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Abstract
Drawing inferences for high-dimensional models is challenging as regular asymptotic

theories are not applicable. This article proposes a new framework of simultaneous

estimation and inferences for high-dimensional linear models. By smoothing over

partial regression estimates based on a given variable selection scheme, we reduce

the problem to low-dimensional least squares estimations. The procedure, termed as

Selection-assisted Partial Regression and Smoothing (SPARES), utilizes data split-

ting along with variable selection and partial regression. We show that the SPARES

estimator is asymptotically unbiased and normal, and derive its variance via a non-

parametric delta method. The utility of the procedure is evaluated under various

simulation scenarios and via comparisons with the de-biased LASSO estimators, a

major competitor. We apply the method to analyze two genomic datasets and obtain

biologically meaningful results.
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1 INTRODUCTION

Consider the classical linear model:

𝒀 = 𝑿𝛽0 + 𝜺 (1)

where 𝒀 = (𝑦1, 𝑦2,… , 𝑦𝑛)
T is the 𝑛-vector of the response

variable; 𝑿 = (𝑋1, 𝑋2,… , 𝑋𝑝) is the 𝑛 × 𝑝 design matrix

that consists of 𝑝 covariate vectors 𝑋𝑗’s; 𝑿 can also be

written as 𝑿 = (𝐱T
1
, 𝐱T

2
,… , 𝐱T𝑛 )

T, where 𝐱𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑝)

represents the 𝑝-vector of covariates for the 𝑖-th individual;

𝛽0 = (𝛽0
1
,… , 𝛽0𝑝 )

T is the true parameter vector of interest; 𝜺 =

(𝜀1, 𝜀2,… , 𝜀𝑛)
T is the random noise vector and 𝐄(𝜺) = 𝟎𝑛.

In the traditional low-dimensional setting when 𝑛 > 𝑝, it is

well known that least squares estimator 𝛽𝐿𝑆 = (𝑿T𝑿)−1𝑿T𝒀

converges to a normal distribution centered at 𝛽0, which

provides exact estimation and inferences through explic-

itly computable p-values and confidence intervals. On the

other hand, when 𝑛 < 𝑝, the least squares estimation would

fail because the sample covariance matrix 𝚺̂ = 𝑿T𝑿∕𝑛 is

singular. However the 𝑛 < 𝑝 problem has become increasingly

relevant over the past two decades with the common avail-

ability of high-throughput data. The goal is often to find a

parsimonious model to explain the response in the presence

of massive covariates. A number of selection and estima-

tion methods including LASSO (Tibshirani, 1996), Adaptive

LASSO (Zou, 2006), SCAD (Fan and Li, 2001), ISIS (Fan

and Lv, 2008), among others, are available.

More recently, interest in the statistical community has

shifted to making reliable inferences in high-dimensional

models. Researchers have been trying to tackle the problem

from different angles. One direction is to make inferences

based on the selected model, i.e. the one that is chosen by a

given variable selection procedure. Wasserman and Roeder

(2009) proposes a multi-stage procedure that is based on

data splitting to separate selection and inference; Berk et

al. (2013) provides conservative confidence intervals for the
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selected variables by defining a set of candidate models; Lee

and Taylor (2014) and Lee et al. (2016) develop the con-

ditional asymptotics of the coefficient estimates, given the

selected model. The second direction is to estimate and make

inferences of the low-dimensional parameters in the high

dimensional models. Belloni et al. (2014, 2013) propose a

double selection procedure instead of a single selection step

to estimate and construct confidence regions for a regression

parameter of primary interest. Some other works propose esti-

mators and inferences based on penalized estimation. A typ-

ical example is the bias correction method based on LASSO

(Javanmard and Montanari, 2014; Van de Geer et al., 2014;

Zhang and Zhang, 2014), which provides point estimation

and confidence intervals for the model parameters. There is

also work by Ning and Liu (2017) that proposes hypothesis

tests and confidence regions based on the decorrelated score

function and test statistic.

These approaches have their merits and demerits. While

Wasserman and Roeder (2009), Lee and Taylor (2014),and

Lee et al. (2016) aim at exact inference for post-selection esti-

mates, it is confined to the selected model from the “first
step.” Thus, flaws in the initial model-selection step, cannot

be rectified in subsequent steps. The limitation of requiring

perfect model selection is improved in Belloni et al. (2014),

meanwhile, Wasserman and Roeder (2009) and Meinshausen

et al. (2009) recommend not performing selection and estima-

tion on the same data set. On the other hand, the performance

of the original de-biased LASSO estimator relies heavily on

the accuracy of estimating the precision matrix, i.e. 𝚺−1,

which plays an unduly crucial role in the estimation and infer-

ence subsequently. In Javanmard and Montanari (2014), they

relaxed the required accuracy of estimating 𝚺−1 (the matrix

𝑀 in their article), instead they set 𝑀 as to minimize the error

term and the variance of the target Gaussian limit.

In this article we propose a novel approach to con-

sistently estimate 𝛽0, provide p-values for all covariates,

and compute confidence intervals for any fixed subset of

parameters in high-dimensional linear models. The approach,

coined Selection-assisted Partial Regression and Smoothing
(SPARES), possesses asymptotic unbiasedness and asymp-

totic normality. Our idea takes advantage of the multisample-

splitting method in Meinshausen et al. (2009), which defines

a p-value for each predictor from each sample-splitting and

then aggregates these p-values to declare a single p-value per

feature. One possible criticism of this approach is that the

p-values and the aggregation have a certain arbitrary angle

to them: for example, features not selected in each sample-

split subsample are all assigned a p-value 1. In contrast, our

SPARES estimator utilizes partial regression to estimate 𝛽0

in each sample-split followed by a natural smoothing step. In

each data split, our procedure provides an estimate of 𝛽0𝑗 , 𝑗 =

1, 2,… , 𝑝, regardless of whether it was chosen by the selec-

tion procedure or not. Such idea of attaching variable 𝑗 to the

selected variables is also used in Belloni et al. (2014). Then we

average over the variation of the selection and random sample-

split to obtain a smoothed estimator. From the description,

SPARES is not a post model-selection method. Furthermore,

our approach avoids the need to estimate the high-dimensional

precision matrix.

