∥β∥1, bh = ((β1)(h), . . . , (βp)(h))
⊤. Due to the combined

sparsity structure in h(·), it is challenging to derive the generalized Jacobian of Proxh.

Instead, Zhang et al. (2020) derived a multifunction D that serves as a surrogate of the

generalized Jacobian of Proxh and showed that Proxh is strongly semi-smooth with respect

to D. Correspondingly, F (a) is semi-smooth with respect to I + τkWDW⊤, where D ∈ D

is evaluated at τ−1
k vk − W⊤a. As a result, one can employ the following semi-smooth

Newton method (Mifflin, 1977) to solve for F (a) = 0,

ak+1 = ak + αkdk,

where αk is the step size selected using line search and dk is the solution to

(I + τkWDW⊤)d = F (ak).

The semi-smooth Newton (Mifflin, 1977) is a generalization of the Newton’s method for

solving non-smooth equations. Next, we give more details on the construction of surrogate

function D.

Write h1(β) = λ1
∑q

h=1 ∥bh∥2 and h2(β) = λ2∥β∥1. For a vector a, we use Diag(a) to

denote a diagonal matrix whose diagonal elements are the components in a. For square

matrices A1, . . . ,An, we use Diag(A1, . . . ,An) to denote a block diagonal matrix whose

diagonals are A1, . . . ,An. Given any vector α ∈ Rp(p−1)(q+1), denote β = Proxh2(α)

and Θ ∈ ∂Proxh2(α), where ∂Proxh2(α) is the Clarke generalized Jacobian of Proxh2(α)

and Θ can be calculated as Θ = Diag(θ) with θj =

0, if |αi| ≤ λ2,

1, otherwise,
. Next, define

2



Λ = Diag(Λ1, . . . ,Λq), where

Λh =


λ1

∥bh∥2

(
I − bhb

⊤
h

∥bh∥22

)
, if ∥bh∥2 ≥ λ1,

I, otherwise.

LetL = [L1; · · · ;Lq], whereLh is a binary matrix such thatLhβ = bh. Then, the surrogate

function D(α) is defined as D(α) = (I − L⊤ΛL)Θ. Here, I − L⊤ΛL is a surrogate for

the generalized Jacobian of Proxh1 and Θ is the Clarke generalized Jacobian of Proxh2 .

By Proposition 2.1 in Zhang et al. (2020) that shows Proxh(β) = Proxh1(Proxh2(β)), D

then serves as a generalized Jacobian of Proxh. As L and Θ are both binary and sparse

and Λ is block diagonal, dk in the semi-smooth Newton can be solved efficiently from

(I + τkWDW⊤)d = F (ak) and the overall computational cost depends on the number of

nonzero elements in the parameters, greatly reducing the computational cost. We refer to

Section 4.3 in Zhang et al. (2020) for numerical techniques that can quickly solve for dk.

A1.3 Convergence of Algorithm 1

Algorithm 1 is an inexact augmented Lagrangian (Rockafellar, 1976) as we have to solve

the subproblem numerically within the augmented Lagrangian algorithm. The global and

local convergence of inexact augmented Lagrangian iterates has been investigated in the

optimization literature (Rockafellar, 1976; Zhang et al., 2020). In particular, if the following

condition is met when solving the subproblem in Algorithm 1:

ψτk(a
k+1;vk)− inf

a
ψτk(a;v

k) ≤ e2k/2τk,
∞∑
k=0

ek <∞, (A1)

then the inexact augmented Lagrangian iterates from Algorithm 1 converge to the optimal

solution (Rockafellar, 1976); additionally, if the following condition is also met:

ψτk(a
k+1;vk)− inf

a
ψτk(a;v

k) ≤ (η2k/2τk)∥vk+1 − vk∥22,
∞∑
k=0

ηk <∞, (A2)

3



then these iterates also have a linear convergence rate when k is sufficiently large (Zhang

et al., 2020). Moreover, as ψτk(;v) is strongly convex, satisfying

ψτk(a
k+1;vk)− inf

a
ψτk(a;v

k) ≤ ∥∇ψτk(ak+1;vk)∥22,

(A1)-(A2) can be replaced by two easy-to-check criteria, as shown in Theorem 1.

In particular, in Theorem 1, the statement on the global convergence directly follows

from Theorem 5 in Rockafellar (1976) and the results on the local convergence follow from

Theorem 4.1 in Zhang et al. (2020). We omit the proof.

