Web-based Supplementary Materials for Drawing inferences for High-dimensional Linear Models: A Selection-assisted Partial Regression and Smoothing Approach by

Zhe Fei¹, Ji Zhu², Moulinath Banerjee², and Yi Li¹

- 1. Department of Biostatistics, University of Michigan
 - 2. Department of Statistics, University of Michigan

October 29, 2018

1 Web Appendix A

Main proofs to Theorems 1-3.

Proof of Theorem 1. Our estimator for β_j^0 by the one-time SPARE is

$$\tilde{\beta}_j = \left\{ (X_{S \cup j}^1 X_{S \cup j}^1)^{-1} X_{S \cup j}^1 Y^1 \right\}_j. \tag{A.1}$$

Here $D_1 = (X^1, Y^1)$ with sample size $\lfloor n/2 \rfloor$, for notational simplicity, we denote $m = \lfloor n/2 \rfloor$ within this proof.

By (A3), with probability at least $1 - o(m^{-c_2-1})$, the selection $S \supset S_{0,n}$. Since the two halves of data D_1 and D_2 are mutually exclusive, $(X^1, Y^1) \perp S$. Thus given $S \supset S_{0,n}$ and

 X^1 , the OLS estimator $\tilde{\beta}^1 = (X_{S \cup j}^1 X_{S \cup j}^1)^{-1} X_{S \cup j}^1 Y^1$ is unbiased,

$$\begin{split} &\mathbf{E}\left(\tilde{\beta}^{1}\Big|S,X^{1}\right) \\ =&\mathbf{E}\left((X_{S\cup j}^{1}{}^{T}X_{S\cup j}^{1})^{-1}X_{S\cup j}^{1}{}^{T}X^{1}\beta^{0}\Big|S,X^{1}\right) + \mathbf{E}\left((X_{S\cup j}^{1}{}^{T}X_{S\cup j}^{1})^{-1}X_{S\cup j}^{1}{}^{T}X^{1}\boldsymbol{\varepsilon}^{1}\Big|S,X^{1}\right) \\ =&\mathbf{E}\left((X_{S\cup j}^{1}{}^{T}X_{S\cup j}^{1})^{-1}X_{S\cup j}^{1}{}^{T}X_{S\cup j}^{1}\beta_{S\cup j}^{0}\Big|S,X^{1}\right) + \mathbf{E}\left(\boldsymbol{\varepsilon}^{1}\Big|S,X^{1}\right) \\ =&\beta_{S\cup j}^{0}. \end{split} \tag{A.2}$$

In addition, $\operatorname{Var}\left(\tilde{\beta}^{1}\middle|S,X^{1}\right)=\sigma^{2}\Sigma_{S\cup j}^{-1}/m$, which is bounded by assumption (A1). Thus,

$$\sqrt{m}(\tilde{\beta}^1 - \beta_{S \cup j}^0) \left| S, X^1 \stackrel{d}{\to} N(0, \sigma^2 \Sigma_{S \cup j}^{-1}). \right|$$
(A.3)

Furthermore,

$$\sqrt{m}(\tilde{\beta}_j - \beta_j^0) | S, X^1 \xrightarrow{d} N(0, \tilde{\sigma}_j^2),$$
 (A.4)

where $\tilde{\sigma}_j^2 = \sigma^2 \left(\Sigma_{S \cup j}^{-1} \right)_{jj}$.