Our approach stands out from the majority of related

works (Belloni et al., 2014; Javanmard and Montanari, 2014;

Ning and Liu, 2017; Van de Geer et al., 2014; Wasserman

and Roeder, 2009; Zhang and Zhang, 2014) in that it is nei-

ther restricted to a fixed realization of the selected model

nor limited to a certain selection procedure. The smooth-

ing accomplished through multisample-splitting ensures that

the 𝛽𝑗’s are asymptotically normal with negligible bias while

the standard errors can be readily estimated via a nonpara-

metric delta method (Efron, 2014). Consequently, inferences

can be made for each and every 𝛽0𝑗 , 𝑗 = 1, 2,… , 𝑝 without

having to confront the curse of dimensionality. As shown in

the data applications, our method is advantageous in giving

uncertainty measures (such as p-values) to all coefficients at

once.

The rest of this article is organized as follows. Section 2

describes the SPARES estimator and Section 3 develops its

theoretical properties. Section 4 shows how to draw inferences

through SPARES, including confidence intervals and signif-

icance tests. Section 5 discusses the extension to a subvector

of 𝛽0 with a fixed dimension. In Section 6 we conduct simu-

lations to examine the performance of SPARES and present

comparisons to de-biased LASSO methods. Section 7 com-

prises two real data applications and Section 8 summarizes

the merit of this work and pinpoints future research.

2 PROPOSED METHOD

Let [𝑝] = {1, 2,… , 𝑝} denote the set of integers for any

positive 𝑝. For a vector 𝑉 of length 𝑝, denote the entry cor-

responding to subscript 𝑗 ∈ [𝑝] by 𝑉𝑗 or (𝑉 )𝑗 ; for a square

matrix 𝚺 = 𝚺𝑝×𝑝, denote the entry corresponding to sub-

scripts 𝑗, 𝑘 ∈ [𝑝] by 𝚺𝑗𝑘 or (𝚺)𝑗𝑘 for clarity if necessary; for a

subset 𝑆 ⊂ [𝑝], denote the sub-design matrix 𝑋𝑆 = (𝑋𝑗)𝑗∈𝑆

and the sub-covariance matrix 𝚺𝑆 = (𝚺𝑗𝑘)𝑗,𝑘∈𝑆 . The projec-

tion matrix of 𝑋𝑆 is denoted as 𝐻𝑆 = 𝑋𝑆 (𝑋
T
𝑆
𝑋𝑆 )

−1𝑋T
𝑆

. The

active set of 𝛽0 is 𝑆0,𝑛 = {𝑗 ∈ [𝑝] ∶ 𝛽0𝑗 ≠ 0}.

One-time SPARE: We first introduce the estimation of

𝛽0 through Selection-assisted Partial Regression (SPARE)

on a single data-split. Given data 𝐷𝑛 = (𝑿, 𝒀 ) as in model

(1) and a generic selection procedure 𝜆 with parameter 𝜆,

we first split 𝐷𝑛 into two halves 𝐷1 and 𝐷2, with |𝐷1| =⌊𝑛∕2⌋, |𝐷2| = ⌈𝑛∕2⌉, the floor and ceiling of it. Denote the

subset of variables selected by 𝜆 on 𝐷2 as 𝑆 = 𝜆(𝐷2).

Next on 𝐷1 = (𝑿1, 𝒀 1), the partial regression estimator for
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𝛽0𝑗 , 𝑗 ∈ [𝑝] is

𝛽𝑗 =

{
(𝑿1

𝑆∪𝑗

T
𝑿1

𝑆∪𝑗)
−1𝑿1

𝑆∪𝑗

T
𝒀 1
}

𝑗
, (2)

which is the coefficient estimate corresponding to 𝑿1
𝑗 from

the least squares regression of 𝒀 1 on 𝑿1
𝑆∪𝑗

. Moreover, (2)

can be written as 𝛽𝑗 =
{
𝑿1

𝑗

T
(𝐼𝑛∕2 −𝐻1

𝑆⧵𝑗)𝑿
1
𝑗

}−1
𝑿1

𝑗

T
(𝐼𝑛∕2 −

𝐻1
𝑆⧵𝑗)𝒀

1 in the partial regression formulation.

Let 𝑆𝐶 = [𝑝] ⧵ 𝑆, we can write the one-time SPARE

estimator compactly as

𝛽(𝐷1, 𝑆) =

(
𝛽𝑆

𝛽𝑆𝐶

)
=

⎛⎜⎜⎝
(𝑿1

𝑆

T
𝑿1

𝑆
)−1𝑿1

𝑆

T
𝒀 1[

diag
{
𝑿1

𝑆𝐶

T
(𝐼𝑛∕2 −𝐻1

𝑆
)𝑿1

𝑆𝐶

}]−1
𝑿1

𝑆𝐶

T
(𝐼𝑛∕2 −𝐻1

𝑆
)𝒀 1

⎞⎟⎟⎠ .

(3)

The rationale for one-time SPARE to work is that given

a subset of important predictors 𝑆 ⊂ [𝑝] that is close to the

active set 𝑆0,𝑛, the partial regression estimator (2) would be

a fine estimator that is close to the truth 𝛽0𝑗 , for all 𝑗 ∈ [𝑝].

In fact, as long as 𝑆 ⊃ 𝑆0,𝑛, (2) would be an unbiased esti-

mator for 𝛽0𝑗 , regardless of 𝑗 ∈ 𝑆 or not. However, given the

large number of predictors, the one-time SPARE estimator is

highly variable, and heavily depends on the selected 𝑆 and the

specific split of data.