A2 Additional Numerical Results

A2.1 Algorithm for generating Σ(ui)

When generating Σ(ui), we randomly select 3 covariates to have nonzero effects. In the

graphs for these covariates and the population-level graph, five edges are randomly selected

to be nonzero. We set σjj = 1 for j ∈ [p]. The initial nonzero coefficients βjkh are set to

0.3 and then rescaled to ensure positive definiteness. The rescaling procedure encompasses

three steps.

Step 1: generate {ui}i∈[n] and {βinit
jkh}k ̸=j∈[p],h∈{0}∪[q].

Step 2: For each j, calculate β̃jkh = βinit
jkh/

∑
k ̸=j∈[p],h∈{0}∪[q] |βinit

jkh| for all k, h.

Step 3: set βjkh = βkjh = (β̃jkh + β̃kjh)/2 for all j, k, h.

Briefly, Step 2 ensures the diagonal dominance of the generated precision matrices and

Step 3 ensures their symmetry. This algorithm is designed in a similar spirit as in Peng et al.

(2009), where diagonal dominance was used to ensure positive definiteness of covariance

matrices.
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A2.2 Simulations with a larger p

We have expanded our simulations by adding the cases with p > q and n < p. Specifically,

we set p = 100, 200, q = 20 and n = 100 and compare different methods in terms of true

positive rate, false positive rate, area under the ROC curve (ROC AUC) and estimation

error. Other settings remain the same as in Table 1. Table A1 reports the average cri-

teria with standard errors in the parentheses. It is seen that MtRegGMM achieves a good

performance when p > q and n < p, outperforming the other methods in both selection

and estimation accuracy. The ROC AUC values for MtRegGMM are close to 1 under both

settings.

Table A1: Estimation accuracy of β in simulations with p = 100, 200, q = 20 and n = 100.

TPR and FPR represent the true and false positive rates, respectively, and AUC represents

the area under the ROC curve.

p, q, n Method TPRβ FPRβ AUC Error of β

100,20,100

MtRegGMM 0.960 (0.011) 0.0000 (0.0000) 0.992 (0.004) 0.599 (0.038)

Jointlasso 0.942 (0.014) 0.0000 (0.0000) 0.985 (0.003) 0.789 (0.054)

RegGMM 0.949 (0.011) 0.0017 (0.0001) 0.984 (0.005) 2.625 (0.051)

200,20,100

MtRegGMM 0.936 (0.022) 0.0000 (0.0000) 0.981 (0.010) 0.722 (0.069)

Jointlasso 0.916 (0.025) 0.0000 (0.0000) 0.977 (0.010) 0.807 (0.046)

RegGMM 0.917 (0.029) 0.0009 (0.0000) 0.971 (0.012) 3.708 (0.072)

A2.3 Positive definiteness in finite sample

We have evaluated the performance of the post-hoc rescaling procedure in Section 3.2 under

the same setting as in Table 1. The results are shown in Table A2, where the rescaled β̂

is denoted as β̂r. It is seen that the rescaled estimators have slightly smaller estimation

errors.
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Table A2: Estimation accuracy of β’s and βr’s in simulations with n = 100, varying

network size p and covariate dimension q.

p = 20

q = 100

p = 20

q = 200

p = 100

q = 200

βerror 0.534 (0.032) 0.549 (0.037) 0.612 (0.034)

βrerror 0.530 (0.031) 0.504 (0.031) 0.545 (0.029)

Table A3: Estimation accuracy of β and Ω in simulations with p = 5, q = 200 and

n = 100, 200. TPR and FPR represent the true and false positive rates, respectively.

n Method TPRβ FPRβ Error of β Error of Ω

100

MtRegGMM 0.946 (0.020) 0.0008 (0.0002) 0.474 (0.036) 0.324 (0.052)

Jointgroup 0.873 (0.036) 0.0132 (0.0005) 1.170 (0.037) 1.515 (0.081)

Jointlasso 0.907 (0.023) 0.0021 (0.0003) 0.657 (0.031) 0.505 (0.060)

RegGMM 0.887 (0.024) 0.0034 (0.0004) 0.725 (0.033) 0.744 (0.104)

IID - - - 1.100 (0.023)

200

MtRegGMM 1.000 (0.000) 0.0001 (0.0000) 0.206 (0.009) 0.061 (0.006)

Jointgroup 0.993 (0.007) 0.0134 (0.0001) 0.693 (0.017) 0.553 (0.030)

Jointlasso 1.000 (0.000) 0.0004 (0.0001) 0.258 (0.012) 0.087 (0.006)

RegGMM 1.000 (0.000) 0.0009 (0.0002) 0.312 (0.016) 0.134 (0.014)

IID - - - 1.114 (0.014)

A2.4 Comparison with the joint group lasso estimator

We consider the standard multi-tasking learning method that solves the p regression tasks

jointly with a group lasso, referred to as Jointgroup. We set p = 5, q = 200 and n = 100, 200,

and compared with Jointgroup. Other settings remain the same as in Table 1. We set p = 5,

as Jointgroup requires samples at least in the order of O(sgp
2). The results are summarized

in Table A3. It is seen that MtRegGMM achieves a better performance when compared to

Jointgroup, as MtRegGMM exploits both the within group sparsity (lasso) and across group

sparsity (group lasso).
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A3 Technical Lemmas

We state the technical lemmas that will be used in the proofs.