Next we show the uniform convergence of $\sqrt{m}(\tilde{\beta}_j - \beta_j^0)/\tilde{\sigma}_j$ with respect to j, S and X^1 . From the partial regression formulation of $\tilde{\beta}_j$, if $S \supset S_{0,n}$,

$$\tilde{\beta}_{j} - \beta_{j}^{0} = \frac{X_{j}^{1^{\mathrm{T}}}(I_{m} - H_{S\backslash j}^{1})\boldsymbol{\varepsilon}^{1}}{X_{j}^{1^{\mathrm{T}}}(I_{m} - H_{S\backslash j}^{1})X_{j}^{1}} = \frac{m}{X_{j}^{1^{\mathrm{T}}}(I_{m} - H_{S\backslash j}^{1})X_{j}^{1}} \frac{X_{j}^{1^{\mathrm{T}}}(I_{m} - H_{S\backslash j}^{1})\boldsymbol{\varepsilon}^{1}}{m}.$$
(A.5)

By Lemma (1),

$$\frac{m}{X_j^{1T}(I_m - H_{S\backslash j}^1)X_j^1} = \left(\widehat{\Sigma}_{S\cup j}^{-1}\right)_{jj} \to \left(\Sigma_{S\cup j}^{-1}\right)_{jj},\tag{A.6}$$

and $\forall j, S, \left| \frac{m}{X_j^{1^{\mathrm{T}}}(I_m - H_{S\backslash j}^1)X_j^1} \right| \leq 2/c_{\min}$. Moreover, the second term of the right hand side in (A.5) is the mean of i.i.d. $\tilde{x}_{ij}^1 \varepsilon_i^1$'s, where $(\tilde{x}_{ij}^1)_{i=1,\dots,m} = X_j^1 (I_m - H_{S\backslash j}^1)$. Since $\mathbf{E}|\boldsymbol{\varepsilon}_i|^3 \leq \rho_0$ and $X_j^1 (I_m - H_{S\backslash j}^1)$ is the projection vector of X_j^1 ,

$$\mathbf{E}|X_{j}^{1}(I_{m}-H_{S\backslash j}^{1})|_{\infty}^{3} \le \mathbf{E}|X_{j}^{1}|_{\infty}^{3} \le \rho_{1}.$$
(A.7)

By the Berry-Esseen Theorem, $\forall j, X \text{ and } S \supset S_{0,n}$,

$$|F_n(x) - \Phi(x)| \le \left(\frac{2}{c_{\min}}\right)^3 \frac{C\rho_0\rho_1}{\tilde{\sigma}_i^3\sqrt{m}} \le \frac{8c_{\max}^{3/2}C\rho_0\rho_1}{c_{\min}^3\sigma^3\sqrt{m}},$$
 (A.8)

where $F_n(x)$ is the CDF of $\sqrt{m}(\tilde{\beta}_j - \beta_j^0)/\tilde{\sigma}_j$ and $\Phi(x)$ is the CDF of standard normal. Thus as $m \to \infty$, with probability at least $1 - o(m^{-c_2-1})$,

$$\sqrt{m}(\tilde{\beta}_j - \beta_j^0)/\tilde{\sigma}_j \to N(0, 1).$$
 (A.9)

Proof of Theorem 2. We first introduce the oracle SPARE estimators of β_j^0 's, i.e. the ones we would compute if we knew the true active set $S_{0,n}$,

$$\hat{\beta}_{j}^{0} = \left\{ (X_{S_{0,n} \cup j}^{T} X_{S_{0,n} \cup j})^{-1} X_{S_{0,n} \cup j}^{T} Y \right\}_{j}$$
(A.10)

$$\hat{\beta}_{j,S_{0,n}}^b = \left\{ (X_{S_{0,n}\cup j}^b{}^T X_{S_{0,n}\cup j}^b)^{-1} X_{S_{0,n}\cup j}^b{}^T Y^b \right\}_j, \tag{A.11}$$

which are estimations on the original data (X,Y) and the bootstrap half data D_1^b , respectively. Since $\hat{\beta}_j^0$ is the least square corresponding to X_j when regressing Y on $X_{S_{0,n}\cup j}$, we have for each j

$$W_i^0 = \sqrt{n}(\hat{\beta}_i^0 - \beta_i^0) / \sigma_i \xrightarrow{d} N(0, 1) \quad \text{as} \quad n \to \infty,$$
(A.12)

where $\sigma_j^2 = \sigma^2 \left(\Sigma_{S_0, n \cup j}^{-1} \right)_{jj}$ that corresponds to subscript j. By Cauchy's interlacing theorem

