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ABSTRACT

While mortality is often the main focus of cancer studies, non-fatal events, such as disease pro-
gression, can vitally impact patient outcomes. For example, recurrence after curative treatment
is a crucial endpoint in lung cancer, affecting available second-line treatments and personalized
care. Estimating the de-confounded effect of interventions on disease recurrence is a key aspect of
assessing cancer treatments. However, semi-competing risks complicate causal inference when death
prevents disease recurrence. Existing approaches for estimating causal quantities in semi-competing
survival functions rely on complex objective functions with strong assumptions and are challenging to
estimate accurately. To address these challenges, we propose a deep learning approach for estimating
the causal effect of treatment on non-fatal outcomes in the presence of dependent censoring and
complex covariate relationships. Our three-stage approach involves estimating the marginal survival
function using an Archimedean copula representation, and a jackknife pseudo-value approach that
estimates pseudo-survival probabilities at fixed time points. These pseudo-survival probabilities serve
as target values for developing causal estimators that are consistent and do not rely on assumptions
like proportional hazards across all time points. In the final stage, we employ a deep neural network
to link pseudo-outcomes, the causal variable, and additional confounders. This enables us to estimate
survival average causal effects through direct standardization. We evaluate our approach through
numerical studies and apply it to the Boston Lung Cancer Study, specifically examining the effect of
surgical tumor resection in patients with early-stage non-small cell lung cancer.

1 Introduction

Lung cancer remains the leading cause of cancer-related deaths in the United States, accounting for one in five cancer
deaths [Siegel et al., 2023]. Significant progress has been made towards improving lung cancer prognosis, owing in part
to better screening and advances in targeted therapies [Liang et al., 2020]. However, a patient’s clinical course may
be highly variable due to the complex genetic, environmental, and psycho-social risk factors which influence disease
progression and survival [Steliga and Dresler, 2011]. Furthering our understanding on the efficacy of patient-specific
treatments is crucial when considering individualized approaches to care [Vargas and Harris, 2016, Politi and Herbst,
2015]. As it is not always practical to conduct randomized controlled trials due to ethical or practical reasons, causal
inference is a powerful tool for making statements about the etiology of an outcome based on changes in a causal
variable of interest in the context of observational studies [Pearl, 2009, Hernán and Robins, 2010].

In the context of survival analysis, common causal estimands include the average risk difference (i.e., difference
in survival probability between treatment groups) at a given point in time or the average difference in restricted
mean life time [Chen and Tsiatis, 2001, Rava, 2021]. Two common approaches for causal inference are outcome
modeling and direct standardization or inverse probability weighting [IPW; Richardson and Rotnitzky, 2014]. In
outcome modeling, the G-formula’ is used to extend a standard regression model (referred to as the ‘Q-model’) for the
conditional expectation of the outcome given the treatment and confounding variables. For survival endpoints, a natural
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choice is the Cox Q-model, where the G-formula is applied to the Cox proportional hazards regression model [Andersen
et al., 2017]. The Cox model has a well-established statistical theory and offers a straightforward method for hypothesis
testing and inference [Cox, 1972]. Additionally, several specialized approaches have been developed to target causal
parameters with time-to-event outcomes [Stitelman et al., 2012, Keogh et al., 2021, Andersen et al., 2017].

More broadly, while mortality is often the primary endpoint when studying the effect of a particular treatment or
exposure, non-fatal events may also impact illness trajectories and treatment decisions related to disease management
Kim et al. [2012]. In the context of lung cancer, disease progression alter remaining available treatments, making lung
cancer recurrence in patients who have undergone curative treatment an important endpoint [Zappa and Mousa, 2016,
Fedor et al., 2013]. Thus, having a comprehensive understanding of a patient’s event history, in particular, disease
progression is important to inform clinical decision making. It is often of substantial interest to study the ‘net’ effect
of an intervention or exposure on time to disease progression [Delgado and Guddati, 2021]. However, there are two
challenges that hamper this analysis – how to evaluate causality in observational studies [Gianicolo et al., 2020] and
how to account for the the semi-competing relationship between disease progression and mortality [Jazić et al., 2016].

The presence of semi-competing risks can complicate causal inference by introducing dependent censoring, where the
occurrence of death, or a fatal event, precludes recurrence, a non-fatal event. As a non-fatal event (recurrence) is often
a precursor to the fatal event, this leads to informative censoring, which can bias estimates of treatment effects [Jazić
et al., 2016, Ghosh, 2012, Nevo and Gorfine, 2022]. Much of the literature on causal methods for semi-competing risks
are developed under a potential outcomes framework, using principal stratification to estimate causal effects [Nevo
and Gorfine, 2022, Comment et al., 2019, Huang, 2021, Xu et al., 2022]. Principal stratification is a causal inference
technique for handling post-treatment covariates in which patients are grouped based on post-treatment variables and
causal effects are computed within these strata. For example, if we consider evaluating the causal effect of treatment,
Z, on time to remission by time t1, a principal stratification strategy would be to compute the survival average causal
effect (SACE) among those individuals who would have survived as a member of either treatment or control group by
some later time, t2 [Frangakis and Rubin, 2002]. Here, the interpretation of the survival average causal effect (SACE) is
causal effect on remission among those individuals who would have survived as a member of either the treatment or
control group until at least time t2. However, in many contexts, it is unclear as to whether principal stratification is truly
of scientific interest, or if it is used to avoid ill-defined counterfactual outcomes [Pearl, 2011]. Further, many approaches
for semi-competing survival functions use complicated objective functions, which require strong assumptions and are
difficult to estimate with fidelity. Alternatively, when the outcome of interest is time to a non-fatal event, rather than
the joint outcome of the non-fatal event and death, causal methods under the paradigm of ‘truncation by death’ have
been developed [Zhang and Rubin, 2003, Long and Hudgens, 2013, Tchetgen Tchetgen, 2014, Zehavi and Nevo, 2021].
These approaches require special techniques to accommodate the presence of censoring.

Another promising approach to causal inference in survival analysis is through the use of pseudo-outcomes [Andersen
et al., 2017]. Here, the time-to-event outcome, which is subject to censoring, is replaced by a pseudo-survival probability,
which represents a given individual’s contribution to estimating the survival function of the study sample. This approach
has several benefits. Firstly, using a discrete time survival approach avoids the need for common assumptions. Typical
strategies involve the use of parametric families to characterize the distributions of the survival times, which may be too
restrictive in practice. Or, in the case of the Cox Q-model, the partial likelihood is defined under the assumption that
the hazard ratio between different levels of each covariate (treatment and confounders) is constant over time (i.e., the
proportional hazards assumption). This assumption may not hold, especially as the number of covariates increases.
Pseudo-values address this issue by casting the outcome as the survival probability at given time points, allowing for
non-proportional hazards. Further, pseudo-value based approaches replace the potentially censored survival times
by jackknife-imputed survival probabilities. In the absence of censoring, standard loss functions can be used for
optimization, rather than custom-designed approaches, and standard causal inference techniques such as IPW or the
G-formula are applicable.