Lemma 1 (Lemma 1 in Bellec et al. (2018)) Let pen : Rd → R be any convex func-

tion and β̂ be defined by

β̂ ∈ arg min
β∈Rd

{
∥y −Wβ∥22 + pen(β)

}
,

where W ∈ Rn×d, y ∈ Rn. Then for β ∈ Rd,

∥y −Wβ̂∥22 + pen(β̂) + ∥W (β̂ − β)∥22 ≤ ∥y −Wβ∥22 + pen(β).

Lemma 2 (Theorem F in Graybill and Marsaglia (1957)) Let ϵj ∼ Np(0, σ
2I) and

A be an p× p idempotent matrix with rank equals to r ≤ p. Then, ϵ⊤j Aϵj/σ
2 follows a χ2

distribution with r degrees of freedom.

Lemma 3 (Lemma 1 in Laurent and Massart (2000)) Suppose that U follows a χ2

distribution with r degrees of freedom. For any x > 0, it holds that

P (U − r ≥ 2
√
rx+ 2x) ≤ exp(−x).

Lemma 4 (Proposition 5.16 in Vershynin (2010)) Let X1, . . . , Xn be independent cen-

tered sub-exponential random variables. Let v1 = maxi ∥Xi∥ψ1, where ∥Xi∥ψ1 = supd≥1 d
−1(E|Xi|d)1/d

denotes the sub-exponential norm. There exists a constant c such that, for any t > 0,

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

{
−cmin

(
t2

v21n
,
t

v1

)}
.

Lemma 5 (Theorem 4.1 in Kuchibhotla and Chakrabortty (2018)) Let X1, . . . ,Xn

be independent random vectors in Rp. Assume each element of Xi is sub-exponential with

∥Xi,j∥ψ1 < K2, i ∈ [n], j ∈ [p]. Let Σ̂X = X⊤X/n and ΣX = E(X⊤X/n). Define

Υn,k = max
j,k

1

n

n∑
i=1

Var{Xi,jXi,k}.
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Then for any t > 0, with probability at least 1−O(p−1),

sup
∥v∥0≤k, ∥v∥2≤1

∣∣∣v⊤(Σ̂X −ΣX)v
∣∣∣ ≾ k

√
Υn,klog p

n
+K2

2

k(lognlog p)2

n
.

Lemma 6 (Lemma 12 in Loh and Wainwright (2011)) For any symmetric matrix Σ ∈

Rp×p and if |v⊤Σv| ≤ δ1 for any v ∈ {v : ∥v∥0 ≤ 2s and ∥v∥2 = 1}, then

|v⊤Σv| ≤ 27δ1(∥v∥22 +
1

s
∥v∥21), for any v ∈ Rp.

A4 Proofs of Main Results

We introduce the notation used in our proof. We denote the true parameters by βj, j ∈ [p],

and in some places and without ambiguities, we also use them to denote the corresponding

parameters or the arguments in functions. We write β = (β⊤
1 , . . . ,β

⊤
p )

⊤. The index

set {1, . . . , (p − 1)(q + 1)} is partitioned into q + 1 groups, indexed by (0), (1), . . . , (q) ⊂

{1, . . . , (p−1)(q+1)}. For a group index subset G ∈ {1, . . . , q}, we let (G) = ∪h∈G(h), (Gc) =

∪h/∈G(h). For G ∈ {1, . . . , q}, we use β(G) to denote ((β1)(G), . . . , (βp)(G)), where (βj)(G)

represent a subvector of βj indexed by (G). Moreover, we write bh = ((β1)(h), . . . , (βp)(h)).

Let Sj be the element-wise support set of βj, that is, the collection of indices of the non-

zero components of βj, S be the element-wise support set of β and G be the group-wise

support set of β. Moreover, let sj = |Sj|, se =
∑p

j=1 sj, sg = |G|.