(Proposition 3), $\sigma^2/c_{\text{max}} \leq \sigma_j^2 \leq \sigma^2/c_{\text{min}}$, and thus it is bounded away from zero and infinity. Now we consider the behavior of the selections S^b 's from D_2^b 's. For each b=1,2,...,B, the subsample D_2^b consists of $m_b \geq n/2$ distinct observations from the original data that are not drawn in the bootstrap half dataset D_1^b . In other words, D_2^b can be regarded as a sample of m_b i.i.d. observations from the population distribution. In addition, since m_b is independent of the observations, with a conditional argument on m_b , the following holds for each b by (B3),

$$\mathbf{P}(S^{b} = S_{0,n})
= \int \mathbf{P}(S^{b} = S_{0,n} | m_{b} = m) d\mathbf{P}(m)
\geq \int \left\{ 1 - o(m^{-c_{2}-1}) \right\} d\mathbf{P}(m)
\geq 1 - o\{(n/2)^{-c_{2}-1}\}
= 1 - o(n^{-c_{2}-1}).$$
(A.13)

Next, we decompose $\hat{\beta}_j$ into two parts:

$$\hat{\beta}_{j} = \frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_{j}^{b}$$

$$= \frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_{j,S_{0,n}}^{b} + \frac{1}{B} \sum_{b:S^{b} \neq S_{0,n}} \left(\hat{\beta}_{j}^{b} - \hat{\beta}_{j,S_{0,n}}^{b} \right),$$
(A.14)

and equivalently

$$\sqrt{n}(\hat{\beta}_{j} - \beta_{j}^{0})$$

$$= \sqrt{n} \left(\frac{1}{B} \sum_{b=1}^{B} \hat{\beta}_{j,S_{0,n}}^{b} - \beta_{j}^{0} \right) + \frac{\sqrt{n}}{B} \sum_{b:S^{b} \neq S_{0,n}} \left(\hat{\beta}_{j}^{b} - \hat{\beta}_{j,S_{0,n}}^{b} \right)$$

$$\dot{=} Z_{j}^{0} + \Delta_{j}.$$
(A.15)

To show $\Delta_j = o_p(1)$, we write

$$\Delta_{j} = \frac{1}{B} \sum_{b=1}^{B} \mathbf{1}(S^{b} \neq S_{0,n}) \sqrt{n} \left(\hat{\beta}_{j}^{b} - \hat{\beta}_{j,S_{0,n}}^{b} \right); \tag{A.16}$$

$$\Delta_j = \frac{1}{B} \sum_{b=1}^B \delta_b; \quad \delta_b \doteq \mathbf{1}(S^b \neq S_{0,n}) \sqrt{n} \left(\hat{\beta}_j^b - \hat{\beta}_{j,S_{0,n}}^b \right). \tag{A.17}$$

By Corollary (2),

$$\mathbf{E}\delta_{b} = \mathbf{P}(S^{b} \neq S_{0,n})\mathbf{E}\sqrt{n}\left(\hat{\beta}_{j}^{b} - \hat{\beta}_{j,S_{0,n}}^{b}\right)$$

$$= o\left(n^{-c_{2}-1}2C_{\beta}n^{c_{1}+\frac{1}{2}}\right)$$

$$= o\left(n^{-c_{2}+c_{1}-\frac{1}{2}}\right)$$

$$\to 0 \quad \text{as} \quad n \to \infty.$$
(A.18)

Similarly,

$$\mathbf{Var}\delta_{b} = \mathbf{P}(S^{b} \neq S_{0,n})\mathbf{E}n\left(\hat{\beta}_{j}^{b} - \hat{\beta}_{j,S_{0,n}}^{b}\right)^{2}$$

$$= o\left(n^{-c_{2}-1}4C_{\beta}^{2}n^{2c_{1}+1}\right)$$

$$= o(n^{-c_{2}+2c_{1}})$$

$$\to 0 \quad \text{as} \quad n \to \infty.$$
(A.19)

Thus $\delta_b = o_p(1)$ for all $b \in [B]$. Furthermore, since $\mathbf{E}\Delta_j = \mathbf{E}\delta_b$ and $\mathbf{Var}\Delta_j \leq \mathbf{Var}\delta_b$, we have $\Delta_j = o_p(1)$.