SPARES: To overcome the high variability, we intro-

duce its smoothed version, the SPARES estimator, which is

derived from multisample-splitting and repeated applications

of SPARE. For a large enough 𝐵 and each 𝑏 = 1, 2,… , 𝐵, we

first draw a sample of size 𝑛∕2, with replacement, from the

full data and denote it as 𝐷𝑏
1
. When 𝑛 is odd, we interpret 𝑛∕2

as ⌊𝑛∕2⌋. Let 𝐼1 = {𝑖1, 𝑖2,… , 𝑖𝑛∕2}, 1 ≤ 𝑖𝑘 ≤ 𝑛 be the col-

lection of indices of the observations in 𝐷𝑏
1
. Next, we collect

the observations that are not drawn in 𝐷𝑏
1

as 𝐷𝑏
2

with index

set 𝐼2 = [𝑛] ⧵ 𝐼1. Thus 𝐼1 ∪ 𝐼2 = [𝑛] and 𝐼1 ∩ 𝐼2 = ∅. Now

the application of SPARE by (3) is 𝛽𝑏 = 𝛽(𝐷𝑏
1
, 𝑆𝑏), where

𝑆𝑏 = 𝜆(𝐷
𝑏
2
); the final step is to average over all 𝛽𝑏’s,

𝛽SPARES =
1

𝐵

𝐵∑
𝑏=1

𝛽𝑏. (4)

In terms of the computational cost, each of the one-time

SPARE has the same time complexity as one run of LASSO

(𝑂(𝑛𝑝2)), and the cost of the SPARES procedure is 𝐵 times

that. With the help of parallel computing, we could largely

reduce the computation time by any desired factor 𝐾 depend-

ing on the computing tool. Thus the time complexity of

SPARES is 𝑂(𝐵𝑛𝑝2∕𝐾), a multiple of one-time LASSO pro-

portional to the number of re-samples. Empirically the total

time cost of the SPARES procedure is linear in 𝑝 log 𝑛.

In the rest of the article, we will always use 𝛽 for the one-

time SPARE estimator and 𝛽 for the SPARES estimator. Both

the one-time SPARE and the SPARES possess the asymptotic

unbiasedness and normality, but SPARES is much more stable

due to the smoothing effect from multisample-splitting, which

we will explore in depth throughout the rest of this article.

3 THEORETICAL RESULTS

3.1 One-time SPARE
We first establish the asymptotic property of the one-time

SPARE estimator under the following assumptions.

(A1). Randomness of Data: In model (1), 𝜀𝑖 ⟂ 𝐱𝑖; 𝜀𝑖’s are

i.i.d. random errors with mean zero, finite variance 𝜎2

and finite third absolute moment 𝐄|𝜀𝑖|3 ≤ 𝜌0; 𝑿 =

(𝐱T
1
,… , 𝐱T𝑛 )

T, 𝐱𝑖’s are i.i.d. mean zero sub-Gaussian

random vectors in 𝐑𝑝 with covariance matrix 𝚺𝑝×𝑝,

whose eigenvalues are bounded,

0 < 𝑐min ≤ 𝜆min(𝚺) ≤ 𝜆max(𝚺) ≤ 𝑐max < ∞.

𝐱𝑖’s also have finite component-wise third absolute

moments: ∀𝑗, 𝐄|𝑥𝑖𝑗|3 ≤ 𝜌1.

(A2). Order of Model Parameters: There exist constants

0 < 𝑐1 ≤ 1, 𝑐𝛽 > 0 such that 𝑠0 = |𝑆0,𝑛| = 𝑂(𝑛𝑐1 ),

max𝑗 |𝛽0𝑗 | ≤ 𝑐𝛽 .

(A3). Sure Screening Property: There exists a sequence

{𝜆𝑛}𝑛≥1 and constants 0 < 𝜂 < 1, 𝑐2 > 2𝑐1 such that|𝑆𝑛,𝜆𝑛
|∕𝑛 ≤ 𝜂, and

𝑃 (𝑆𝑛,𝜆𝑛
⊃ 𝑆0,𝑛) ≥ 1 − 𝑜(𝑛−𝑐2−1) as 𝑛 → ∞. (5)

Here 𝑆𝑛,𝜆𝑛
denotes the selected set of variables with

sample size 𝑛 and tuning parameter 𝜆𝑛.

Remark 1. The sure screening property is met in Fan and Lv

(2008) and Fan and Song (2010), and is guaranteed with the

right order of tuning parameter 𝜆 using LASSO (Bach, 2008).

More specifically, by Fan and Lv (2008) and Fan and Song

(2010), in addition to assumptions (A1) and (A2), the follow-

ing conditions are required for the sure screening property to

hold:

• Var(𝒀 ) = 𝑂(1), and for some 𝜅 ≥ 0 and 𝑐0, 𝑐3 > 0,

min𝑗∈𝑆0
|𝛽0𝑗 | ≥ 𝑐0∕𝑛

𝜅 and

min
𝛽𝑗≠0
||||cov(𝛽−1𝑗 𝒀 ,𝑿𝑗

)|||| ≥ 𝑐3;
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• log 𝑝 = 𝑂(𝑛𝜉) for some 0 < 𝜉 < 1 − 2𝜅.

When 𝜅 ≥ 1∕3, the sparsity requirement implied by Fan and

Lv (2008), 𝑠0 = 𝑜(𝑛𝜃) for some 0 < 𝜃 < 1 − 2𝜅, is stronger

than that in Javanmard and Montanari (2018), which is 𝑠0 =

𝑜(𝑛∕(log 𝑝)2). When 𝜅 < 1∕3, the comparison between the

two conditions are inconclusive. Please see conditions 1–4 in

Fan and Lv (2008) for more details.

In (A1), only a moment condition is required on the error

terms and a sub-Gaussian distribution for the covariates. For

comparisons, while the asymptotic normality of the whole

𝑝-dimensional de-biased estimator is not guaranteed for non-

Gaussian errors, a central limit theorem argument can be

used to obtain approximate Gaussianity for components of

fixed dimensions (Bühlmann et al., 2014). Thus the infer-

ence for any fixed low-dimensional parameter is still valid for

these types of methods under sub-Gaussian errors with finite

moment conditions. In (A2), there is no direct assumption on

the order of 𝑝, however, it is implied through (A3), a condi-

tion made directly on the selection method. One reason for

such an assumption, instead of more basic ones like the order

of 𝑝 or the covariance structure of the predictors, is that selec-

tion only plays an assistive role in our method; the estimation

part is in fact low-dimensional and therefore does not directly

require typical high-dimensional conditions.

Theorem 1. Given model (1) and assumptions
(A1)–(A3), consider the one-time SPARE estimator
𝛽 = (𝛽1, 𝛽2,… , 𝛽𝑝)

T as defined in (3). Denote 𝑚 = ⌊𝑛∕2⌋,
𝜎2
𝑗 = 𝜎2

(
𝑿1

𝑆∪𝑗

𝑇
𝑋1

𝑆∪𝑗
∕𝑚
)−1
𝑗𝑗

. Then ∀𝑗 ∈ [𝑝], as 𝑚 → ∞,

√
𝑚(𝛽𝑗 − 𝛽0𝑗 )∕𝜎𝑗 → 𝑁(0, 1). (6)

Remark 2. Note that we could always let the quantity of inter-

est in (6) to be zero whenever 𝑆0 ⊄ 𝑆, whose probability goes

to zero by (A3). Thus we only need to show the convergence

when the event 𝑆0 ⊂ 𝑆 holds.