Despite these advances, often, parametric and semi-parametric methods are limited in their ability to model complex
relationships and interactions between covariates [Jordan and Mitchell, 2015]. Typically, these approaches assume a
linear relationship between the log survival time or log hazard and covariates, and non-linear relationships or complex
interactions must be modeled explicitly. As such, there has been a growing interest in applying machine learning to
survival analysis, in order to improve the accuracy of models [Wang et al., 2019, Sonabend et al., 2021]. Machine
learning techniques, such as decision trees, random forests, and deep neural networks offer flexible and powerful
approach for modeling survival data [Salerno and Li, Preprint posted online May 5, 2022]. These methods can account
for complex covariate relationships and can handle high-dimensional datasets with many features. Several studies have
demonstrated the effectiveness of machine learning approaches for survival analysis, including applications in cancer
prognosis [Zupan et al., 2000, Cui et al., 2020, Doppalapudi et al., 2021, Wu et al., 2021]. Furthermore, the integration
of causal inference into machine learning approaches has shown great promise for estimating the causal effects of
treatments on survival outcomes. Several studies have proposed machine learning approaches for causal inference in
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survival analysis. For example, Hu et al. [2021b] proposed an accelerated failure time Bayesian additive regression
trees framework for estimating the heterogeneous survival treatment effects of lung cancer screening approaches, while
Stitelman et al. [2012] proposed a general implementation of the targeted maximum likelihood estimator (TMLE) for
longitudinal data in the context of a survival endpoint. These studies and others demonstrate the potential of combining
machine learning techniques with causal inference methods for survival analysis.

Many recent developments have been made towards applying deep learning approaches for estimation to survival
analysis [Yao et al., 2017, Katzman et al., 2016, 2018, Ranganath et al., 2016]. However, while the potential effects
of covariates are indeed estimated non-parametrically as outputs from neural network architectures in these settings,
the construction of these loss function relies on an underlying Cox proportional hazards or Cox frailty model, which
may carry strong assumptions, or the survival times themselves may be assumed to arise from a parametric family of
distributions. In such cases, there is a disconnect between these likelihood-based loss functions and common deep
learning algorithms Steingrimsson and Morrison [2020]. Further applying deep learning to non-fatal event data with
presents several challenges, including the need to account for dependent censoring, which requires careful modeling of
the joint distribution of the semi-competing risks [Salerno and Li, 2022].

To address these issues, we propose a deep learning approach for estimating the causal effect of a given treatment
on a non-fatal outcome in the presence of dependent censoring and potentially complex covariate relationships. In
particular, we propose a three-stage approach. In the first stage, we estimate the marginal survival function for the
non-fatal event based on a Clayton copula representation of the joint survival function. Following recent works by
Andersen et al. [2017], Zhao and Feng [2020], Sabathé et al. [2020] and Orenti et al. [2021], we propose using jackknife
pseudo-values to estimate pseudo-survival probabilities at fixed time points in the second stage. This circumvents the
need for complex loss functions in downstream modeling, as using pseudo-survival probabilities reduces the problem at
hand to minimizing the binary cross-entropy loss function. This also allows us to study causal targets which do not
impose common assumptions such as proportional hazards across all time points. Lastly, to do so, we relate our pseudo
outcomes to our causal variable of interest and additional confounders in a deep neural network to estimate survival
average causal effect estimates via direct standardization.

The rest of this article is as follows. In Section 2, we introduce our notation and concepts such as the Clayton copula,
jackknife pseudo-values, deep learning, and our target estimand for causal inference before outlining our three-stage
procedure and formulating our deep neural network. In Section 3, we provide a series of numerical studies to evaluate
our proposed approach, and in Section 4, we apply our method to the Boston Lung Cancer Study, a large scale
epidemiologic lung cancer cohort study. We conclude with a discussion of our current work and areas of future research.

2 Method

2.1 Notation

We consider two event types – a non-fatal event, such as disease recurrence, and a fatal event (i.e., death), and introduce
the following notation. For a study consisting of n individuals, let Ti1 and Ti2 denote the times to the non-terminal and
terminal events, respectively, for the ith individual; i = 1, . . . , n. We observe Zi, the causal variable of interest, and Xi,
a p-vector of additional confounding variables. In the context of our data, Zi is binary treatment indicator taking values
Zi = 1 if a patient underwent surgical resection and Zi = 0 for other first-line treatment options. Further, Xi includes
demographics, prevalent comorbidity conditions, or genetic variants for the ith subject. We assume (Ti1, Ti2, Zi, Xi)
are i.i.d. copies of (T1, T2, Z,X).

2.2 Bivariate Survival Function and the Clayton Copula

As a preamble, we consider a homogeneous situation, i.e., without covariates. We assume T1 and T2 are absolute,
continuous random variables taking on non-negative values. Denote the marginal survival functions for the non-terminal
and terminal events by S1(t1) = Pr(T1 > t1) and S2(t2) = Pr(T2 > t1), respectively. Note that the distribution of
T1 is non-parametrically identifiable only when the non-fatal event always precedes the fatal event [Xu et al., 2010].
Otherwise, as is the case in most practical settings, we assume a model for the joint survival distribution, given by

S(t1, t2) = Pr(T1 > t1, T2 > t2).

When the non-terminal and terminal events are positively correlated, it is natural to assume a Clayton copula model to
express S(t1, t2) as a functional of marginal survival functions, S1(t1) and S1(t1) [Clayton, 1978], where

S(t1, t2) = [S1(t1)
−θ + S2(t2)

−θ − 1]−1/θ (1)
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and the copula dependence parameter, θ ≥ 0, measures the strength of the relationship between the non-fatal and fatal
event times. Since the nonparametric function of (t1, t2) is only identifiable on the upper wedge, 0 < T1 ≤ T2, we
assume model 1 on this upper wedge as well. Because model (1) may not hold in the lower wedge, the usual relationship
that θ/(θ + 2) = Kendall’s τ may not hold [Fine et al., 2001].

2.3 Calculation of Distribution of Non-Fatal Event Time

Under the Clayton copula model, Fine et al. [2001] show that the marginal survival function for the non-fatal event
time is monotonic and estimable given the joint survival function in (1) and the marginal survival function for the fatal
event. Specifically, for a fixed time point, t, the joint survival function corresponds to the survival function for the first
instance of either event, S∗(t), which is often termed the progression-free survival probability in cancer research. The
marginal survival function for the non-terminal event is related to the progression-free survival probability and the
survival function for the terminal event via

S1(t) = [S∗(t)
−θ − S2(t)

−θ + 1]−
1
θ , (2)

which constitutes the basis of estimating S1(t), as both S∗(t) and S2(t) are estimable via the Kaplan-Meier method,
because both the time to the terminal event and the time to either event are always observable. Moreover, several works
have proposed estimates for θ, including the estimator given by Oakes [1989] and Fine et al. [2001]. In the setting
where the marginal survival functions do not depend on covariates, We can estimate θ “ad hoc” via the Oakes [1989]
and Fine et al. [2001] concordance measure, given by∑

i<j W (Yij1, Yij2)Dij∆ij∑
i<j W (Yij1, Yij2)Dij (1−∆ij)

− 1. (3)

where, for 1 ≤ i ̸= j ≤ n, we denote by Tij1 = min (Ti1, Tj1), Tij2 = min (Ti2, Tj2), and Cij = min (Ci, Cj),
and define Yij1 = min (Tij1, Tij2, Cij) and Yij2 = min (Tij2, Cij) as the observable event times for the (i, j) pair.
Further, ∆ij = I [(Ti1 − Tj1) (Ti2 − Tj2) > 0] and Dij = I (Tij1 < Tij2 < Cij), such that ∆ij is estimable only
when Dij = 1. In contrast to the estimator of θ proposed in Fine et al. [2001], we make a modification in (3) by
subtracting 1. This is because the definition of θ in our formulation (2) corresponds to θ + 1 in Fine et al. [2001].
Lastly, let Yi1 = min(Ti1, Ti2, Ci) and Yi2 = min(Ti2, Ci) denote the observable event times for a given individual.
The weight function, Wa,b(y1, y2), is defined as

W−1
a,b (y1, y2) =

1

n

n∑
i=1

I {Yi1 ≥ min(a, y1), Yi2 ≥ min(b, y2)} ,

where constants a and b may be selected to dampen W (·) for large y1 and y2. Theoretically, Fine et al. [2001] show that
θ̂ is a consistent estimator of θ, leading to the estimation of the non-fatal survival function in the absence of covariates.

