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35 Appendix A: Notations

38 Let U(B,3,H) = (U;(B,H)T, Uy(B, 3, H)", Us(3, H)T)T be the estimating function of our
40 proposed method, where U;(B,H) = B — %XH7 Uy(B,3,H) = H%BTB — QPLMM(,B,H) —
%XTB, Us(B,H) = n" >0, W, where M(B,H) is defined in Section 2. Let
45 || M ||; be the 1-norm of an arbitrary matrix M, i.e. the maximum of the absolute column
sums. Let || M ||5 be the 2-norm of an arbitrary matrix M, i.e. the maximum singular value
50 of M. M®? = MM for an arbitrary matrix M. Let || v || be the 2-norm of an arbitrary

52 d-dimensional vector v = (vy, -+ ,v4)7, i.e. || v [|= (Z?:1 vH)V2 fOO(y, v) = 0f (y,v)/ov

and fO(y | v) = 0f(y | v)/ov, Let DO f(y,v) = <f%az 0 = (a1, 0a), Sar =

ov
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{(a1,...,q) : Zaj =rhr =2, v¥ =00

and a! = aglas! -+ ag!, where f(y,v)and
f(y | v) are defined in Section 4.

Denote Yx = var(x;) and X, = var(u;). Let

Z] 1Kby( )’Cb(ﬁo Jjo — )

fly|v) = ST K (Buliy — V) Oy [ v) = af(y | v)/av,
i) = R o < S
r(v) =7t ilicbmohjo —v),
Hv) = —nt il'cbwohjo —v),
=n" Z K, (y; — y)Kp(Bohjo — v),
o (y,v) = —n~ Z Ky, (y; — y)Ks(Bohjo — V).

Appendix B: Proof of Proposition 1

Proof. Based on model (1) in Section 2, we have

p'Sx = p ‘BB, +p 'S

Note || ¥y [1< sup; [A;] < M by the model setting, so we obtain p~' || ¥x — BB, |:i=
p '] Zu [li— 0 when p — 0. Now let WR?*WT be the singular value decomposition

of ¥x, where W = (wy,...,w,) and the first nonzero element of w; is positive for [ =
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1,...,p, and R* = diag(r{,...,r2) with r{ > r3 > ... > 12 > 0. We further define
W, = (wy,...,w,) and Rg = diag(r?, ... 77“2). Next, let the singular value decomposition

of By be By = AQV?, where Q is a ¢ x ¢ diagonal matrix with positive entries on the
diagonal ordered in decreasing order, and A is a ¢ x ¢ orthogonal matrix with w;'a; > 0,
l=1,...,q,and V is a ¢ x g orthogonal matrix. Then BOBg = VQ*VT. According to (A1)

and (A4) of Proposition 1 and following the same line in Jiang et al.Y, we can show

R?, W,,Q, A can be identified and || A — W, [|s— 0,p % Q- Ry |la— 0 when p — 0.

(1)
Now, we show By can be identified when p — co0. Since B = AQVT || A — W, [2— 0

and p~12 || Q — R, ||2— 0, we have

p71/2 H By — WqRqVT H2 = p71/2 || AQVT — WqRqVT H2

N

I Ap™2(Q =RV ||z + || (A = Wo)p™ "Ry V7 |l
< [ PTHQ=RY) 2+ (A = W) o] p77Ry |2

— 0. (2)

Note that the first nonzero element in each column of W, is positive, || A — W, [[2— 0
implies that the first element in each column of A that has nonzero limit is also positive
when p is sufficiently large. Hence by Condition (A1), we conclude that V is an identity
matrix. This couples with (1)), so By can be identified.

Now, we show Hy is identifiable. Firstly, we show p~'ufu; = O,(1). By Euj; < M in
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(A2), we have

- T
p u;u;

Thus,

p
Next, we show p~1 > X2 =
=1

p
-1 2
p Z X
=1

and equation , we obtain

Statistics in Medicine
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= I

sl
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So
e

~

p_luiTui = 0,(1).