The proof is presented in the Web Appendix A.

3.2 SPARES
Given the high volume of predictors in model (1), the

one-time estimator is expected to be noisy and unsta-

ble, especially for all the 𝑗 ∉ 𝑆0,𝑛 that are the major-

ity of the 𝑝-vector 𝛽0. In contrast, the SPARES estima-

tor is more stable as it smooths over both estimation

and selection. As the SPARES introduces extra depen-

dency between the selections 𝑆𝑏’s and the partial regres-

sion estimates, the following condition, which is stronger

than “sure screening,” is required for the desired theoretical

property.

(B3). Selection Consistency: There exists a sequence {𝜆𝑛}𝑛≥1
and constants 0 < 𝜂 < 1, 𝑐2 > 2𝑐1 such that |𝑆𝑛,𝜆𝑛

|∕𝑛 ≤
𝜂, and

𝐏(𝑆𝑛,𝜆𝑛
= 𝑆0,𝑛) ≥ 1 − 𝑜(𝑛−𝑐2−1) as 𝑛 → ∞. (7)

The selection consistency is often met under certain sparsity

conditions depending on the selection method (Zhao and Yu,

2006; Zhang, 2010). Take LASSO for example, the selec-

tion consistency property is guaranteed under 𝑠0 = 𝑂(𝑛𝑐1 )

and 𝑠0 log 𝑝 = 𝑜(𝑛𝑐3 ) for some 0 < 𝑐1 < 𝑐3 < 1, along with

irrepresentable condition and others.

Theorem 2. Given model (1) and assumptions (A1,A2,B3),
consider the SPARES estimator 𝛽SPARES = (𝛽1,… , 𝛽𝑝)

𝑇 as
defined in (4). For each 𝑗, there exist random variables
𝑍0

𝑗 ,Δ𝑗 , such that as 𝑛, 𝐵 → ∞,

√
𝑛(𝛽𝑗 − 𝛽0𝑗 ) = 𝑍0

𝑗 +Δ𝑗 , 𝑍0
𝑗 ∕𝜎𝑗 → 𝑁(0, 1), Δ𝑗 = 𝑜𝑝(1),

(8)

where 𝜎2
𝑗 = 𝜎2

(
𝚺−1

𝑆0,𝑛∪𝑗

)
𝑗𝑗

is bounded.

The proof is presented in the Web Appendix along with

some useful lemmas. The difficulties in deriving the theo-

retical properties of the SPARES estimator arise primarily

from the randomness of 𝑆𝑏’s, the selected subsets of variables

from subsamples of the original data. It is unclear whether

a standard bootstrap theorem can be applied to such ran-

dom sets since the uniform control that one obtains under

Donsker-type conditions in empirical process theory is absent.

Consequently, assumptions weaker than selection consistency

are not effective in controlling the randomness of the 𝑆𝑏’s.

Meanwhile our simulations suggest the validity of SPARES

when only (A3) holds instead of (B3). Under assumption (B3),

the asymptotic variance of ours converges to the best variance

of an unbiased estimator of 𝛽0𝑗 under the reduced model

𝒀 = 𝑿𝑆0∪𝑗
𝛽0
𝑆0∪𝑗

+ 𝜀. (9)

Such bound is smaller than the semiparametric information

bound that involves all 𝑝 covariates (Belloni et al., 2014; Van

de Geer et al., 2014). Nevertheless the sets of conditions for

the mentioned works and ours are quite different that they

might not be directly comparable.

4 INFERENCE BY SPARES

4.1 Estimator of standard errors
As shown in Theorem (2), 𝛽𝑗 converges to a normal distri-

bution whose variance depends on the unknown active set

𝑆0,𝑛. We propose an implementable approach to estimating

the standard error of 𝛽𝑗 using Theorem 1 of Efron (2014),
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see also Wager et al. (2014) and Theorem 9 of Wager

and Athey (2018). We denote the standard error estimator

as ŝe
𝐵
𝑗 . For the 𝑏-th bootstrap data, 𝐷𝑏

1
, we re-write the

index set as 𝐼𝑏
1

= (𝑖𝑏1, 𝑖𝑏2,… , 𝑖𝑏𝑛∕2). For 𝑖 = 1, 2,… , 𝑛

define 𝐼𝑏𝑖 = #{𝑖𝑏𝑘 = 𝑖}, the number of times that the

𝑖-th observation appears in the 𝑏-th re-sample. The vector

𝐼𝑏 = (𝐼𝑏1, 𝐼𝑏2,… , 𝐼𝑏𝑛) then follows a multinomial distribu-

tion with 𝑛∕2 draws on 𝑛 outcomes each having probability

1∕𝑛, whose mean vector and covariance matrix are

𝐼𝑏 ∼

(
1

2
𝟏𝑛,

1

2
𝐈𝑛 −

1

2𝑛
𝟏T𝑛𝟏𝑛
)

(10)

where 𝟏𝑛 the (column) vector of 𝑛 1’s and 𝐈𝑛 the 𝑛 × 𝑛 iden-

tity matrix. The nonparametric delta method estimator of the

standard error is then given by:

ŝe
𝐵
𝑗 =

(
𝑛∑

𝑖=1

ĉov
2

𝑖𝑗

)1∕2

, (11)

where

ĉov𝑖𝑗 =

𝐵∑
𝑏=1

(𝐼𝑏𝑖 − 𝐼⋅𝑖)(𝛽
𝑏
𝑗 − 𝛽𝑗)∕𝐵 (12)

is the bootstrap covariance between 𝐼𝑏𝑖 and 𝛽𝑏
𝑗 , and 𝐼⋅𝑖 =∑𝐵

𝑏=1 𝐼𝑏𝑖∕𝐵.

As emphasized in Efron (2014), the merit of smoothing

is to convert a “jumpy” selection-based estimator 𝛽𝑏 into a

smooth version 𝛽. It is pointed out in Wager et al. (2014) that

the nonparametric delta method standard error estimator tends

to be biased upwards when the number of bootstraps is small.