Next, we show the convergence of Z_i^0 . Notice that

$$Z_j^0/\sigma_j = W_j^0 + \sqrt{n} \left(\frac{1}{B} \sum_{b=1}^B \hat{\beta}_{j,S_{0,n}}^b - \hat{\beta}_j^0\right) / \sigma_j \doteq W_j^0 + T_n^B/\sigma_j. \tag{A.20}$$

By (A.12), we are only left to show $T_n^B = o_p(1)$. Define $t_{n,b} = \sqrt{n} \left(\hat{\beta}_{j,S_{0,n}}^b - \hat{\beta}_j^0 \right)$, then $T_n^B = \sqrt{n} \left(\frac{1}{B} \sum_{b=1}^B \hat{\beta}_{j,S_{0,n}}^b - \hat{\beta}_j^0 \right) = \frac{1}{B} \sum_{b=1}^B t_{n,b}$. Recall that $\hat{\beta}_{j,S_{0,n}}^b$ is the bootstrap statistic of $\hat{\beta}_j^0$, so its conditional mean is $\hat{\beta}_j^0$ and conditional variance is $\hat{\sigma}^2 \left\{ (X_{S_{0,n} \cup j}^T X_{S_{0,n} \cup j})^{-1} \right\}_{jj} = \hat{\sigma}^2 \left(\hat{\Sigma}_{S_{0,n} \cup j}^{-1} \right)_{jj} / n \doteq \hat{\sigma}_j^2 / n$, where $\hat{\sigma}^2 = \| (I_n - H_{S_{0,n}}) Y \|_2^2 / n$ (Freedman et al. (1981)). Thus, conditional on the data, $\{t_{n,b}\}_{b=1,2,\dots,B}$ are i.i.d. with

$$\mathbf{E}(t_{n,b}|(X^{(n)},Y^{(n)})) = 0, \quad \mathbf{Var}(t_{n,b}|(X^{(n)},Y^{(n)})) = \hat{\sigma}_j^2 = \hat{\sigma}^2(\widehat{\Sigma}_{S_{0,n}\cup j}^{-1})_{jj}.$$
(A.21)

We now argue that with probability going to 1, $\hat{\sigma}_j^2$'s, j=1,2,..,p, are bounded. First, $\mathbf{P}(\hat{\sigma}^2<2\sigma^2)\to 1$ as $n\to\infty$. Then,

$$\left(\widehat{\Sigma}_{S_{0,n}\cup j}^{-1}\right)_{jj} \le \lambda_{\max}(\widehat{\Sigma}_{S_{0,n}\cup j}^{-1}) = 1/\lambda_{\min}(\widehat{\Sigma}_{S_{0,n}\cup j}),\tag{A.22}$$

whenever $\lambda_{\min}(\widehat{\Sigma}_{S_{0,n}\cup j}) > 0$. Assumption (B3) implies $|S_{0,n}|/n \leq \eta$. By Lemma (4) from Vershynin (2010) and Lemma (5), letting $\epsilon = c_{\min}/2$ and $t^2 = c_{\min}^2 \eta/C$ for some constant C only depending on the sub-Gaussian norm $\|\mathbf{x}_i\|_{\psi_2}$, we have that with probability at least $1 - 2\exp(-c_{\min}^2 \eta n^{\gamma_0}/C)$