O,(1). From

p
T _ T _ _ T
h;,p 1Bo Boh;y +p 1u;fui +2p~1 Z u;b;ohyo
=1
T —1pT -1..T

2h,,p "B, Bohy + 2p ulu;

P
p Z Xz21 = Op(1).
1=1

Moreover, by equation and , we have

_ T _
| p 1B0Xi —-p 1RquTXi ll2
p " Bo— WRy l2 72 || i ||

» 1/2
p_1/2 | Bo — W(R, [|2 (p_IEXi%)
=1

0.
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Furthermore, we get

1. 1T 1. _
h, — ZAI lim p lBOXi — ZAI lim p 1B0Tui
p—0 p—0

— 33! lim p ' R,W x; (6)

p—0

in probability because lim,, ,, p‘lBg u; = 0 in probability by (A3). Combining with (/1) and
@, h; is uniquely identified. So Hj is identifiable. Once Hj is unique, 3, is also unique

from Conditions (A1) and (C4). ]

Appendix C: Asymptotic Properties of ,@
Preliminary Lemma

Lemma 1. Under Conditions (C1)-(C2), we have

Slip|T(V)—7r(v)\ = 0,3b" +log(n)/ nbd},
up | #(v) () | = O, {¥ +log(m)Vbi#2}.

{
{

sup 600, v) = Sl = 0, {1+ 8+ gl b}
{

sup || ¢V (y,v) = fOy,v) | = O {b" + b +log(n)/ nbybd+2}.

y7V

Proof. The first equality and third equality are directly followed by the multivariate kernel
density estimation’s asymptotic property. Next we give the proof of the forth equality and
the proof of the second equality is similar and hence is omitted .

Denote V; = Bohjo and By = {(y,v) : |y| < M,v € [-M,M]* = R¥}, B, is the

complement of By, for any M > 0. Hereafter, we use C' for generic positive constants,
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wherever applicable. By Condition (C2), for a given n, there exists a M > 0 such that

sup [|FOD (y, V)| <0 + b, + log(n) /v b+, (7)

(y,v)eBY;

P{(y;. V) € (~o0, M = C =™} = 1— (17 + B)b,b™" — b,b*log(n)/y /nb,bt+2 and
P{(yj, V) € [=M o+ C 4 b o)1} < (07 + )b, b ! + byb* log(n)/y /b, b+,

Let I{z € A} be the indicator function of z for any set A. Moreover,

sup || E{o“Y (y. v)} |

(y,v)eBgf
= swp | B{=EK,,(y; —n)Kp(V; = V)} |

(y,v)er{
< oo sup ‘Ef{yj ely—by+b],(V;—v)e [O,b]d}‘

byb (y,v)eB§;

2¢C

< b 11— P{(y;,V;) € (-0, M — C ="'} + P{(y;, V;) € [-M + C + b, 0)*"}|
< C02° {bT + b+ log(n)/ nbybd”} : (8)

From equation and , we obtain

sup || ¢V (y,v) = fV(y,v) |= 0, {br + b7+ log(n) nbybd+2} (9)

(yvv)Eng

By example 38 of Pollard® and the Euclidean function class of Pakes and Pollard®, the class
of functions of z indexed by (b,y) of the form Qy,(2) = b 'K ((z —y)/b)(y € R,b > 0) is
Euclidean. And by Condition (C1) and Lemma (2.13) of Pakes of Pollard(1989), the class of

functions of w indexed by (b, v) of the form Qy(w) = b=2K((w —v)/b)(v € [-M, M]% b >
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0) is also Euclidean. Further, by Lemma (2.14) of Pakes and Pollard(1989), the class of
functions of (z, w) indexed by (b, y, v) of the form Jy , (2, W) = Ky(z —y)Ks(w—v)((y, V) €