Corollary 1 Consider N dependent χ2 variables Yj ∼ χ2
dj
, j ∈ [N ] and an induced network

G(V,E) defined as in Theorem 2. Denote the maximum node degree of G(V,E) by dmax

and let cG = min

(
dmax + 1,

1+
√

8|E|+1

2

)
. For any t ≥ 0, it holds that

P

(
N∑
j=1

Yj −
N∑
j=1

dj ≥ t

)
≤ cG exp

−
{
t− (cG − 1)

∑N
j=1 dj

}2

4cG(t+
∑N

j=1 dj)

 .
8



A4.1 Proof of Theorem 2 and Corollary 1

In Corollary 1, we derive a new bound for the sum of dependent chi-squared random

variables with a sparse dependency structure. We give a detailed proof as the results will

be directly useful for our later Theorem 3. On the other hand, the results of Theorem 2 on

the sum of dependent sub-exponential random variables are more general. Its proof follows

the same arguments as in the proof of Corollary 1, except that it sets dj = 0, j ∈ [N ], and

is omitted.

Consider the network G(V,E) with a node set V = {1, . . . , N} and an edge set E =

{(j, k) : Yj ̸⊥ Yk}. The chromatic number of G(V,E), denoted as hG, is the smallest

number of colors needed to color G so that nodes with the same color are independent, for

example, two nodes connected by an edge cannot have the same color. It has been shown

that hG can be upper bounded by min

(
dmax + 1,

2+
√

8|E|+1

2

)
(Diestel et al., 2010), where

dmax is the maximum node degree and |E| is the number of edges.

Correspondingly, we may decompose the node set V as V = ∪hGk=1Vk such that all nodes

in Vk are independent and Vk ∩ Vj = ∅ for all k ̸= j. For such defined Vk, k ∈ [hG], we let

Ek =
∑

j∈Vk Yj. As Yj, j ∈ Vk are independent, Ek follows a chi-squared distribution with

degree of freedom
∑

j∈Vk dj.

Next, setting cG = min

(
dmax + 1,

2+
√

8|E|+1

2

)
, it holds that

P

(
N∑
j=1

Yj −
N∑
j=1

dj ≥ t

)
= P

(
hG∑
k=1

Ek ≥ t+
N∑
j=1

dj

)
≤

hG∑
k=1

P

{
Ek ≥

(
t+

N∑
j=1

dj

)
/cG

}

≤
hG∑
k=1

exp

−
{(
t+
∑N

j=1 dj

)
/cG −

∑
j∈Vk dj

}2

4
(
t+
∑N

j=1 dj

)
/cG


≤ cG exp

−
{
t− (cG − 1)

∑N
j=1 dj

}2

4cG

(
t+
∑N

j=1 dj

)
 ,
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where the second inequality is due to Lemma 3. □

A4.2 Proof of Theorem 3

As β̂ is a minimizer of the objective function (4) and the joint sparse group penalty function

in (4) is convex, Lemma 1 implies that

1

2n

p∑
j=1

∥zj −W−jβ̂j∥22 + λ1

q∑
h=1

∥b̂h∥2 + λ2

q∑
h=0

∥b̂h∥1 +
1

2n
∥W−j(β̂j − βj)∥22

≤ 1

2n

p∑
j=1

∥zj −W−jβj∥22 + λ1

q∑
h=1

∥bh∥2 + λ2

q∑
h=0

∥bh∥1,

where b̂h = ((β̂1)(h), . . . , (β̂p)(h)), h = {0} ∪ [q]. Writing ∆j = β̂j − βj, ϵj = zj − E(zj)

and reorganizing terms in the above inequality gives

1

n

p∑
j=1

∥W−j∆j∥22+λ1
q∑

h=1

∥b̂h∥2+λ2
q∑

h=0

∥b̂h∥1 ≤
1

n

p∑
j=1

⟨ϵj,W−j∆j⟩+λ1
q∑

h=1

∥bh∥2+λ2
q∑

h=0

∥bh∥1.

Let W =


W−1 0 · · · 0

0 W−2 · · · 0
...

...
. . .

...