2.4 Extension to the Distribution of Non-Fatal Event Time with Covariates

With covariates Z,X , the copula model (1) can be extended to

S(t1, t2 | Z,X) = Cθ[S1(t1 | Z,X), S2(t2 | Z,X)] = [S1(t1 | Z,X)−θ + S2(t2 | Z,X)−θ − 1]−1/θ, (4)

where S(t1, t2 | Z,X) = Pr(T1 > t1, T2 > t2 | Z,X), S1(t1 | Z,X) = Pr(T1 > t1 | Z,X) and S2(t2 | Z,X) =
Pr(T2 > t2 | Z,X). Here, θ quantifies the correlation of T1 and T2 conditional on Z,X . Similarly, model (4) implies

S1(t | Z,X) = [S∗(t | Z,X)−θ − S2(t | Z,X)−θ + 1]−
1
θ ,

which is the basis of estimating S1(t | Z,X). However, in this case, the estimator (3) of θ may not work as it
was designed for a homogeneous population without considering covariates. Our idea is to extend estimator (3) by
indirectly conditioning on Z,X . This is to mitigate information leakage, as we carry forward our estimate of θ to our
downstream model. In particular, we propose to estimate θ̂ locally, in a neighborhood around (Zi, Xi), by focusing on
the nearest k neighbors to subject i, using the Euclidean distance between covariates. We run through all the subjects
and average these estimates to achieve an overall estimate of θ. We term the procedure a ‘leave-one-in’ approach.
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The rationale for this approach is that, by calculating θ among those observations with similar covariate distributions,
the resulting estimate reflects a measure of concordance that is less sensitive to the impact of the covariates. More
specifically, let X∗ denote the matrix of covariates, including the treatment variable, Z, where each sample X∗

i ∈ X∗

is a (p+ 1)-dimensional vector. We consider the Euclidean distance, Dii′ , between X∗
i and X∗

i′ for 1 ≤ i ̸= i′ ≤ n,

Dii′ = ∥X∗
i −X∗

i′∥2 =


p+1∑
j=1

(x∗
ij − x∗

i′j)
2


1/2

,

where x∗
ij and x∗

i′j are the jth components of X∗
i and X∗

i′ , respectively. Note, the Mahalanobis distance can also be
used, and in our numerical experience, both distances work comparably. Then, for each individual, i ∈ {1, . . . , n}, we
identify the k nearest neighbors, among the n individuals, based on the their distances from this individual and denote
them by N (i, k). We then estimate θ̂ based on subjects from N (i, k) via

θ̂(i) =

∑
j,l∈N (i,k);j<l W (Yjl1, Yjl2)Djl∆jl∑

j,lN (i,k);j<l W (Yjl1, Yjl2)Djl (1−∆jl)
− 1.

Here, j and l index individuals in N (i, k). An overall estimate of θ is then given by

θ̂ =
1

n

n∑
i=1

θ̂(i).

The number of neighbors, k, is chosen such that |θ̂k− θ̂k−1| < ϵ, where θ̂k and θ̂k−1 are the θ estimates with k and k−1
neighbors, respectively, and ϵ is a pre-specified tolerance level, say 0.01. See Figure 1 for an illustrative calculation
over 50 generated datasets in which we vary the number of neighbors from 1 to 100 (black line = average value, grey
ribbon = standard deviation), corresponding to Setting 2 in Section 3.

Figure 1: Example calculation across 50 simulated datasets with correlated covariates
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2.5 Potential Outcomes Framework for Causal Inference

Under a potential outcomes framework, T z
i1 denotes the potential time to recurrence that would occur had Zi = z ∈

{0, 1} for the ith individual. Causal inference infers the ‘true’ effect of an intervention on time to disease recurrence by
comparing T 1

i1 versus T 0
i1 [Pearl, 2009]. Before proceeding we make several common assumptions:

1. Consistency: ∃ {T 1
i1, T

0
i1} s.t. Ti1 = TZi

i1 almost surely. In other words, an individual’s potential outcome
under their assigned treatment group is the outcome that will actually be observed.

2. No Interference: T z
i1 is unaffected by the value of z for another subject, j.

3. Positivity: Zi ∈ {0, 1} ∀Xi, or the assumption that every individual has a non-zero probability of being
assigned to either treatment group.

4. Exchangeability: T 1
i1, T

0
i1 ⊥ Zi | Xi, i.e., ‘no unmeasured confounding.’

Together, the assumptions of consistency and no interference make up the stable unit treatment value assumption
(SUTVA), which underpins the existence of the counterfactual outcomes, T z . We require positivity to ensure that
our observed data functionals, denoted below by Si1(t | Xi, Zi = z), are well defined. Lastly, the exchangeability
assumption allows us to represent the conditional distribution of the unobserved potential outcome using that of the
observed potential outcome. We are interested in the average causal effect of Zi on the time to recurrence, Ti1. With
the assumptions above, a common causal quantity of interest given the counterfactual potential outcomes is the average
treatment effect (ATE), or the expected difference in potential outcomes over all individuals in the study. We can
consider the average causal difference in the risk of recurrence at time t as

E[I(T 1
i1 > t)]− E[I(T 0

i1 > t)], (5)

For Equation (5), note that E[I(Ti1 ≤ t)] = 1 − S1(t). Thus, given a consistent estimator of S1(t), Ŝ1(t), we
can estimate the ATE by training a deep neural network for Si1(t | Xi, Zi) and predicting the potential outcomes
Ŝi1(t | Xi, z); z ∈ {0, 1}. An estimate of the ATE for the average causal risk difference is given by

ˆATE = n−1
n∑

i=1

{Ŝi1(t | Xi, 1)− Ŝi1(t | Xi, 0)}. (6)

2.6 A Pseudo-Values Approach for Causal Estimation

Our goal is to construct a model to study the difference in risk of recurrence at a given point in time. As the efficacy of
a given treatment may change over time, common approaches to causal survival analysis such as the Cox Q-model may
impose certain structures across all time points, e.g., proportional hazards, that are not realistic. Pseudo-values provide
an intuitive means of circumventing the proportional hazards assumption, while also replacing potentially incompletely
observed outcomes with a real-valued function of our outcome for each individual [Andersen et al., 2017].

For any function, f(t), jackknife pseudo-responses can be generated as f̂i(t) = nf̂(t)− (n− 1)f̂−i(t), where f̂(t) is
the overall estimate of f(t) and f̂−i(t) is an estimate omitting the ith subject. In our setting, consider J discrete time
points, indexed by j = 1, . . . , J . The probability of no recurrence by time tj is given by S1(tj) = Pr(Ti1 > tj). A
pseudo-outcome for individual i at time point tj can be constructed as

Ŝi1(tj) = n× Ŝ1(tj)− (n− 1)× Ŝ−i
1 (tj)

where Ŝ1(tj) and Ŝ−i
1 (tj) are the overall estimate of S1(tj) using all n subjects and the ‘leave-one-out’ estimate

excluding the ith subject, respectively, based on (2). Intuitively, this estimator for S1(tj) represents the contribution of
the ith individual in estimating E[S1(tj)] in a sample of n subjects. Further, because we have a consistent estimate of
S1(t), Ŝi1(tj) is approximately independent of Si′1(tj) for i ̸= i′ as n → ∞ and

lim
n→∞

E[Ŝi1(tj) | Xi, Zi] = S1(tj | Xi, Zi)

for any i [Ahn and Mendolia, 2014, Logan et al., 2011]. With these results, the pseudo-values, Ŝi1(t), can then be
used as numeric responses, similar to a logistic model fit to I (Ti1 > tj) if the data were fully observed. However, as
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I(Ti > t) is not observed for all subjects due to censoring, we must estimate the pseudo-responses for both the censored
and uncensored individuals. We carry forward a design matrix of size n × (p + J), where p denotes the number of
covariates in X and we include J − 1 dummy variables encoding time tj .