They proposed an alternative bias-corrected version of (11):

ŝe
𝐵
𝑈 =

{
(ŝe

𝐵
)2 −

𝑛

2𝐵2

𝐵∑
𝑏=1

(𝛽𝑏 − 𝛽)2

}1∕2

(13)

Note that (13) converges to (11) as 𝐵 → ∞. The original

version (11) would require 𝐵 = 𝑂(𝑛1.5) to reduce Monte

Carlo noise down to the level of sampling noise, while (13)

only requires 𝐵 = 𝑂(𝑛). Moreover, our experience shows that

the unbiased version does converge to the empirical standard

error faster than the original one.

4.2 Confidence intervals and P-values
Following previous discussion, the asymptotic 1 − 𝛼 confi-

dence interval for each 𝛽0𝑗 is given by

(
𝛽𝑗 − Φ−1(1 − 𝛼∕2)ŝe

𝐵
𝑗 , 𝛽𝑗 + Φ−1(1 − 𝛼∕2)ŝe

𝐵
𝑗

)
, (14)

where Φ−1 is the inverse CDF of the standard normal distri-

bution. The p-value of testing 𝐻0 ∶ 𝛽𝑗 = 0 is

2 ×

{
1 − Φ

(|𝛽𝑗|∕ŝe𝐵𝑗 )} . (15)

5 EXTENSION OF SPARES TO A
SUBVECTOR 𝜷 (𝟏) WITH A FIXED
DIMENSION

It is natural to extend our procedure to a subvector 𝛽(1) of 𝛽0

with a fixed dimension 𝑝1 ≥ 2. Without loss of generality,

assume that 𝛽(1) = 𝛽0
𝑆(1)

= (𝛽0
1
, 𝛽0

2
,… , 𝛽0𝑝1

)T with |𝑆(1)| = 𝑝1.

Accordingly, we modify the SPARE estimator in (2) to be

𝛽𝑏
𝑆(1)

=

{(
𝑿𝑏

𝑆𝑏∪𝑆(1)

T
𝑿𝑏

𝑆𝑏∪𝑆(1)

)−1
𝑿𝑏

𝑆𝑏∪𝑆(1)

T
𝒀 𝑏
}

𝑆(1)
, (16)

which gives a corresponding SPARES estimator for 𝛽(1):

𝛽(1) =
1

𝐵

𝐵∑
𝑏=1

𝛽𝑏
𝑆(1)

. (17)

The corresponding extension of Theorem 2 is stated

below.

Theorem 3. Consider model (1) under assumptions
(A1,A2,B3), and a fixed finite subset 𝑆(1) ⊂ {1, 2,… , 𝑝} with|𝑆(1)| = 𝑝1. Let 𝛽(1) be the SPARES estimator for 𝛽(1) = 𝛽0

𝑆(1)

as defined in (17). There exist random vectors 𝑍(1),Δ(1), such
that as 𝑛, 𝐵 → ∞,

√
𝑛(𝛽(1) − 𝛽(1)) = 𝑍(1) + Δ(1), 𝚺(1)−1∕2𝑍(1) → 𝑁(0, 𝐈𝑝1 ),

Δ(1) = 𝑜𝑝(𝟏𝑝1 ), (18)

and 𝚺(1) = 𝜎2
(
𝚺−1

𝑆0,𝑛∪𝑆
(1)

)
𝑆(1)

is positive definite.

Remark 3. There is also a direct extension of the one-

dimensional nonparametric delta method for estimating the

variance-covariance matrix of 𝛽(1), 𝚺̂(1) = ĈOV
T

(1)
ĈOV(1),

where

ĈOV(1) =

(
ĉov

(1)

1
, ĉov

(1)

2
,… , ĉov

(1)

𝑛

)T
(19)

ĉov
(1)

𝑖 =

𝐵∑
𝑏=1

(𝐼𝑏𝑖 − 𝐼⋅𝑖)(𝛽
𝑏
𝑆(1)

− 𝛽(1))∕𝐵. (20)

The extension to a subvector 𝛽(1) with a fixed dimension

allows us to derive confidence regions for a subset of variables

of interest and test for contrasts of certain predictors.
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6 SIMULATION STUDIES

We designed all simulation scenarios based on the linear

model (1) with 𝑿 = (𝑋1,… , 𝑋𝑝) = (𝐱T
1
,… , 𝐱T𝑛 )

T, 𝜺 =

(𝜀1,… , 𝜀𝑛)
T, assuming 𝐱𝑖’s i.i.d. ∼ 𝑁(𝟎𝑝,𝚺𝑝×𝑝) and 𝜀𝑖’s

i.i.d. ∼ 𝑁(0, 1). A total of 200 simulated datasets were gen-

erated for each simulation configuration.

We first illustrate the advantage of using SPARES over

one-time SPARE. We set sample size 𝑛 = 200, number of

predictors 𝑝 = 300, and 𝑠0 = 3 nonzero signals with 𝚺𝑝×𝑝

being the identity matrix. As shown in Web Table 1, over 200

replications, the biases of both approaches are negligible on

average, but the standard errors of SPARES are much smaller

than those of one-time SPARE, which results in higher power

and more accurate inferences. Thus we recommend SPARES

in practice.

In Section 6.1, we explore the performance of SPARES

under various settings, including different correlation struc-

tures of 𝑿, strong and weak signals strength, and stress tests

with ultrahigh dimensionality. In Section 6.2, we compare

SPARES with two de-biased LASSO estimators, LASSO-Pro

from Van de Geer et al. (2014) and SSLASSO from Javanmard

and Montanari (2014).

6.1 Performance of SPARES under various
settings
We will go over three examples, all of which assume the linear

model (1) as truth, but with different parameters.