0 0 · · · W−p

, ϵ = (ϵ1, . . . , ϵp) and ∆ = (∆1, . . . ,∆p). Using the

fact that

q∑
h=0

∥b̂h∥1 = ∥β̂S∥1 + ∥β̂Sc∥1,
q∑

h=0

∥bh∥1 = ∥βS∥1

q∑
h=1

∥b̂h∥2 =
p∑
j=1

∑
h∈G

∥(β̂j)(h)∥2 +
p∑
j=1

∑
h∈Gc

∥(β̂j)(h)∥2,
q∑

h=1

∥bh∥2 =
p∑
j=1

∑
h∈G

∥(βj)(h)∥2

and applying the triangle inequalities to ∥·∥1 and ∥·∥2, we arrive at the following inequality

1

n
∥W∆∥22 + λ1∥∆(Gc)∥1,2 + λ2∥∆Sc∥1 ≤

1

n
⟨ϵ,W∆⟩+ λ1∥∆(G)∥1,2 + λ2∥∆S∥1, (A3)

where ∥∆(G)∥1,2 =
∑p

j=1

∑
h∈G ∥(∆j)(h)∥2 and ∥∆(Gc)∥1,2 =

∑p
j=1

∑
h∈Gc ∥(∆j)(h)∥2.

10



Defining Ŝ = {l : (β̂)l ̸= 0, l ∈ [p(p− 1)(q + 1)]} and letting S̃ = S ∪ Ŝ, we may write

⟨ϵ,W∆⟩ = ⟨ϵ,PWS̃
WS̃∆S̃⟩ (A4)

= ⟨PWS̃
ϵ,W∆⟩≤ 1

2a1
∥W∆∥22 +

a1
2
∥PWS̃

ϵ∥22,

where PWS̃
is the orthogonal projection matrix onto the column space of WS̃ , the first

and second equalities hold as the nonzero support of ∆ is S̃ and the last inequality comes

from that 2ab ≤ ta2 + b2/t for any t > 0. Due to the diagonal block structure of W , some

straightforward algebra gives that

∥PWS̃
ϵ∥22 =

p∑
j=1

∥PWS̃j
ϵj∥22,

where PWS̃j
is the orthogonal projection matrix onto the column space of (W−j)S̃j

. Find-

ing a tight bound on the stochastic term
∑p

j=1 ∥PWS̃j
ϵj∥22 is challenging as the p terms

to be summed are dependent in a complex manner. This is different from the stan-

dard multi-task learning problem where the stochastic terms from p separate regressions

PWS̃1
ϵ1, . . . ,PWS̃p

ϵp are mutually independent. Under our setting, ϵi dependent onPWS̃j
ϵj,

j ̸= i, through PWS̃j
, as there is zi in W−j and also through ϵj, when Ω(u)ij ̸= 0. More-

over, the group lasso penalty term in (4) is not decomposable with respect to S; hence,

classic techniques based on the decomposable regularizers and null space properties are not

applicable. Our analysis utilizes a novel result in Corollary 1 that gives a new tail bound

for the sum of dependent chi-squared variables, and a delicate treatment of the stochastic

term using the statistical properties and the computational optimality of the sparse group

lasso estimator. We divide our arguments into the following steps.

Step 1: Given any J ⊂ [p(p − 1)(q + 1)] and γ ∈ {0, 1}p(p−1)(q+1) satisfying γJ = 1 and

γJ c = 0, we let G(J ) = {h : (γ)(h) ̸= 0, h ∈ [q]}. In this step, we aim to show that, given

11



any 0 ≤ sg ≤ q and 0 ≤ se ≤ p(p− 1)(q + 1), the following holds

P

(
sup

|J |=se, |G(J )|=sg
∥PWJ ϵ∥22 ≥ 6 [sglog(eq/sg) + 2selog(ep)] + t0

)
≤ c1 exp(−c2t0),

where c1, c2 are positive constants.

First, we find the size of {J ⊂ [p(p− 1)(q + 1)], |J | = se, |G(J )| = sg} by considering

(i) sg = se and (ii) sg < se, the only two possible scenarios because the number of nonzero

elements se cannot be less than the number of nonzero groups sg.

case (i): sg = se. In this case, the set {J ⊂ [p(p − 1)(q + 1)], |J | = se, |G(J )| = sg}

contains
(
q
sg

)
{p(p− 1)}se elements. It follows from Stirling’s approximation that log

(
q
sg

)
≤

sglog(eq/sg). Therefore, log
[(

q
sg

)
[p(p− 1)]se

]
≤ sglog(eq/sg) + 2selog p.

case (ii): sg < se. The number of elements in {J ⊂ [p(p−1)(q+1)], |J | = se, |G(J )| = sg}

is bounded above by
(
q
sg

)(
p(p−1)+p(p−1)sg

se

)
. By Stirling’s approximation, we have

log

(
p(p− 1)(sg + 1)

se

)
≤ selog(ep(p− 1)(sg + 1)/se) ≤ 2selog(ep).

Therefore, we have log
{(

q
sg

)(
p(p−1)(sg+1)

se

)}
≤ sglog(eq/sg) + 2selog(ep).