2.7 Neural Network Architecture

Rather than parameterizing the effects of the covariates as a linear function, we instead formulate a deep learning
approach for estimation. As shown previously, the benefit here is that we can better capture potential non-linear
and higher-order dependencies between covariates that make up a complex risk profile for patients, including high-
dimensional covariates [Bauer and Kohler, 2019, Poggio et al., 2017]. The pseudo-value approach facilitates direct
estimation of the target quantity of interest, without needing to optimizing the joint likelihood of the survival times
directly. This circumvents the need for complex loss functions as part of the neural network architecture. Our deep
neural network (DNN) directly minimizes the binary cross-entropy loss between the pseudo-survival probabilities,
Ŝi1(tj), and the predicted survival probabilities from the neural network output, πi(tj), such that

Binary Cross Entropy Loss =
1

n

{
n∑

i=1

−Ŝi1(tj) log[πi(tj)]− [1− Ŝi1(tj)] log[1− πi(tj)]

}
. (7)

Our proposed DNN is referred to as an S-learner, as it consists of a single fully-connected feed-forward neural network
with an input layer, L hidden layers with kl neurons in the lth layer; l = 1, . . . , L, and an output layer [Zhao and Hastie,
2021, Koch et al., 2021]. Hidden layers are connected via a non-linear activation function such as the rectified linear
unit activation functions (ReLU; σl(x) = max(0, x)), while the output layer’s activation function is specified based
on the target quantity. For example, as our target values are survival probabilities, a sigmoidal activation function
(σl(x) = {1 + e−x}−1) is used for the final layer to constrain the output probabilities between 0 and 1. Estimation is
based on an L-fold composite function

FL(·) = fL ◦ fL−1 ◦ · · · ◦ f1(·) where (g ◦ f)(·) = g(f(·)),

fl(x) = σl (Wlx+ bl) ∈ Rkl+1 ,

where σl is an activation function, Wl are weights, and bL are biases. Our network output is optimized under (7), which
has a faster convergence rate than the traditional mean squared error due to its steeper gradient when the predicted
output is far from the true output. Our final layer outputs a representation of the data, Ψ, which is used to then predict
the counterfactual outcomes for each individual, Ŝi1(t | Xi, z); z ∈ {0, 1}, before calculating (6).

Hyperparameters needed to fully specify the neural network architecture include the number of hidden layers and
number of nodes per hidden layer, the dropout fraction, and learning rate. In practice, these quantities are optimized
over a Cartesian grid search based on predictive performance. We implement our approach with the R interface for
Keras, using the deep learning library TensorFlow as the backend [Allaire and Chollet, 2022, Allaire and Tang, 2022].
Software to implement this method can be found at https://github.com/salernos/pseudoSCR

3 Simulations

3.1 Data Generation

We next performed a series of simulations to assess the accuracy of our proposed approach against standard methods.
In particular we varied the sample size, copula dependence parameter, censoring rates, and covariate-dependent risk
functions in a fully factorial design. We considered two cases for the sample sizes, letting n = 500 or n = 1, 000.
Further, we let the copula dependence parameter, θ, equal 0.5, or 2. Noting that Kendall’s τ ≈ θ/(θ + 2), these setting
correspond to approximate Kendall’s τ values of 0.2 or 0.5, respectively. Dependent on each data generation model, we
varied the parameters used to generate censoring times to achieve approximate censoring rates of 0% or 50%. Lastly,
we considered two different generative model settings, described further below.

We considered two generative models of varying complexity. In the first setting, we simulated data from a proportional
hazards model with a risk function that is linear in terms of the covariates, facilitating a fair comparison between the
competing methods. In the second setting, we again simulated the data from a proportional hazards model, but we
introduced a non-linear risk function through the use of higher order terms and correlated covariates.
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Setting 1: Linear Risk Function. We first generated the data following the simulation scheme proposed in Peng and
Fine [2007], Hsieh and Huang [2012], and Orenti et al. [2021]. Specifically, we generated non-fatal (Ti1) and fatal
(Ti2) event times from marginal models specified by

log(Ti1/3) = −(β1Zi + β1Xi1 + β1Xi2) + εi1
log(Ti2/3) = −(β2Zi + β2Xi1 + β2Xi2) + εi2,

where Zi is a Bernoulli random variable with a success probability of 0.5, Xi1 and Xi2 are independent truncated
normal random variables with mean 1, variance 0.5, and truncation bounds of [0, 2], and (εi1, εi2) are correlated random
errors. To induce dependence between the event times, we simulated εi1 and εi2 from the Clayton copula model,

[
Pr (εi1 > t1)

−θ
+ Pr (εi2 > t2)

−θ − 1
]− 1

θ

,

where εi1 and εi2 follow the extreme value distribution, i.e., Pr (εi1 > t1) = exp{− exp(t1)} and Pr (εi2 > t2) =
exp{− exp(t2)} [Rotolo et al., 2013]. See Appendix A for additional details.

Setting 2: Non-Linear Risk Function, Correlated Covariates. In our second data generation scenario, we adopted a
similar framework as described previously, but we have modified the covariate risk functions to include higher-order
terms and correlations to understand the performance differences between our non-parametric approach and approaches
which are misspecified when assuming a linear form with independent covariates. We generated three covariates,
X = (X1, X2, X3)

′, from a multivariate normal distribution with X ∼ N3(0,Σ), where the covariance matrix, Σ, is
AR(1) with elements (σij) = 0.5|i−j|. We then dichotomized Zi = I(Xi1 ≥ 0) to be a binary covariate representing
our causal variable of interest. We generated the event times, Ti1 and Ti2, from marginal models specified by

log(Ti1/3) = −(β1Zi + β1X
2
i1 + β1X

2
i2) + εi1

log(Ti2/3) = −(β2Zi + β2X
2
i1 + β2X

2
i2) + εi2,

Across all scenarios, we fixed β1 = 1 and β2 = 0.2. In settings where the event times may be censored, we generated
independent censoring times, Ci, from a mixture of uniforms, where Ci ∼ Unif(0, 1) with probability 0.2 and from
Unif(1, 1.2) with probability 0.8, yielding an approximate censoring rate of 50%. For each combination of settings, we
generated 50 independent datasets and calculated the average bias and mean squared error (MSE) for the estimated
average treatment effect (ATE) for our proposed approach against a causal Q-model, which was fit using generalized
estimating equations with a complementary log-log mean link, corresponding to the proportional hazards model [Orenti
et al., 2021]. To calculate the pseudo-values, we first estimated the copula dependence parameter using the ‘leave-one-in’
approach described previously, applied to the entire sample of n observations. We carried forward the estimated θ̂
to calculate the pseudo- non-fatal survival probabilities at fixed time points t = 0.2, 0.4, 0.6, 0.8, and 1.0. For our
method, we hypertuned our DNN parameters once per simulation setting and carried forward the best configuration
of hyperparameters across all 50 datasets. Lastly, we randomly split each dataset into an 80% training set and a 20%
testing set. We fit the respective models on the training set and calculated the ATE at t = 1.0 in the testing set.

3.2 Example Pseudo-Value Calculation on Simulated Data

First, we illustrate the calculation of the pseudo-values on simulated data. Table 1 gives examples of the estimated
pseudo-values for two individuals from one simulated dataset under the first data generating mechanism. We selected
an individual from each hypothetical treatment arm, where Individual 1 was simulated to have the control (Zi = 0) and
Individual 2 was simulated to have the treatment (Zi = 1). Further, these individuals were chosen for illustration as
Individual 1 experienced both the non-terminal and terminal events before one year of follow-up, whereas Individual 2
was administratively censored shortly after the one year mark. As shown, the estimated pseudo-recurrence probability
for Individual 1 at time t = 0.2 was close to 1, as the individual did not experience the non-terminal event until
time t = 0.3991. Subsequently, the pseudo-probabilities for times t = 0.4 to t = 1.0 are close to 0, as these time
points are after the event occurred. In contrast, the pseudo-probabilities for Individual 2 are all approximately 1 across
all time points, as this individual was censored after time t = 1.0. Lastly, due to the presence of censoring, the
pseudo-probabilities are real-valued and not restricted to {0, 1} [Andersen and Pohar Perme, 2010].
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Table 1: Example pseudo-values for two individuals.