Bar, b > 0) is Euclidean. Let s; = (y; —y)/b, and t; = (V; — v)/b, we obtain

oNOYTULT D WN =

12 E{|| K, (y; — K (Bohy — v) [|2}
14 _ j | K2 (55— KBV =) s £y, Vi)dysd Vs

18 - bd+2 f I K SJ),C®2( i) ll2 fy + bys;, v + bt;)ds;dt;
19 11

by bd+2

N
S
N

24 for some M > 0. By Theorem of 2.37 of Pollard®, we get

2 swp | 6%y, v) — B (y,v) ||=op{1og<n>/ nbybd+2}. (10)
30 (y,V)EBM

33 And we have

i I By, v)} = F(y,v) |
40 = || E{=Ky, (5 — 9)KolBohyo — v)} — SOy v) |
" = Vb [ KA F o+ by, v + byt~ SO wv) |

22 - ’_1/bflc(tj)f(y>" + bt;)dt; + O(by) — fOV (y,v)

p "Vb f RS v) + 1Oty + Y Y DO f(yv) (b

50 =2 OCESQJ

52 + 2 DO f(y, v)tsbydt; + O(b~'b)) — FOV(y, v)
53 aeSaq,r

>4 = O +1b) (11)
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uniformly over Byy.

Combining @D, and , we obtain

sup || ¢V (y,v) = fOV(y,v) |= O, {br + 07 + log(n)/ nbybd+2} .

Y,V

Lemma 2. Under conditions (C1)-(C2), we have

A~

sup |[fy | v)— fly|v)] = Op{br+b;+log(n)/ nbybd},

swnﬂW@ho<NWmVﬂ|=<%&“M@H%mw7mw”}
Y, v

Proof. From Lemma [}, we have

A~

S;l‘I,)|f(y|V)_f(y‘V)|

|t i)
W T W)
< Syug Cb(%Vzr(—v)f(y,V)' n S;l\}? f(y,V){;Q(E/‘Z)— f(v)}
() = SO v) — F@ 9| [ frv) — FP?
T "()7(v) S | )

= O,(b" + by, + log(n)/4/nb,b?).

Then the first equation of Lemma [2| holds. Similarly, the second equation holds by Lemma

[1] This completes the proof of Lemma [2] O

Lemma 3. Under Conditions (C1)-(C4) and the same other Conditions in Proposition 1,

1.7 T _ .. .. _ 1. T T
define nji = p 1hj0B0 u;, G =p lujTUi —Y(4:9), (1) = E(p IUJTUi),fji =p 1hioBo u;,

8
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and define V ,, to be the diagonal matriz consisting of the largest q eigenvalues of (pn) ' XTX,

that is, Vo, = pilﬁT]AB. We have the decomposition
h; —hyy = Vi;(X, 1) + Voi (X, 1) + V(X u) + Op(n~" +p7Y), (12)
where
Vi(X,u) = V,'n! En] fljﬁjz‘ = O,(p™"?),
j=1
Voi(X,u) = V;;zl ;ﬁ (Gi + &i) = Op{p~"*n""},
ValXow) = Vln Zh 0l9) = Oplp™ ),
Furthermore, we have
Vy,(X,u) = (p'ByBy)~ Z‘ibjouw +0,(n7h).
J
Therefore,
h; — hy = (p "By By)~ 2 bjous; + Vi(X,u) = O,(p~ % +n71), (13)

7=1

where V;(X,u) = Vy;(X,u) + V3;(X,u) + Op(n™' +p71) = 0,(n71).