Combining these two cases, we conclude that log|{J ⊂ [p(p−1)(q+1)], |J | = se, |G(J )| =

sg}| is bounded above by sglog(eq/sg) + 2selog(ep).

Let J = J1 ∪ · · · ∪ Jp such that βJj
is a sub-vector of βj. As the projection matrix

PWJj
is idempotent, Lemma 2 implies that

∥PWJj
ϵ∥22 ∼ χ2

dj
,

where dj = min(|Jj|, n). The above result hold as PWJj
ϵ involves only a subset of ϵj, and

the elements of PWJj
ϵ have equal variances. Letting hn = sglog(eq/sg) + 2selog(ep), we

12



have

P

[
sup

|J |=se,|G(J )|=sg
∥PWJ ϵ∥22 ≥ 6(d0 + 1) {sglog(eq/sg) + 2selog(ep)}+ t0

]
≤ exp[sglog(eq/sg) + 2selog(ep)]×

P

[
p∑
j=1

∥PWJj
ϵ∥22 ≥ 6(d0 + 1) {sglog(eq/sg) + 2selog(ep)}+ t0

]

≤ cG exp

[
hn −

{6(d0 + 1)hn + t0 − (cG − 1)se}2

4cG{6(d0 + 1)hn + t0 + se}

]
≤ cG exp

[
hn −

{(5d0 + 6)hn + t0}2

4cG{(6d0 + 7)hn + t0}

]
≤ cG exp

[
hn −

{(5d0 + 6)hn + t0}2

4cG{(6d0 + 36/5)hn + (6/5)t0}

]
≤ cG exp

[
hn −

(5d0 + 6)hn + t0
(24/5)(d0 + 1)

]
≤ c1 exp(−c2t0),

for some positive constants c1, c2 . In the above derivations, the first inequality holds due

to the union bound; the second inequality holds by applying Corollary 1, where we set

t = t0 + 6(d0 + 1)hn and note that
∑

j dj = se, cG ≤ d0 + 1. In particular, ∥PWJj
ϵ∥22’s are

correlated chi-squared variables with Cov(∥PWJj
ϵ∥22, ∥PWJk

ϵ∥22) ̸= 0 when Ω(u)j,k ̸= 0,

and the maximum number of nonzero entries in the columns of Ω(u) is bounded by d0, as

specified in Assumption 3. The third and fifth inequalities use the fact that hn ≥ se and

cG ≤ d0 + 1.

Step 2: Using the result from Step 1, we next find an upper bound for ∥PWS̃
ϵ∥22. First,

define

rse,sg =

[
sup

|J |=se,|G(J )|=sg
∥PWJ ϵ∥22 − 9(d0 + 1) {sglog(eq/sg) + 2selog(ep)}

]
+

,

and r = sup1≤se≤p(p−1)(q+1), 0≤sg≤q rse,sg . It holds that

∥PWS̃
ϵ∥22 ≤ 9(d0 + 1) {s̃glog(eq/sg) + 2s̃elog(ep)}+ r (A5)

≤ 9(d0 + 1){(sg + ŝg)log(eq/sg) + 2(se + ŝe)log(ep)}+ r.
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The result from Step 1 gives

P{r ≥ t0} ≤
p(p−1)(q+1)∑

se=1

q∑
sg=0

P{rse,sg ≥ t0}

≤
p(p−1)(q+1)∑

se=1

q∑
sg=0

c1 exp[−c2t0 − 9(d0 + 1)c2 {sglog(eq/sg) + 2selog(ep)}].

Step 3: We derive an inequality for ∥PWS̃
ϵ∥22 by utilizing the computational optimality

of β̂ in this step. Since the objective function is convex, β̂ is a stationary point of

1

2n

p∑
j=1

∥zj −W−jβj∥2 + λ1

q∑
h=1

∥bh∥2 + λ2

q∑
h=0

∥bh∥1.

By the KKT conditions, for any l ∈ Ŝj ∩ (0), (β̂)l must satisfy that

λ2sign{(β̂)l} =
1

n
⟨W·l, zj −W−jβ̂j⟩. (A6)

Similarly, for any l ∈ Ŝj ∩ (h), h ∈ [q], (β̂)l must satisfy that

λ2sign{(β̂)l}+ λ1
(β̂)l
∥bh∥2

=
1

n
⟨W·l, zj −W−jβ̂j⟩. (A7)

Squaring both sides of (A6) and (A7) and summing over all l ∈ Ŝ gives

λ21ŝg + λ22ŝe ≤
1

n2

p∑
j=1

∥W⊤
Ŝj
(zj −W−jβ̂j)∥22,

where we have used the fact that sign{(β̂)l}(β̂)l ≥ 0.