Observation Simulated Outcomes Treatment Estimated
ID t Yi1 Di1 Yi2 Di2 Zi Pseudo-Values
1 0.2 0.3991 1 0.4054 1 0 1.0302
1 0.4 0.3991 1 0.4054 1 0 -0.3260
1 0.6 0.3991 1 0.4054 1 0 0.1765
1 0.8 0.3991 1 0.4054 1 0 0.0968
1 1.0 0.3991 1 0.4054 1 0 0.0496

2 0.2 1.0401 0 1.0401 0 1 1.0302
2 0.4 1.0401 0 1.0401 0 1 1.1761
2 0.6 1.0401 0 1.0401 0 1 1.3082
2 0.8 1.0401 0 1.0401 0 1 1.4430
2 1.0 1.0401 0 1.0401 0 1 1.5688

3.3 Simulation Results

Table 2 summarize the results of this simulation study. As shown, model performance was similar in the first data
generation setting where the parametric Q-model is correctly specified, though the correct model is slightly less biased
and more efficient. This is to be expected, as we are fitting the true model to the data, while the DNN represents a
stochastic approximation of the true data generation function. In the second setting, however, the performance for our
proposed approach is better, as the true covariate risk function contains correlated covariates and higher-order terms.
While the degree of bias for the proposed approach remains fairly consistent with the first data generation setting, the
bias increases for the parametric Q-model. We also note that for both methods, performance was typically better in
settings with a larger sample size (n = 1, 000 versus 500), a smaller degree of dependence between the event times
(θ = 0.5 versus 2.0), and when the data were fully observed versus censored, as expected.

3.4 Sensitivity Analysis

In a sensitivity analysis, we study the performance of the proposed approach against model misspecification. Specifically,
we generate data from the marginal models described above, but to induce dependence between the simulated event
times, we now generate the error terms from the Gumbel copula, rather than the assumed Clayton copula. The bivariate
Gumbel copula is given by

exp

{
−
[
log Pr (εi1 > t1)

θ
+ log Pr (εi2 > t2)

θ
] 1

θ

}
.

Like the Clayton copula, the Gumbel copula cannot have negative dependence, and it converges to the co-monotonicity
copula as θ → ∞. However, as the Gumbel is the independence copula when θ = 1, rather than θ = 0, we consider
only the simulation setting where θ = 2 for this sensitivity analysis [Ruppert and Matteson, 2011]. As shown, we do
incur bias if our model is misspecified for the data generating copula, with the ATE tending to be underestimated for the
Gumbel copula. We further see that we have a higher mean squared error across all settings when the data are generated
from the Gumbel copula, as compared to the Clayton copula. For additional details and full results, see Appendix A.

4 Boston Lung Cancer Study

The Boston Lung Cancer Study is a collaborative research effort between Dana-Farber Cancer Institute and Mas-
sachusetts General Hospital which focuses on improving the understanding and treatment of lung cancer, one of the
leading causes of cancer-related deaths worldwide [Christiani, 2017].

4.1 Study Population

Among all participants in the Boston Lung Cancer Study (BLCS) cohort, 7,755 were initially eligible for inclusion in
this analysis. Eligibility was defined as having a positive lung cancer diagnosis. Participants were ineligible if they
were enrolled with esophageal cancer or other primary cancer, no cancer upon further study, or as a negative control in

9



Salerno and Li

Table 2: Average bias and mean squared error (MSE) for estimated vs. true ATE comparing our proposed method to the
parametric Q-Model. Results are averaged over 50 independently generated datasets for each setting.

Simulation Settings Bias Mean Squared Error
n θ τ Censoring Q-Model Proposed Q-Model Proposed

Setting 1: Linear Risk Function
500 0.5 0.2 50% 0.0025 0.0060 0.0020 0.0063
500 0.5 0.2 0% 0.0025 0.0045 0.0022 0.0042
500 2.0 0.5 50% 0.0025 0.0057 0.0022 0.0053
500 2.0 0.5 0% 0.0018 0.0069 0.0019 0.0011

1000 0.5 0.2 50% 0.0018 0.0025 0.0013 0.0028
1000 0.5 0.2 0% 0.0023 0.0035 0.0014 0.0028
1000 2.0 0.5 50% 0.0019 0.0048 0.0014 0.0037
1000 2.0 0.5 0% 0.0018 0.0030 0.0012 0.0021

Setting 2: Non-Linear Risk Function, Correlated Covariates
500 0.5 0.2 50% 0.0483 0.0043 0.0076 0.0032
500 0.5 0.2 0% 0.0520 0.0030 0.0078 0.0031
500 2.0 0.5 50% 0.0444 -0.0083 0.0081 0.0045
500 2.0 0.5 0% 0.0476 -0.0030 0.0079 0.0046

1000 0.5 0.2 50% 0.0485 -0.0043 0.0036 0.0028
1000 0.5 0.2 0% 0.0518 -0.0034 0.0038 0.0024
1000 2.0 0.5 50% 0.0444 -0.0040 0.0046 0.0032
1000 2.0 0.5 0% 0.0475 -0.0035 0.0042 0.0033

the case of spouses, friends, or other participants. Among those 7,755 eligible patients, we identified 7,697 (99%) with
the temporal information necessary to define their semi-competing outcomes, namely (1) date of primary diagnosis, (2)
recurrence, progression, and/or death date where applicable, and (3) last follow-up date or non-progression date. We
further removed 56 patients diagnosed in the past 6 months, 25 patients with negative survival times, 212 patients with
small-cell lung cancer, and 6 patients with carcinoma in situ , i.e., stage 0 (Figure 2). As available treatment options are
predicated on a patient’s cancer stage, we considered two subgroups of patients – those who were diagnosed with stages
1-3a NSCLC (4,700; 63.5%) and those who were diagnosed with stages 3b-4 NSCLC (2,703; 36.5%). As stages 1-3a
are widely considered to be operable, we focused on understanding the average treatment effect of first-line surgical
resection on time-to-relapse among this subset of patients (Figure 2).

4.2 Patient Characteristics

Descriptive statistics for the study cohort are given in Table 3. As shown, median age among all patients with
NSCLC was 66 years old [interquartile range (IQR): 59-74], with a majority of patients identifying as female (54%),
White/Caucasian (92%) and non-Hispanic (87%). Further, the majority of study participants were former smokers
(57%) with a median 40 pack-years of smoking (IQR: 16-53). Among all patients, the majority underwent surgical
resection (4,444; 67%) as first-line treatment. However, stratifying by stage at diagnosis, we found that patients with
earlier-stage diagnoses were slightly older (median, IQR age: 68, 61-74 years versus 64, 56-72 years), with a higher
proportion being female (55% versus 50%) and White/Caucasian (93% versus 92%), and a lower proportion identifying
as non-Hispanic (85% versus 90%). Social history differed between these two groups as well, with more former
smokers (60% versus 53%) as compared to current smokers (25% versus 30%) in the earlier-stage group, though a
higher median number of pack-years of smoking (40 versus 37 pack-years). Lastly, rates of testing for two common
genetic variants, EGFR and KRAS, differed between these groups, with more patients (81% versus 76%) tested in the
earlier-stage group. Among those tested, we observed a higher proportion of patients in the earlier-stage group with a
KRAS mutation (30% versus 21%), though a higher proportion in the late-stage group with an EGFR mutation (18%
versus 21%). We then carried forward our final analytic cohort of 4,700 patients diagnosed with non-small cell lung
cancer (NSCLC), stages 1-3a. Disease recurrence was reported in 1,651 (35.13%) patients, with 885 (18.83%) patients
experiencing recurrence followed by death and 1,810 (38.51%) patients who died prior to recurrence (Figure 2).
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Figure 2: Flowchart of inclusion and exclusion criteria for the Boston Lung Cancer Study analytic sample and
distributions of observed outcomes (progression and/or death).