Proof. By Condition (C3), we have ﬁ (3, H) = 0p(1). And Uy(B, 8, H) is asymptoti-
cally equivalent to
Us(B,H) = H(EBTB) ) (14)
p p
9
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By U1(1§, ﬁ) =0, UQ(]A3, ﬁ) — 0, substituting B = n~1XH into , we obtain

AN A

H(p'B"B) = [(pn)"'X"X]H. (15)

It’s easy to get that the estimated factor matrix H is the unit eigenvectors corresponding
to the ¢ largest eigenvalues of n x n matrix (pn) !XTX, p*1]A3T]A3 is the diagonal matrix
consisting of the first ¢ largest eigenvalues of (pn) 'X'X, and the factor loading B =

n~'XH. Then we complete the proof by Lemma 3 of Jiang et al.Z. O

Lemma 4. Under Conditions (C1)-(C3), we have

R’l = n71/2 Z{fr\l(ﬁOJ ﬁiu yl) v ﬁl(ﬁo; hi07 yl>} = Op(nl/prl + n71/2),
i=1

R, = ”71/22{m(ﬁ0, fli, yi) —m(By, hio, y5)} = Op(nl/zzf1 + n’l/z),
i=1

R; = n_l/QZ{ﬁl(IBo, hjo, i) — m(By, hio, y:)} = Op{br + b; + nl/%zr +
i=1

n1/262r + log(n)Q/(nl/Qbybd+2)}.

Proof. Firstly, we investigate the order of R;. From the consistency of flz and a Taylor

expansion, we have

hi—hip) (B — o)}

Rl = nil/Q Z{(aﬁl(ﬁ(]? hi7 yz)/ah;r
i=1

il ) "
+ Op[n 1/252 | *m(By, hi, y:)/(Ohohy) [n,—n 2]l s — by [13]

i=1
n ) {(aﬁl(ﬁo, by, y:)/0hy [, —n,)(hi — hz‘o)} +Op(n"P(p~t +17?))
i=1
= R+ 0, {n?(pt +n %)}, (16)

10
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where the second equality is followed from Lemma [3, Rip = Ry; + Rya, and

n

p
Rll = (np)ilﬂ Z((}ffl(ﬁo, hi7 yl)/ah;[‘ hi:hio)(pilBgBO)ilpilﬂ Z bjOuij’

i=1 Jj=1

R12 = n_1/2 Z {(afr\l(ﬂ07 hi) yz)/ahzT

i=1

hi=hi0)Vi<X7 11)} = OP {nl/Q(p_l + n_l)} .

The order of R is obtained by in Lemma
Now we consider Ry;. First note that E(Ry;) = 0, because h;, y; are independent with

u; and E(u;;) = 0. Further by Condition (A2) of Proposition, we have

ERS) = p 'E|(0m(By, hi,y:)/hf

p ®2
_ T 1 —
hi—hio) {(p 'ByBy)'p 1/221)3‘0%}

Jj=1

X (afr\l(/gm hia yz)/ah;F |hi=hiO)T:|

= O(p™).

The first equality holds because the cross product terms have mean 0 by the fact that u;;, uy

are independent for ¢ # k and have mean 0. Thus,
Ri = O,(p"?). (17)
Hence Rig = O,(n*/?p~! + n~/2). Combining with (L6), we have
R, = O,(n'*p~! +n~Y2).
Similarly, we have Ry = O, (n'/2p~! + n=1/2).

11
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Finally, we consider the order of R3. Since

R3 = nil/QZ {ﬁ\l(ﬁ07hi07yi) - m(/607hi07yi>}
=1

~

f (i | Bohio) f(i | Bohio)
e |70 | Boli) = (0 | Byfo)| © o
i=1 f (i | Bohio)

1O (i | Bobio) ® huo | Flyi | Bohio) — f(ui | Bobuo) | }
N f(@/i \ /Bohi())

= O,(b" + b, +log(n)/x/nbyb®2 + n' 2> + n'2b2 + log(n)?/(n'/?b,b"+?)

n-1/2 Zn: {f(01)<% | Bohio) ®hig  fOV(yi | Bohio) ® hio}

=1

+ Op(b" + b + log(n)/4/nby,b* + n'2p* + nl/2bir +1log(n)?/(n*?b,b%))