Next, consider W⊤
i. v, where v = (v1, . . . ,vp), vl ∈ Rq+1 and ∥v∥ = 1. We have

Wi· = (z
(i)
1 , z

(i)
1 u

(i)
1 , . . . , z

(i)
1 u

(i)
q , . . . , z

(i)
p , z

(i)
p u

(i)
1 , . . . , z

(i)
p u

(i)
q ). With slight overuse of nota-

tion, we include the intercept term into u(i) in the subsequent development. Letting

V = [v⊤
1 , . . . ,v

⊤
p ] ∈ R(q+1)×p, we can reexpress Wi·v as Wi·v = u(i)⊤V z(i), i ∈ [n].
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Consequently, by the law of total expectation and Assumption 1, we have

E
(
v⊤W

⊤W

n
v

)
=

1

n

n∑
i=1

E
(
u(i)⊤V z(i)

)2
(A8)

= E

[
E

{
1

n

n∑
i=1

E
(
u(i)⊤V z(i)

)2 ∣∣∣{u(i)}i∈[n]

}]

= E

{
1

n

n∑
i=1

u(i)⊤V Σ(u(i))V ⊤u(i)

}
≥ ϕ1 × E

{
tr
(
u(1)⊤V V ⊤u(1)

)}
≥ ϕ1 × λmin

(
Cov(u(1))

)
tr(V V ⊤) = ϕ1/ϕ0,

where we have used the fact tr(AB) ≥ λmin(A)tr(B) for positive semi-definite matrices A

and B and tr(V V ⊤) = 1. By the Cauchy–Schwarz inequality, we deduce

max
j,k

1

n

n∑
i=1

E{(WijWik)
2} = max

l1,l2,l3,l4
E
(
z
(1)
l1

2
z
(1)
l2

2
u
(1)
l3

2
u
(1)
l4

2
)
= O(1), (A9)

where we have used the fact that z
(i)
l1

and u
(i)
l2

have bounded eighth moments, as they are

both sub-Gaussian with a bounded sub-Gaussian norm. Recall |Ŝ| < sλ. By the condition

on sλ in Theorem 3, it then follows from Lemma 5, (A8) and Assumption 3 that, with

probability at least 1−C0 exp{−(log p+log q)}, we have ∥WŜ∥2/n ≤M1 for someM1 > 0.

Since Ŝ ∈ S̃, it holds that

λ21ŝg + λ22ŝe ≤ M1

n

p∑
j=1

∥W−j∆j +PWS̃j
ϵj∥22 (A10)

≤ 2M1

n
∥W∆∥22 +

2M1

n
∥PWS̃

ϵ∥22,

with probability 1− d1 exp(logp− d2n).

Combining (A5) and (A10) and letting

λ1 = C
√

log(eq/sg)/n+ 2selog(ep)/(nsg), λ2 =
√
sg/seλ1,

where C = 3M1{(d0 + 1)a2}1/2 for some a2 > 0, we obtain that

(1− 2

a2
)∥PWS̃

ϵ∥22 ≤ 9d0 {sglog(eq/sg) + 2selog(ep)}+
2

a2
∥W∆∥22 + r (A11)
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holds with probability 1− d1 exp(logp− d2n). This, together with (A3) and (A4), implies

that

∥W∆∥22
n

+ λ1∥∆(Gc)∥1,2 + λ2∥∆Sc∥1 (A12)

≤ 1

2a1

∥W∆∥22
n

+
9a1a2

2(a2 − 2)

sglog(eq/sg) + 2selog(ep)

n

+
a1

a2 − 2

∥W∆∥22
n

+
a1a2

2(a2 − 2)n
r + λ1∥∆(G)∥1,2 + λ2∥∆S∥1

holds with probability 1− d1 exp(logp− d2n).

Let ΣW = E(W⊤W/n). It is easy to see from the definition of W that λmin(ΣW) ≥

λmin(ΣW ) ≥ 1/ϕ1 in (A8). Next, we have that

∥∆(G)∥1,2√
sg

+
∥∆S∥1√

se
≤ ∥∆(G)∥2 + ∥∆S∥2 ≤ 2

√
ϕ1∥Σ1/2

W ∆∥2,

where the first inequality is due to that ∥∆(G)∥1,2 ≤
√
sg∥∆(G)∥2, ∥∆S∥1 ≤

√
se∥∆S∥2 and

the second inequality holds because ∥∆(G)∥2 + ∥∆S∥2 < 2∥∆∥2. Consequently,

λ1∥∆(G)∥1,2 + λ2∥∆S∥1 ≤ 2C
√
ϕ1en∥Σ1/2

W ∆∥2 ≤ a3Cϕ1en +
1

a3
∥Σ1/2

W ∆∥22,

where en = {sglog(eq/sg) + 2selog(ep)}/n and the last inequality comes from that 2ab ≤

ta2 + b2/t for any t > 0. Plugging this into (A12), we obtain{
1− 1

2a1
− a1
a2 − 2

}
∥W∆∥22

n
(A13)