4.3 Time-to-Recurrence and Estimated Pseudo-Values

In line with our proposed analytic framework, we first calculated the survival function for recurrence based on the joint
survival function and the survival function for death under the assumed Clayton copula. We calculated this for the entire
study sample, as well as stratified by patient sex (male versus female). The copula dependence parameter, θ, captures
the strength of the relationship between progression and death, with larger values corresponding to a higher degree of
dependence between these two events. We estimated the value of this parameter using our ‘leave-one-in’ modification
to the extended concordance-based estimator proposed in Fine et al. (2001) [Fine et al., 2001]. Among all patients in
our study, we estimated the dependence between progression and death to be 5.60, corresponding to an approximate
Kendall’s τ value of 0.737. This suggests a high degree of correlation between progression and death. Further stratified
by patient sex, we estimated this dependence to be higher among females (5.93) than males (4.85), corresponding to
approximate Kendall’s τ values of 0.748 versus 0.708, respectively.

We then estimated the marginal time-to-recurrence distribution and jackknife pseudo-survival probabilities. We
calculated pseudo-recurrence probabilities at one-year benchmarks from one- to five-years follow up. Figure 3 gives the
distribution of the estimated pseudo-values for the probability of recurrence at each year of follow-up and stratified
by first-line treatment. Values on the y-axis are standardized so that each bar represents the proportion of patients
within each treatment group for the specified bin width. Note that the predicted survival probabilities are not strictly 0
or 1 in the presence of censoring, nor are the values confined to [0,1]. Instead, the pseudo probability is a real value
which takes on an approximately bimodal distribution [Andersen and Pohar Perme, 2010, Zhao and Feng, 2020]. For
each treatment group, the distribution shifts from 1 toward 0 in each successive year of follow-up. However, there is a
higher relative proportion of patients who received other first-line treatments with lower survival probabilities than
those patients who underwent surgical resection.

4.4 Risk Difference between First-Line Therapies

We carried forward these pseudo-outcomes to our S-learner, where we estimated the average causal difference in the risk
of recurrence between surgery and other first-line treatments overall, and stratified by sex and smoking status. These
results are presented in Figure 4. As shown, the overall difference in risk of recurrence between first-line therapies was
estimated to vary over time, with a 5.7% difference at one year, attenuating to 1.9% after five years. Stratified by patient
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Table 3: Characteristics of the n = 7, 403 patients in the Boston Lung Cancer Study cohort, overall and stratified by
stage at diagnosis.

Stage at DiagnosisCharacteristic Overall, n = 7, 4031
1-3A, n = 4, 7001 3B-4, n = 2, 7031

First-Line Treatment
Chemotherapy 1,851 (28%) 365 (8.0%) 1,486 (70%)
Other 7 (0.1%) 2 (<0.1%) 5 (0.2%)
Radiation 366 (5.5%) 194 (4.3%) 172 (8.1%)
Surgery 4,444 (67%) 3,994 (88%) 450 (21%)
Unknown 735 145 590

Age at Diagnosis (yrs.) 66 (59, 74) 68 (61, 74) 64 (56, 72)
Body Mass Index 26.4 (23.0, 31.1) 26.6 (23.3, 31.1) 25.7 (22.6, 30.1)
Sex

Male 3,431 (46%) 2,093 (45%) 1,338 (50%)
Female 3,966 (54%) 2,603 (55%) 1,363 (50%)
Unknown 6 (<0.1%) 4 (<0.1%) 2 (<0.1%)

Race
White/Caucasian 6,834 (92%) 4,349 (93%) 2,485 (92%)
Other 364 (4.9%) 212 (4.5%) 152 (5.6%)
Unknown 205 (2.8%) 139 (3.0%) 66 (2.4%)

Ethnicity
Non-Hispanic 6,410 (87%) 3,990 (85%) 2,420 (90%)
Hispanic 87 (1.2%) 57 (1.2%) 30 (1.1%)
Unknown 906 (12%) 653 (14%) 253 (9.4%)

Education
Some Grade School 438 (5.9%) 276 (5.9%) 162 (6.0%)
Some High School 976 (13%) 589 (13%) 387 (14%)
High School Graduate 1,451 (20%) 946 (20%) 505 (19%)
Vocational/Technical School 279 (3.8%) 156 (3.3%) 123 (4.6%)
Some College or Associate’s Degree 1,469 (20%) 940 (20%) 529 (20%)
College Graduate 962 (13%) 604 (13%) 358 (13%)
Graduate or Professional School 831 (11%) 514 (11%) 317 (12%)
Other 997 (13%) 675 (14%) 322 (12%)

Smoking Status
Never Smoker 1,009 (14%) 592 (13%) 417 (15%)
Former Smoker 4,251 (57%) 2,821 (60%) 1,430 (53%)
Current Smoker 1,979 (27%) 1,171 (25%) 808 (30%)
Smoker, Status Unknown 164 (2.2%) 116 (2.5%) 48 (1.8%)

Pack-Years of Smoking 40 (16, 53) 40 (19, 53) 37 (12, 54)
EGFR Mutation

No 1,255 (17%) 737 (16%) 518 (19%)
Yes 298 (4.0%) 158 (3.4%) 140 (5.2%)
Not Tested 5,850 (79%) 3,805 (81%) 2,045 (76%)

KRAS Mutation
No 1,148 (16%) 630 (13%) 518 (19%)
Yes 405 (5.5%) 265 (5.6%) 140 (5.2%)
Not Tested 5,850 (79%) 3,805 (81%) 2,045 (76%)

1n (%); Median (IQR)

sex, we see that among male patients, the risk difference is slightly higher, with a one-year difference of 5.9, attenuating
to 2.0%, as compared to female patients, among whom we estimated the risk difference to be between 5.6% and 1.3%
over five years. Larger differences were observed when stratifying by patient smoking status. As shown, treatment
differences were slightly higher among current smokers, ranging from 5.9% to 2.5%, while among former (range: 5.6%
to 1.2%) and never smokers (range: 5.6% to 0.1%) these differences were less.
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Figure 3: Estimated pseudo-survival probabilities for one-five years of follow-up, stratified by first-line treatment group.

Figure 4: Estimated average causal difference in the risk of recurrence between surgery and other first-line treatments
among patients with stage 1-3A non-small cell lung cancer, over time and (A) stratified by sex; (B) stratified by smoking
status

5 Discussion

In this work, we propose a deep learning framework for causal inference in time-to-event data with dependent censoring
due to semi-competing risks, with a focus on non-fatal events such as time-to-recurrence. We demonstrate the
performance of our approach on simulated data and apply it to a real-world dataset from a large epidemiologic lung
cancer cohort. Our findings highlight the importance of accounting for semi-competing risks and provide new insights
into the causal relationship between first line surgical resection and and the risk of recurrence. As shown, this approach
provides an accurate method for estimating the causal average treatment effect on the probability of disease recurrence,

13



Salerno and Li

particularly in settings where the true relationship between the non-fatal outcome, treatment, and other confounding
variables is complex.