Example 1. Let sample size 𝑛 = 150, number of predic-

tors 𝑝 = 300, number of nonzero signals 𝑠0 = 5, and a fixed

realization of 𝛽0 where 𝑆0,𝑛 = {66, 97, 145, 166, 173} was a

fixed realization of 𝑠0 draws without replacement from [𝑝] and

𝛽0
𝑆0,𝑛

= (1, 0.6,−1,−0.6, 1). We examined three commonly

used correlation structures: identity; first-order autoregres-

sive (AR(1)) with 𝜌 = 0.5; compound symmetry (CS) with

𝜌 = 0.5. LASSO was used as the selection procedure 𝜆,

while 𝜆 was chosen by cross-validation. As summarized in

Table 1, for both nonzero signals and noise variables, the bias

of SPARES estimator was well controlled while the SE esti-

mates were very close to the empirical ones. Consequently, the

coverage probabilities of the 95% confidence intervals were

at the nominal level. In addition, the variable selection fre-

quency based on p-values of SPARES was higher for true

signals and much lower for noise variables compared to selec-

tion by LASSO. Notice that for identity and AR(1) correlation

structures, the selection frequencies of the true signals were

uniformly close to 1, suggesting “sure screening” condition

was met and thus the better coverage probabilities. Therefore

the simulation result validates our claim that SPARES works

under “sure screening” assumption.

Example 2. Let 𝑛 = 150, 𝑝 = 500, and

• Example 2.1: 𝑠0 = 15, 𝚺𝑝×𝑝 = diag(Σ1,… ,Σ10), where

each 𝚺𝑘 was 50 × 50 with an AR(1) correlation structure,

(𝚺𝑘)𝑖𝑗 = (0.1𝑘 − 0.1)|𝑖−𝑗|, 𝑘 = 1, 2,… , 10. The active set

𝑆0,𝑛 was a fixed realization of 𝑠0 draws without replace-

ment from [𝑝], and 𝛽0
𝑆0,𝑛

was a fixed realization of 𝑠0 i.i.d.

Uniform 𝑈 [0, 2] variables;

• Example 2.2: 𝑠0 = 20, 𝚺𝑝×𝑝 = diag(Σ1,… ,Σ10), where

each 𝚺𝑘 ∶ (𝚺𝑘)𝑖𝑗 = (0.3)|𝑖−𝑗|. The non-zero signals are

assigned effect sizes 𝛽0
50𝑘−45

= 0.2𝑘, 𝛽0
50𝑘−15

= −0.2𝑘 for

𝑘 = 1, 2,… , 10.

We applied SPARES with LASSO (10-fold cross vali-

dation to choose 𝜆) as the model selection procedure, and

reported the simulation averages of 𝛽SPARES, along with confi-

dence intervals, mean biases, coverage probabilities, and type

I errors for testing 𝐻0 ∶ 𝛽0𝑗 = 0. The results are summarized

in Web Figures 1 and 2. For the true signals 𝑗 ∈ 𝑆0,𝑛, the pro-

posed method worked well regardless of the correlation, with

negligible biases and close-to-nominal coverage probabilities.

On the other hand, the biases for the estimates of noise vari-

ables were enlarged when they were highly correlated with

non-zero signals. The estimated coverage probabilities and

type I errors deviated more from the nominal level conse-

quently. The type I error became negligible when the effect

size was over 1. Coupled with an observation that the bias

was larger for the noise variables that were correlated with

moderate non-zero signals, our takeaway was that the magni-

tude of bias was a combination of selection errors as well as

correlations with true signals.

Example 3 serves as a “stress test” to illustrate how

SPARES handle large datasets with a number of “weak

signals.” We let 𝑛 = 500, 𝑝 = 1000, 5000 and 10,000,

and 𝑠0 = 205. Within the 205 non-zero signals, 5 are of

sizes 0.2, 0.4, 0.6, 0.8, 1, and the rest 200 are fixed random

realizations from the uniform distribution 𝑈 [(−0.2,−0.1) ∪

(0.1, 0.2)]. The multivariate normal distribution with mean

zero and the AR(1) correlation structure with 𝜌 = 0.5 is

applied to generate 𝑿’s. As summarized in Table 2, the

SPARES estimator remains nearly unbiased for both strong

and weak signals. The coverage probabilities of strong signals

are close to the nominal level 0.95, while those for weak and

zero signals are above 0.9 on average. This demonstrates that

SPARES is rather reliable and robust even for large datasets

with a number of weak signals.

6.2 Comparisons with de-biased LASSO
estimators
We compared SPARES with different versions of de-biased

LASSO estimators in Example 4, where the active set 𝑆0,𝑛 ⊂

{1, 2,… , 𝑝} was a fixed random realization with size |𝑆0,𝑛| =
5, and 𝛽0

𝑆0,𝑛
was a fixed realization of 5 i.i.d. random variables
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TABLE 1 Performance of SPARES under simulation example 1 with three correlation structures: Identity, AR(1), and Compound Sym-

metry (CS). The last column “-” represents the averages for all noise variables. Freq 𝜆 is the selection frequency by LASSO; Freq SPARES
is the selection frequency by p values of SPARES with 0.1 FDR control; Empirical SE is the empirical standard error.

Index 𝑗 66 97 145 166 173 -
𝛽0
𝑗 1 0.6 −1 −0.6 1 0

Identity Bias (×10−3) 16 −1 −2 2 7 −1

Average ŝe
𝐵

𝑗
0.110 0.111 0.109 0.111 0.110 0.111

Empirical SE 0.117 0.109 0.104 0.113 0.124 0.109

Cov Prob (%) 91.5 94.0 95.0 96.0 91.5 94.8

Freq 𝜆 1 0.956 1 0.965 1 0.059

Freq SPARES 1 0.97 1 0.99 1 0.003

AR(1) Bias (×10−3) −6 2 7 10 −1 0

Average ŝe
𝐵

𝑗
0.115 0.116 0.114 0.115 0.116 0.115

Empirical SE 0.125 0.108 0.114 0.120 0.108 0.114

Cov Prob (%) 93.5 96.0 95.0 92.5 96.5 94.5

Freq 𝜆 0.998 0.938 1.000 0.929 1.000 0.046

Freq SPARES 1 0.925 1 0.905 1 0.001

CS Bias (×10−3) −12 −30 6 7 −14 −7

Average ŝe
𝐵

𝑗
0.151 0.149 0.152 0.150 0.150 0.154

Empirical SE 0.165 0.161 0.168 0.162 0.163 0.154

Cov Prob (%) 92.5 91.5 89.4 92.0 92.0 94.5

Freq 𝜆 0.986 0.742 0.958 0.651 0.988 0.045

Freq SPARES 1 0.775 1 0.795 1 0.005

from uniform 𝑈 [0.5, 2]. The size of the active set is reduced

to 5 for clearer comparison and display of the result. Three

correlation structures are considered for completeness:

• Example 4.1: Identity 𝚺𝑝×𝑝 = 𝐈𝑝×𝑝;

• Example 4.2: AR(1) 𝚺𝑝×𝑝 ∶ (𝚺)𝑗𝑘 = (0.8)|𝑗−𝑘|;
• Example 4.3: Compound symmetry 𝚺𝑝×𝑝 ∶ (𝚺)𝑗𝑘 = 0.5.