≤
{

9a1a2
2(a2 − 2)

+ Ca3ϕ1

}
sglog(eq/sg) + 2selog(ep)

n
+

1

a3
∥Σ1/2

W ∆∥22 +
a1a2

2(a2 − 2)n
r

holds with probability 1− d1 exp(logp− d2n).

Finally, we bound the distance between ∥W∆∥22/n and ∥Σ1/2
W ∆∥22. For v ∈ Rp(p−1)(q+1),

we write v = (v1, . . . ,vp) with vj ∈ R(p−1)(q+1). To proceed, we first show with probability

1− C ′ exp{−(log p+ log q)},

sup
v∈K0(Cβ;se)

∣∣∣∣v⊤
(
W⊤W
n

−ΣW

)
v

∣∣∣∣ ≤ 1/L, (A14)
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where L is a sufficiently large constant and K0(Cβ; se) = {v : ∥vj∥0 ≤ 2Cβsj ,
∑p

j=1 sj =

se, and ∥v∥2 = 1} for some positive constant Cβ.

Given (A9), it then follows from Lemma 5 and Assumption 3 that with probability

1− C ′ exp{−(log p+ log q)},∣∣∣∣v⊤
(
W⊤W
n

−ΣW

)
v

∣∣∣∣
=

p∑
j=1

∣∣∣∣∣v⊤
j

{
W⊤

−jW−j

n
− E

(
W⊤

−jW−j

n

)}
vj

∣∣∣∣∣
≾ max

j

{√
sjlog(pq)

n
+
sjlogn log(pq)

n

}
= o(1),

where we have used the fact that
∑p

j=1 ∥vj∥22 = 1. Thus, we have shown (A14) holds with

probability at least 1 − C ′ exp{−(log p + log q)}. Combing this with the result in Lemma

6, we have, with probability at least 1− C ′ exp{−(log p+ log q)},∣∣∣∣∆⊤
(
W⊤W
n

−ΣW

)
∆

∣∣∣∣ ≤ 1

L′

(
∥∆∥22 +

1

se
∥∆∥21

)
, (A15)

where L′ is a sufficiently large positive constant. Plugging (A15) into (A13) and choosing

proper constants a1, a2 and a3, such as a1 = 2, a2 = 6 and a3 = 6, we have

1

2
∥Σ1/2

W ∆∥22 ≾
sglog(eq/sg) + 2selog(ep)

n
+

1

L′

(
∥∆∥22 +

1

se
∥∆∥21

)
, (A16)

with probability 1− c1 exp[−c′2{selog(ep) + sglog(eq/sg)}], due to that

P (r ≥M0{sglog(eq/sg) + 2selog(ep)})

≤ c1 exp(−c′2{sglog(eq/sg) + 2selog(ep)}),

for a large positive constant M0.

Next, taking a1 = 2−
√
2 and a2 = 6 in (A12) and using the expressions for λ1, λ2, we

have with probability at least 1− c1 exp(−c′2{sglog(eq/sg) + 2selog(ep)}) that

∥∆(Gc)∥1,2√
sg

+
∥∆Sc∥1√

se
≤
√
sglog(eq/sg) + 2selog(ep)

n
+

∥∆(G)∥1,2√
sg

+
∥∆S∥1√

se
. (A17)
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Adding ∥∆S∥1/
√
se to both sides of (A17), we have that

∥∆∥1√
se

≤
√
en + 3∥∆∥2. (A18)

Plugging (A18) into (A16) and with λmin(ΣW) ≥ 1/ϕ1 > 0 in Assumption 2, we have

∥∆∥22 ≾
1

n
{sglog(eq/sg) + selog(ep)},

with probability at least 1−C1 exp[−C2{sglog(eq/sg) + selog(ep)}], for some positive con-

stants C1, C2.

□
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A5 Additional Results from Real Data Analysis

A5.1 The Kyoto Encyclopedia of Genes and Genomes Human

Glioma Pathway

Figure A1: The Kyoto Encyclopedia of Genes and Genomes human glioma pathway. This

figure is downloaded from https://www.genome.jp/kegg/ (Kanehisa and Goto, 2000).
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