Causal inference with time-to-event outcomes has received significant attention in the past decade. Traditional methods,
such as the Cox Q-model, are commonly used in this context. However, these methods have several assumptions,
which may not hold in complex real-world scenarios. For example, a common assumption is proportional hazards,
or that the hazard ratio between two groups is constant over time. In practice, the hazard ratio may change over
time due to time-varying confounding or effect modification. In addition, such approaches may not be able to handle
high-dimensional data, where the number of covariates is much larger than the number of observations, or complicated
functions of these potential risk factors. Machine learning methods have emerged as a promising alternative to handle
the non-linear and non-proportional relationship between covariates and survival outcomes. Though not highlighted in
this work, parametric and semi-parametric models requires extensive feature engineering and domain knowledge to
select and transform predictors appropriately, whereas deep learning is scalable and flexible, can automatically learn
relevant features from raw data, reducing the need for manual feature engineering, and is easily adaptable to various
data types, including images and text. One application of machine learning to causal inference in survival analysis is
targeted maximum likelihood estimation (TMLE) Stitelman et al. [2012], Zhu and Gallego [2020]. The TMLE approach
uses a machine learning algorithm to estimate the propensity score, and then constructs a doubly robust estimator of the
causal effect. Another popular approach is the use of random forests to estimate the survival function. Ishwaran et al.
(2008) proposed the random survival forest algorithm, which is an extension of random forests for survival analysis,
which was later extended by Cui et al. (2023) to causal survival forests, which estimate heterogeneous treatment effects
with right-censored data Cui et al. [2023]. The random survival forest and causal survival forest algorithms have both
been shown to outperform traditional methods in terms of estimation accuracy. In recent years, there has been a surge
of interest in using deep learning methods for survival analysis [Katzman et al., 2018, Lee et al., 2018]. A promising
aspect of deep learning is its ability to circumvent the curse of dimensionality in nonparametric settings by projecting
the data into lower relevant representational space Bauer and Kohler [2019], Poggio et al. [2017], Abrol et al. [2021],
Goodfellow et al. [2016]. For example, Katzman et al. (2018) proposed a deep learning framework called DeepSurv,
which is a personalized treatment recommender system that uses a Cox proportional hazards deep neural network to
predict the survival outcome of a patient given their clinical features via a multi-layer perceptron to estimate the hazard
function. They showed that DeepSurv outperforms traditional survival models on several benchmark datasets. Another
deep learning approach is the use of convolutional neural networks (CNNs) to extract features from the covariates. Lee
et al. (2018) proposed a CNN-based survival analysis method called DeepHit, which learns a joint representation of the
covariates and the time-to-event outcomes in competing risks settings.

From a different perspective, Zhao and Feng (2020) proposed the use of jackknife pseudo-values as targets for a
deep neural network. The jackknife is a popular resampling technique used to estimate the influence of individual
observations on a statistical estimator, which has been widely used in survival analysis to identify influential observations
and assess model stability [Miller, 1974]. Recently, jackknife pseudo-values have been proposed for use as outcomes in
survival regression settings [Andersen et al., 2003, 2004, Orenti et al., 2021], as well as target values for deep learning
approaches [Zhao and Feng, 2020]. Recently, pseudo-outcomes have been proposed for causal survival analysis as
well [Andersen et al., 2017]. We explored the applicability of pseudo-values to deep causal learners with dependent
censoring. Causal inference in survival analysis with dependent censoring due to death is a challenging problem for
several reasons. One of the main limitations of current approaches is the assumption of non-informative censoring,
which assumes that censoring is independent of the survival outcome and the exposure of interest. This assumption
does not hold in practice, as recurrence is often a strong precursor to death. Inappropriate handling of this dependence
leads to biased estimates of causal effects.

A specific aim of this study was to focus on the effect of treatment on time to recurrence, rather than alternatives such
as overall survival or progression-free survival, for several reasons. First, time to recurrence provides a more precise
and clinically meaningful measure of the duration of response to treatment. Time to recurrence measures the time
from diagnosis to the point where disease progression is observed, while composites such as progression-free survival
measures the time to either disease progression or death. As a result, time to recurrence can more accurately capture the
effect of treatment on disease progression, while progression-free survival can be confounded by the effect of treatment
on survival. As remaining treatment options are dictated by the monitoring of disease progression, directly studying
recurrence is less susceptible to bias than progression-free survival [Zappa and Mousa, 2016, Fedor et al., 2013].

In the context of the Boston Lung Cancer Study data, we observed differences in the efficacy of surgical resection
compared to other first-line therapies, which attenuated over time. While there is limited literature on this topic, several
studies suggest that surgical resection has better prognostic outcomes in patients with stage 1-3A NSCLC, particularly
in the first five years of follow up [Wright et al., 2006, Uramoto and Tanaka, 2012]. Further, advances in surgical
techniques have led to safer, less invasive procedures, which make surgery an important intervention, potentially in
addition to other therapeutic regimens [Mitsudomi et al., 2013]. Additional, we note a modest difference in the effect of
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surgery versus other first-line therapies when comparing male and female patient subgroups. While previous studies
have reported similar rates of recurrence between these sub-populations [Keller et al., 2002], the timing of recurrence
differs [Demicheli et al., 2012]. There is also evidence that female patients have a significantly better response to
neoadjuvant chemotherapy than male patients [Cerfolio et al., 2006]. With respect to smoking status, we note many
other individualized factors may contribute to greater perceived treatment benefits for current smokers versus former or
never smokers, including stage and genetic mutations [Cortellini et al., 2021, Popat et al., 2022], warranting further
study. Further, much of the literature on NSCLC prognosis points to a lack of emphasis on predictors of other clinical
endpoints besides overall survival [Brundage et al., 2002]. Namely, research has shown that patients and providers
are interested in endpoints such as disease recurrence and response to therapy, which impact quality of life and guide
treatment decisions [Davidson et al., 1999].

We note some limitations of our proposed method and areas of future research. First, our workflow relies on estimating
the marginal survival function for the non-fatal event time. In doing so, we utilize a plug-in estimator of our copula
dependence parameter, θ, based on the extended concordance approach of Fine et al. (2001) [Fine et al., 2001, Orenti
et al., 2021]. While this original, ad-hoc approach is shown to have good theoretical properties, in practice, correlations
between covariates and higher-dimensional feature sets may incur biases. We offer a KNN-based approximation
which addresses the impact of covariates on θ̂ while minimizing information leakage, however future work would
employ more contemporary techniques for causal machine learning such as the recent ‘cross-fitting’ approach to causal
estimation [Chernozhukov et al., 2018, 2022]. Second, the neural network architecture presented here is that of an S- or
‘single’ learner, in that the representational function of the feature space is learned for both treatment arms in the same
architecture. The benefit of this approach suggested by previous work is that deep S-learners can transform covariates
in a representation space that balances the covariate distribution between treated and control subjects [Johansson et al.,
2016]. However, more sophisticated learners have been proposed which may further increase the utility of our proposed
workflow. For example, T-learners utilize separate sub-network architectures to model each outcome separately, while
treatment agnostic regression networks (TARNets) combine S- and T-learning by first encoding shared representation
layers before training separate sub-networks for each treatment arm [Shalit et al., 2017, Koch et al., 2021]. Future work
will explore these approaches and other algorithms such as targeted maximum likelihood estimation (TMLE) [Stitelman
et al., 2012]. In addition, doubly robust methods may provide increased accuracy and efficiency as they require only
one of the outcome model or a treatment model to be correctly estimated [Hu et al., 2021a, Steingrimsson and Morrison,
2020]. Lastly, previous work has shown that, in the context of time-to-event endpoints, using imputed outcomes in
a deep learning framework is asymptotically more efficient than directly optimizing a loss function of the observed
survival times [Steingrimsson and Morrison, 2020]. Further study of these results in the context of our approach may
provide additional justification for our method.