The estimated biases and coverage probabilities were shown

in Table 3 and Web Figure 3, where LASSO-Pro was

proposed in Van de Geer et al. (2014) and SSLASSO was from

Javanmard and Montanari (2014).

Across the board, SPARES gave less biased point esti-

mates for the true signals, and provided reliable confidence

intervals around the nominal level for both true signals and

noise variables. In contrast, both LASSO-Pro and SSLASSO

had visible discrepancies between the true signals and noise

variables. While LASSO-Pro had lower-than-nominal level

coverages for the true signals, it performed even worse in

TABLE 2 Performance of SPARES under simulation Example 3. Tables from top to bottom correspond to 𝑝 = 1000, 5000 and 10,000.

Last two columns are averages over small and zero signals.

Index 36 272 376 568 915 Small 0’s
𝛽0 0.2 0.4 0.6 0.8 1.0 0.0
𝑝 = 1000

Bias 0.013 −0.006 0.014 −0.002 −0.014 0.005 0.004

Avg SE 0.093 0.093 0.093 0.093 0.093 0.093 0.093

Emp SE 0.099 0.098 0.098 0.093 0.097 0.094 0.094

Cov Prob 0.960 0.920 0.930 0.930 0.940 0.907 0.908

Sel freq 0.045 0.418 0.930 1.000 1.000 0.021 0.002

𝑝 = 5000

Bias −0.005 0.009 0.010 0.003 0.004 0.004 0.000

Avg SE 0.093 0.093 0.095 0.094 0.094 0.094 0.094

Emp SE 0.092 0.096 0.098 0.099 0.112 0.095 0.096

Cov Prob 0.960 0.930 0.960 0.910 0.920 0.905 0.935

Sel freq 0.022 0.390 0.906 0.999 1.000 0.015 0.001

𝑝 = 10000

Bias −0.003 0.003 0.006 0.008 −0.025 0.005 0.000

Avg SE 0.094 0.094 0.094 0.095 0.094 0.095 0.095

Emp SE 0.094 0.096 0.101 0.103 0.093 0.096 0.097

Cov Prob 0.950 0.940 0.930 0.930 0.950 0.902 0.939

Sel freq 0.015 0.313 0.860 0.996 1.000 0.012 0.000
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TABLE 3 Comparisons of SPARES with LASSO-Pro and SSLASSO under Example 4. The rows consist of 5 true signals and the average

of zero signals. In each cell, top number is for SPARES; middle number is for LASSO-Pro; lower number is for SSLASSO.

Example 4.1 Example 4.2 Example 4.3
Index 𝛽0

𝑗 Bias (×10−3) Cov Prob (%) Bias (×10−3) Cov Prob (%) Bias (×10−3) Cov Prob (%)
−1.77 90.5 10.43 92.5 −0.35 96.5

−81.78 70.5 −44.09 86 −38.43 92.5

78 1.07 −79.33 90.5 −101.95 84.5 −113.72 92.5

−1.04 96.5 9.70 92 2.44 95

−80.28 76 −44.54 87 −32.42 89

102 1.04 −77.72 93.5 −99.66 82 −105.60 92

−1.62 94 15.58 93.5 −4.67 96.5

−89.43 71.5 −47.57 88.5 −40.39 91.5

242 1.19 −88.69 87.5 −104.25 84 −115.51 92

−0.14 94 2.98 96.5 2.01 95

−75.87 81 −41.40 88 −30.61 91

359 1.43 −80.91 94 −98.14 85 −107.5 89

−3.57 95.5 0.54 93 5.88 91.5

−84.86 75 −60.80 88 −24.20 86.5

380 0.62 −85.73 89.5 −111.11 81.5 −99.26 90.5

−0.46 95 0.65 94.82 3.26 95.16

−0.40 97 3.16 96.46 5.24 96.34

− −0.27 99.5 4.15 99.69 26.88 99.94

Example 4.1, due to the fact that the node-wise LASSO was

not ideal when estimating the precision matrix when𝚺𝑝×𝑝 was

an identity matrix. As far as SSLASSO was concerned, the

confidence intervals for the noise variables were too conser-

vative, while the coverages for the true signals in Example 4.2

were considerably low.

In summary, the performance of SPARES aligned well

with the theoretical expectations, especially for the active set

𝑆0,𝑛. We did observe, however, some false-positives when

the noise variables were highly correlated with those in the

active set. Nevertheless, compared with the de-biased LASSO

methods, SPARES showed substantial improvement by pro-

viding less biased estimates with more accurate coverage

probabilities close to the nominal level.

7 DATA EXAMPLES

7.1 Riboflavin production data
We applied our method to analyze a dataset on riboflavin

(vitamin B2) production by Bacillus subtilis, made public by

Bühlmann et al. (2014) and analyzed by Meinshausen et al.

(2009), Bühlmann et al. (2014), Van de Geer et al. (2014) and

Javanmard and Montanari (2014). The data contained 𝑛 = 71

samples and 𝑝 = 4088 covariates, measuring the logarithm

of the expression levels of 4088 genes. The response variable

was the logarithm of the riboflavin production rate.

We related the response to the gene expressions using

the linear model (1). We checked the collinearity among

the genes, and their pairwise correlations are plotted in the

Web Figure 4. We further normalized the genes so that

their effect sizes are comparable. The LASSO was used as

the variable selection method, and we let 𝐵 = 1000 be

the number of re-samples. Assisted by the LASSO selec-

tion, we derive the SPARES estimator 𝛽, the standard error

estimates as in (11), and the p-values as in (15). With a

standard Bonferroni correction to adjust FWER to the 5%

significance level, we identified four genes that were sig-

nificantly associated with the response, namely YCKE_at,

XHLA_at, YXLD_at, and YDAR_at. If the FWER were set

at 10%, one more gene, YCGN_at, would be included. The

confidence intervals for the top 5 genes are displayed on

the right panel of Web Figure 5, with the point estimates

shown in Table 4. By contrast, the results from other meth-

ods were less informative. For example, with a 5% FWER,

the multisample-splitting method proposed in Meinshausen

et al. (2009) identified YXLD_at, Van de Geer et al. (2014)

claimed none, and Javanmard and Montanari (2014) only

detected YXLD_at and YXLE_at, which are highly correlated

themselves.