= O, {07+ +n'bY +n'/%6% + log(n)?/(n"/?b,b")} .

where the fourth equality is followed by Lemma and Lemma 4 in Ma and Zhu®, then the

proof of Lemma [4] is completed. O

Proof of Theorem 1

Firstly, we prove the consistency of B. By Ug(f‘), ﬁ) =0, Wehave n™* 3" | 1’?1(23, hs, y;) =0,
which implies =1 " | (B, hio, y;) = 0,(1) because h; — hy = O,(p™"? + n~') by Lemma
Bl Furthermore, by the uniform consistency of kernel estimation and sample mean, we have

E {m(,@,hio,yi)} = 0,(1). Thus,

i [f(m)(yi | Bhy) ® hm] _E [f(m)(yi | Bohio) ® hyg

f(y: | Bhio) f(i | Bohio) ] = 0p(1). (18)

12
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Then the condition (C4) implies that as a function of 3,

FO(y; | Bhy) @ hyg
f(yi | ﬂhz‘o)

(19)

oNOYTULT D WN =

has a non-singular derivative matrix in the neighborhood of its root 8,. Consequently,
14 is an invertible function in the neighborhood of 3,. Then by and the continuous

mapping theorem, we have B — By = 0,(1). The proof of Theorem 1 is completed. ]

21 Proof of Theorem 2

24 From the consistency of B in Theorem 1 and a Taylor expansion, we have

28 \/EU3(B,I/_\I) N n_1/2zr/fl(/aaﬁiayi)
i=1

31 = R Tvnvecl(B — By), (20)

35 where

40 R = n'2) By, h,u),
i=1

23 T = —nil Z afﬁ(ﬂ7 flh yl)/aU€Cl(ﬁ> ’ﬁ=ﬁ* :
44 =

50 where 8% is a point on the line connecting B and B,. Now we decompose R as R =
52 Ry + Ri — Ry + R3, where

55 RO = n_l/zZm(/gmhhyi)
i=1

13
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and Ry, Ry, Ry are defined in Lemma [d] By the Taylor expansion, we have

n

Ry = n'? Z m(By, hyo, y;) +n~ " Z(am(,@oa h;, y;)/h]

i=1 i=1

R ~
+ Op <" 1/252 I *m(By, hio, y:)/(Ohidhy ) - [l2]l (hs — hio) H§>
=1

hi—hio) (s — o)

n

n*1/2 Z m(ﬁ(), hi07 yz) + (np)il/2 Z(am</607 hia yz)/ah;r
=1

i=1

n

+ 0712 (0m(By, by, i) /oh

i=1

n71/2 Z m(/B()a hi07 yz> + ROO + Op{n71/2 + n1/2p71},
i=1

hi:hio)vi (X7 11) + Op{n1/2 (p_l + n—2)}

where h} is the point on the line connecting ﬁz and h;g,the second equality and third equality

are followed by Lemma [3, and

n

p
Roo = (np) ™" Y (6m(By, hy, y:) /Oh] |n,—n,,) (p ' BgBo)'p™* Y bjous;.

i=1 j=1

Now E(Rq) = 0 because E(u;;) = 0 and u;; is independent of h;,y;, and

E(RE)

= E{(np)? Z(am(ﬁm h;, y;)/oh;

i=1

p
= p 'E{(em(By, hi, i) /oh] |n,n,)(p By Bo) 'p Y2 ) bjous; 1
j=1

p
J— T —_— _
hi=hyo) (P By Bo) 'p 2 ) bjoui ¥
j=1

p
= pilE {(am(ﬁm h;, yl)/ahzT hz':hio){(pilBO Bo)ilpil/Q Z bjouij}®2(am(1807 h;, yl)/ahzT
j=1

= O(p™").