There are also several open problems and areas of future direction. A primary concern is how to conduct inference in
this setting. Our approach yields accurate point estimates for our causal estimand, but we do not yet have a means of
quantifying the uncertainty surrounding these estimates. While uncertainty quantification in causal deep learning is
still relatively new, it is an important step in developing methods that have practical clinical applicability [Abdar et al.,
2021]. Other approaches such as Bayesian neural networks may lead to valid inference for testing for the significance
of the causal effect estimates. Further, the implementation is computationally intensive, owing to the intermediate steps
needed to calculate the marginal survival functions and pseudo-responses before training our deep neural network.
Future work will improve the efficiency of the proposed method. We also consider extending this approach to other
useful target values, such as restricted mean survival times, and to other diseases, such as renal disease [Feng et al.,
2019], which may also yield similar data structures. We will address these problems in subsequent work. Overall,
however, we demonstrate the performance of this approach on simulated and real-world data, highlighting its ability to
accurately estimate the causal effect in the presence of semi-competing risks. Our findings demonstrate the importance
of accounting for dependent censoring due to semi-competing risks when estimating the causal effect of treatment on
time-to-non fatal events.
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A Supplemental Simulation Information

A.1 Additional Simulation Details

Table A1 below lists the settings for our main simulation and sensitivity analysis.

Table A1: Simulation Settings

Setting Sample Size θ τ Censoring Rate Data Generating Mechanism

Main Simulations

1 500 0.5 0.2 0% Proportional Hazards, Linear Risk
2 1,000 0.5 0.2 0% Proportional Hazards, Linear Risk
3 500 2.0 0.5 0% Proportional Hazards, Linear Risk
4 1,000 2.0 0.5 0% Proportional Hazards, Linear Risk
5 500 0.5 0.2 50% Proportional Hazards, Linear Risk
6 1,000 0.5 0.2 50% Proportional Hazards, Linear Risk
7 500 2.0 0.5 50% Proportional Hazards, Linear Risk
8 1,000 2.0 0.5 50% Proportional Hazards, Linear Risk
9 500 0.5 0.2 0% Proportional Hazards, Non-Linear Risk

10 1,000 0.5 0.2 0% Proportional Hazards, Non-Linear Risk
11 500 2.0 0.5 0% Proportional Hazards, Non-Linear Risk
12 1,000 2.0 0.5 0% Proportional Hazards, Non-Linear Risk
13 500 0.5 0.2 50% Proportional Hazards, Non-Linear Risk
14 1,000 0.5 0.2 50% Proportional Hazards, Non-Linear Risk
15 500 2.0 0.5 50% Proportional Hazards, Non-Linear Risk
16 1,000 2.0 0.5 50% Proportional Hazards, Non-Linear Risk

Sensitivity Analysis

17 500 2.0 - 0% Proportional Hazards, Linear Risk, Gumbel Copula
18 1,000 2.0 - 0% Proportional Hazards, Linear Risk, Gumbel Copula
19 500 2.0 - 50% Proportional Hazards, Linear Risk, Gumbel Copula
20 1,000 2.0 - 50% Proportional Hazards, Linear Risk, Gumbel Copula

A.2 Data Generation Procedures

In the following, we detail the the data generation procedure for our simulation studies.

Proportional Hazards Model, Linear Risk Function

Given the formulation of the Clayton copula, we can express the bivariate surival function of the non-fatal, Ti1, and
fatal, Ti2, event times as

S(t1, t2) = Pr(Ti1 > t1, Ti2 > t2) =
[
S1(t1)

−θ + S2(t2)
−θ − 1

]− 1
θ ; 0 ≤ t1 ≤ t2,

where S1(t1) is the marginal survival function of the non-fatal event, S2(t2) is the marginal survival function of the
fatal event, and θ is the copula parameter which measures the dependence between the non-fatal and fatal event times.
In the first simulation, we generated non-fatal (Ti1) and fatal (Ti2) event times from marginal models specified by

log(Ti1/3) = −(β1Zi + β1Xi1 + β1Xi2) + εi1
log(Ti2/3) = −(β2Zi + β2Xi1 + β2Xi2) + εi2,

where Zi is a Bernoulli random variable with a success probability of 0.5, Xi1 and Xi12 are independent truncated
normal random variables with mean 1, variance 0.5, and truncation bounds of [0, 2], and (εi1, εi2) are correlated random
errors. To induce dependence between the event times, we simulate εi1 and εi2 from the Clayton copula model,

[
Pr (εi1 > t1)

−θ
+ Pr (εi2 > t2)

−θ − 1
]− 1

θ

,
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where εi1 and εi2 follow the extreme value distribution, i.e., Pr (εi1 > t1) = exp{− exp(t1)} and Pr (εi2 > t2) =
exp{− exp(t2)} [see Rotolo et al., 2013]. The data generation procedure is as follows:

1. Draw two independent uniform random variables, Ui1, Vi2 ∼ Unif(0, 1)

2. Set εi1 = log{− log(Ui1)}

3. Set Ui2 =
[(

V
−θ/(1+θ)
i2 − 1

)
× exp {θ exp(εi1)}+ 1

]−1/θ

4. Set εi2 = log{− log(Ui2)}
5. Draw a Bernoulli random variable, Zi, with success probability 0.5
6. Draw Xi1, Xi2 from independent N(1, 0.5) distributions with truncation bounds [0, 2]
7. Set Ti1 = 3× exp{−(β1Zi + β1Xi1 + β1Xi2) + εi1} with β1 = 1

8. Set Ti2 = 3× exp{−(β2Zi + β2Xi1 + β2Xi2) + εi2} with β2 = 0.2

9. Draw Ci, from a mixture of uniforms, where Ci ∼ ξiUnif(0, 1) + (1− ξi)Unif(1, 1.2) with ξi ∼ Bern(0.2)

10. Set Yi2 = min(Ti2, Ci), δi2 = I(Ti2 ≤ Ci), Yi1 = min(Ti1, Yi2), δi1 = I(Ti1 ≤ Yi2)

11. Repeat steps (1) - (10) for i = 1, . . . , n

12. Return {(Yi1, δi1, Yi2, δi2, Zi, Xi1, Xi2); i = 1, . . . , n}

Proportional Hazards Model, Non-Linear Risk Function

In this setting, we repeat the same data generation procedure as listed above, except

• In step (6), we draw Xi1, Xi2 from independent N(0, 0.5) distributions with truncation bounds [-1, 1]
• In step (7), we set Ti1 = 3× exp{−(β1Zi + β1X

2
i1 + β1X

2
i2) + εi1}

• In step (8), we set Ti2 = 3× exp{−(β2Zi + β2X
2
i1 + β2X

2
i2) + εi1}.

Sensitivity Analysis: Gumbel Copula

In this setting, we repeat the same data generation procedure as the first simulation setting, except in step (3), we set

Ui2 = exp

{
−
[
{− log (Vi2)}θ + [− log (Ui1)]

θ
] 1

θ

}

A.3 Sensitivity Analysis Results

Table A2 below gives the results of the sensitivity analysis where we compare the performance of our proposed method
under the assumed Clayton copula versus an alternative Gumbel copula. As shown, we do incur bias if our model is
misspecified for the data generating copula, with the ATE tending to be underestimated for the Gumbel copula. We
further see that we have a higher mean squared error across all settings when the data are generated from the Gumbel
copula, as compared to the Clayton copula.

Table A2: Average bias and mean squared error (MSE) for estimated vs. true ATE comparing our proposed method
under the Clayton versus Gumbel copula. Results are averaged over 50 independent datasets for each setting.

Simulation Settings Bias Mean Squared Error
n θ Censoring Clayton Gumbel Clayton Gumbel

500 2.0 50% 0.0057 -0.0837 0.0053 0.0076
500 2.0 0% 0.0069 -0.0771 0.0011 0.0068

1000 2.0 50% 0.0048 -0.0756 0.0037 0.0065
1000 2.0 0% 0.0030 -0.0750 0.0021 0.0062
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