Our results had biological interpretations that are con-

firmed by the literature. It was reported that XHLA_at was

involved in cell lysis upon induction of PbsX (Kunst et

al., 1997), increasing the capability to produce recombi-

nant extracellular digestive enzymes that results in riboflavin

production (7.04 in Mander and Liu (2010)). YCKE_at,

formally named as bglC, was also responsible for the pro-

duction of certain enzyme, Aryl-phospho-beta-D-glucosidase,

and had extracellular protein secretory functions (Schallmey

et al., 2004). YXLD_at, together with YXLE_at, was

important for negative regulation of sigma Y activity

(Tojo et al., 2003).
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TABLE 4 Analysis of the riboflavin genomic data. 𝛽 is the SPARES estimator; 𝑝-values are adjusted by Bonferroni correction (multiplied

by 𝑝). The top 10 and bottom 10 most/least significant genes are tabulated.

Gene 𝛽 SE Adjusted 𝑝-value
YCKE_at 0.37 0.06 < 0.001

XHLA_at 0.48 0.09 < 0.001

YXLD_at −0.53 0.11 0.01

YDAR_at −0.28 0.06 0.01

YCGN_at −0.31 0.07 0.09

RPLJ_at −0.26 0.06 0.10

YQIZ_at −0.25 0.06 0.13

YCDH_at −0.27 0.07 0.15

SPOIISA_at 0.25 0.06 0.35

YRPE_at −0.25 0.07 0.63

. . .

YXAL_at −2 × 10−4 0.09 1

XPT_at −1.6 × 10−4 0.07 1

YOZG_at −2.9 × 10−4 0.14 1

YOJB_at 1.7 × 10−4 0.10 1

YBCL_at −1.8 × 10−4 0.11 1

YJAX_at 1.3 × 10−4 0.09 1

YOSE_at 1.1 × 10−4 0.11 1

YUNA_at 4.9 × 10−5 0.07 1

YISO_at 1.7 × 10−5 0.08 1

7.2 Multiple myeloma genomic data

We analyzed a cancer genomic data with 𝑛 = 163 multiple

myeloma patients. Our interest lay in detecting the association

between the 𝛽-2 microglobulin (B2M) and gene expressions.

B2M is a small membrane protein produced by malignant

myeloma cells, indicating the severity of disease. Identify-

ing genes that are related to B2M is clinically important as it

helps construct molecular prognostic tools for early diagnosis

of disease.

We first used KEGG (Carlson, 2015) to identify gene

pathways that are related to cancer development and pro-

gression, as well as some identified upstream genes that

may regulate B2M. In total, there were 𝑝 = 789 unique

probes belonging to these pathways. We took the logarithm

transformation for both the B2M test value and the gene

expressions as our response and predictors for model (1). We

applied SPARES with LASSO as the selection method, and

𝐵 = 500 re-samples were drawn for smoothing.

Our method offers additional biological insight compared

to the other methods. As shown in Table 5, it identified two

significant probes at 5% FWER after the Bonferroni correc-

tion, namely 204171_at (RPS6KB1) and 202076_at (BIRC2).

In contrast, the two de-biased LASSO estimators identified no

significant probes. Both detected genes are highly associated

with malignant tumor cells: RPS6KB1, member of the ribo-

somal protein S6 kinase (RPS6K) family, altercation/mutation

has been related to numerous types of cancer including breast

cancer, colon cancer, non-small-cell lung cancer, and prostate

cancer (Sinclair et al., 2003; Van der Hage et al., 2004;

TABLE 5 Analysis of the Multiple Myeloma genomic data. The top 6 and bottom 6 most/least significant genes are tabulated.

Gene 𝛽 SE Adjusted 𝑝

204171_at (RPS6KB1) −0.20 0.042 0.002

202076_at (BIRC2) −0.17 0.041 0.037

220414_at −0.20 0.05 0.14

220394_at −0.18 0.05 0.59

206493_at −0.19 0.06 0.63

209878_s_at −0.17 0.05 0.69

. . .

207924_x_at 5 × 10−4 0.07 1

205289_at −4.4 × 10−4 0.06 1

203591_s_at 4.7 × 10−4 0.07 1

224229_s_at 2.4 × 10−4 0.06 1

217576_x_at 2.5 × 10−4 0.07 1

201656_at 2.5 × 10−4 0.08 1

3559
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Slattery et al., 2011; Zhang et al., 2013; Cai et al., 2015);

BIRC2, whose encoded protein is a member of inhibitors of

apoptotic proteins (IAPs) that inhibits apoptosis by binding to

tumor necrosis factor receptor-associated factors TRAF1 and

TRAF2 (Saleem et al., 2013), has been related to lung cancer

and lymphoma (Wang et al., 2010; Rahal et al., 2014).

8 CONCLUSION

We have proposed a new framework of simultaneous esti-

mation and inference for the high-dimensional linear models

(1), and shown the proposed SPARES estimator is asymp-

totically unbiased and normal, giving accurate and reliable

component-wise inferences. The key improvement, compared

to the existing works, lies in these aspects. SPARES con-

verts the high-dimensional problem of estimating the 𝑝-vector

𝛽0 to the low dimensional case by Selection-assisted Par-

tial Regression. Thus we avoid the curse of dimensionality

on estimation and inference. SPARES is applicable to gen-

eral selection methods including LASSO, SCAD, screening,

boosting, among others, as long as they possess the desired

selection consistency property, which is likely to be loos-

ened to sure screening property in practice as suggested in the

extensive simulation studies. SPARES is not sensitive to the

tuning parameter 𝜆 in 𝜆, since it is not directly used for esti-

mation, but only involved in the selection. Hence, our method

has minimal requirements on extra model parameters and is

robust toward selection of tuning parameters. This frame-

work can be naturally extended to other non-linear regression

models, such as generalized linear models and Cox models,

through two general steps. First, we perform data-splitting on

the original data, and then do selection on one half of the data

followed by fitting low-dimensional model on the other half

of the data using partial regression; Second, we repeat the

first step many times and average over all estimates to form

a smoothed estimator. We will report this work elsewhere.
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