14
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Thus, we have Rgg = O,(p~?). Further, we have

Ry =n? Z m(B,, hio, ;) + Op{n=2 + n'/2p~t 4+ p=1/2}.
=1

Further, from Lemma [4 we obtain
Ri —Ry+Rs = Op{n'?p~" +n 2+ 0" + b + n'267 + n'?b* + log(n)?/(n'?b,b™2)} .
As a result, we have

R = Ry+R; —Ry+Rs

n

= o2 Z m(By, hio, yi)

=1

+ Op {nl/Qp_l T2y 4 b, + nl/sz’" + M2 4 log(n)z/(nl/zbybd”)} . (21)

Moreover, by the consistency of kernel estimators, h; — hyg = 0p(1) and 8- By = 0,(1), we

have T = Ty + 0,(1), where

FOY(y; | Byhio) ® hyg
f(yi | Bohio)

Ty = -E {a /avecl(,ﬂo)} .

Finally, by equations , and Ug(@, ﬁ) = 0, we obtain

\/ﬁvecl(,@ —By) = Ty'n 12 Z m(8y, hio, i)

i=1
+ Op {nl/prl + nfl/Q + b+ b; + n1/2bff + n1/262r + log(n)Q/(nl/QbyderQ)} )

15
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Under Condition (C3), we have

Op {nl/Qp*1 +n Y2+ b, + nl/zbff +n' 20+ log(n)Q/(nl/Qbybd”)} = 0,(1).

Thus, we conclude

Vveel(8 — By) > N(0,%p),

where Y5 = TglE{m(Bo,hig,yi) T(By, hio, y:) }(Ty ) Further, let [;(8) = log{ f(v:|Bhi)},

then we have m(ﬂ(bhiOin) = (‘ﬂé—? |,@:ﬂ07T0 _E{ﬁ,ﬁaﬁT |ﬁ ﬁo} E{m<ﬂ07 207y2> (BOahi(hyi)} =

{(al B) . 0)( |B— O)T} In addition, we know Ty = _E{aﬁaﬁT 5= O} _ E{(&l B) .
)(azaﬁ 8= O)T}. Hence, Y3 = Ty'. Thus, we obtain
Vivecl(B — By) 5 N(0, Ty ).
Finally, we complete the proof of Theorem 2. O

16
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Appendix D: Additional results in numerical studies

and real data analysis

D.1. Addtional results in numerical studies

Table S1: The number of outliers out of 1000 repeats and the corresponding ratio for the
proposed method (Proposed) and other five benchmarking methods, where cases (I, IT) and
(IT, II) represents (Xmodel I, Ymodel II) and (Xmodel II, Ymodel II), respectively.

D Case Proposed oracle SF-SIR SF-PHD SF-DR SF-SAVE
500  (LII)  #Outlier 56 79 51 51 30 51
Ratio 0.056 0.079  0.051 0.051 0.03 0.051
(ILIT)  #Outlier 62 83 3 30 43 25
Ratio 0.062 0.083  0.003 0.03 0.043 0.025
1000 (LII) #Outlier 6 0 60 60 9 60
Ratio 0.006 0.00 0.06 0.06 0.009 0.06
(ILIT)  #Outlier 6 0 3 23 35 24

Ratio 0.006 0.00 0.003 0.023 0.035 0.024

We use resampling method in Subsection 5.2.2 to estimate the standard errors for «;, j =

1,...,p, and summarize the ESE’s and the SSE’s in Table

Table S2: Comparison of SSE and ESE for &;,j7 = 1,...,10 under both Y models.
o Q2 Qs oy Qs Qg Qz Qs Qg Q10
Ymodel IIT  SSE  .171 .204 .171 .199 .195 .234 .200 .194 .222 117
ESE .103 .159 .176 .194 .183 .203 .180 .178 .175 .194
Ymodel IV SSE .115 .173 .130 .170 .190 .18 .181 .163 .116 .115
ESE .103 .157 .161 .147 .161 .135 .163 .162 .162 .144

D.2. Backgrounds on the GTEx data pre-processing

We list the backgrouds on the pre-processing of the GTEx data, whose full document could

be found at https://www.gtexportal.org/home/methods.

17
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e Expression Y: gene expression values for all samples from a given tissue were normal-

ized using the following procedure.

1. Genes were selected based on expression thresholds of ;0.1 RPKM in at least 10

individuals and 6 reads in at least 10 individuals.

2. Expression values were quantile normalized to the average empirical distribution

observed across samples.

3. For each gene, expression values were inverse quantile normalized to a standard

normal distribution across samples.

e Genotypes X: variants were imputed using 1000 Genomes Project Phase I, version 3.

The following post-imputation genotype filters were applied.

1. Call Rate Threshold 95%.
2. Info score Threshold 0.4.

3. Minor Allele Frequency = 1% (a tissue specific cutoff, as sample sets vary by

tissue.
e Covariates

1. Top 3 genotyping principal components.

2. A set of covariates identified using the Probabilistic Estimation of Expression
Residuals (PEER) method®, calculated for the normalized expression matrices
(described below). The number of PEER factors was determined as function of
sample size (n): 15 factors for n < 150, 30 factors for 150 < n < 250, and 35
factors for n > 250, based on optimizing for the number of eGenes discovered.
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3. Genotyping array platform (Illumina OMNI 5M or 2.5M array).

4. Sex.

oNOYTULT D WN =

10 D.3. Comparison of FUN-LDA scores between the proposed
13 method and SFADR

16 Figure[STshows the comparison plot of the identified eQTLs from SFADR and the proposed

18 method.
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47 Figure S1: Comparison of the identified eQTLs from SFADR and the proposed method
49 (Proposed), where the x-axis denotes the location of each SNP, and the y-axis denotes the
50 FUN-LDA functional annotation scores. SNPs are colored in red if identified as eQTLs by
51 Proposed only, in green if by SFADR only, in black if by both methods and in gray if not
52 by any method.

56 We present a similar finding of the 10 SNPs in cluster 4 in Figure[S3] There are relatively
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Figure S2: (a): DB index versus number of clusters; (b): Factor loading 2 versus factor
loading 1 for each cluster.

large functional scores across multiple tissues in cluster 4, with the top tissues including
left ventricle, skeletal muscle, right ventricle, lung, colonic mucosa, brain and liver. The
top three SNPs in this cluster are rs3131971, rs3131967 and rs61768165 with functional
scores greater than 0.2. Their cross-tissue functional scores among the top tissues are plot-
ted in Figure (b); SNP 1rs3131971 has strong signals across all tissues, while rs3131967
and rs61768165 have high functional scores on several top tissues, including skeletal mus-
cle, brain, colonic mucosa and Duodenum smooth muscle; SNPs rs3131971 and rs3131967
present strong associations in the GTEx samples, and are captured by both univariate
regression and the proposed method, while rs61768165 is identified only by the proposed

method; in contrast, because of limited power, SFADR only identifies rs3131967.
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39 Figure S4: Comparison of the eQTLs identified by the proposed method (Proposed), SFADR
40 and UR. (a) A Venn diagram of identified SNPs after the Bonferroni correction; (b) A
dot plot for comparison of the eQTLs identified by Proposed and SFADR, where the x-
43 axis denotes the location of each SNP, and the y-axis denotes the FUN-LDA functional
44 annotation scores and the dashed line represents 0.3 in the y-axis. SNPs are colored in red
45 if identified as eQTLs by Proposed only, in green if by SFADR only, in black if by both
methods and in gray if not by any method; (c¢) A dot plot for comparison of the eQTLs
identified by Proposed and UR. SNPs are colored in red if identified as eQTLs by Proposed
49 only, in blue if by UR only, in black if by both methods and in gray if not by any method.
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