$$\lambda_{\min}(\widehat{\Sigma}_{S_{0,n}\cup j}) \ge \lambda_{\min}(\Sigma_{S_{0,n}\cup j}) - c_{\min}/2 \ge \lambda_{\min}(\Sigma) - c_{\min}/2 \ge c_{\min}/2, \tag{A.23}$$

where the second inequality follows the interlacing property of the eigenvalues. Combining (A.22) and (A.23), $\left(\widehat{\Sigma}_{S_{0,n}\cup j}^{-1}\right)_{jj} \leq 2/c_{\min}$ with probability going to 1 exponentially fast in n, and consequently $\widehat{\sigma}_{j}^{2} < 4\sigma^{2}/c_{\min}$. Now define

$$\Omega_n = \{ (X^{(n)}, Y^{(n)}) = (\mathbf{x}_i, y_i)_{i=1,2,..,n} : \hat{\sigma}_i^2 < 4\sigma^2/c_{\min}, \forall j = 1, 2, ..., p \}.$$
(A.24)

Since $p = O(n^{\gamma_1})$ for some $\gamma_1 > 1$, $\mathbf{P}\{(X^{(n)}, Y^{(n)}) \in \Omega_n\} \to 1$ as $n \to \infty$. Thus $\forall (X^{(n)}, Y^{(n)}) \in \Omega_n$, $\mathbf{Var}\{t_{n,b}|(X^{(n)}, Y^{(n)})\} \leq 4\sigma^2/c_{\min}$. Furthermore,

$$\mathbf{Var}\left\{T_n^B|(X^{(n)}, Y^{(n)})\right\} = \frac{1}{B^2} \sum_{b=1}^B \mathbf{Var}\left\{t_{n,b}|(X^{(n)}, Y^{(n)})\right\} \le \frac{4\sigma^2}{Bc_{\min}}$$
(A.25)

Thus, $\forall \delta, \zeta > 0$, $\exists N_0, B_0 > 0$ such that $\forall n > N_0, B > B_0$,

$$\mathbf{P}(|T_{n}^{B}| \geq \delta)
\leq \int_{\Omega_{n}} \mathbf{P} \{ |T_{n}^{B}| \geq \delta | (X^{(n)}, Y^{(n)}) \} d\mathbf{P}(X^{(n)}, Y^{(n)}) + \mathbf{P} \{ (X^{(n)}, Y^{(n)}) \notin \Omega_{n} \}
\leq \int_{\Omega_{n}} \frac{\mathbf{Var} \{ T_{n}^{B} | (X^{(n)}, Y^{(n)}) \}}{\delta^{2}} d\mathbf{P}(X^{(n)}, Y^{(n)}) + \mathbf{P} \{ (X^{(n)}, Y^{(n)}) \notin \Omega_{n} \}
\leq \frac{4\sigma^{2}}{B_{0}\delta^{2}c_{\min}} \int_{\Omega_{n}} d\mathbf{P}(X^{(n)}, Y^{(n)}) + \mathbf{P} \{ (X^{(n)}, Y^{(n)}) \notin \Omega_{n} \}
\leq \zeta/2 + \zeta/2
\leq \zeta.$$
(A.26)

Finally, combining this with (A.12), we have

$$Z_j^0/\sigma_j = W_j^0 + T_n^B/\sigma_j \xrightarrow{d} N(0,1)$$
 as $B, n \to \infty$. (A.27)

Proof of Theorem 3. Follow the previous proof, we replace the arguments in j with those in $S^{(1)}$. The *oracle* estimators are

$$\hat{\beta}_{S^{(1)}}^0 = \left(\left(X_{S_{0,n} \cup S^{(1)}}^T X_{S_{0,n} \cup S^{(1)}} \right)^{-1} X_{S_{0,n} \cup S^{(1)}}^T Y \right)_{S^{(1)}}$$
(A.28)

$$\hat{\beta}_{S^{(1)},S_{0,n}}^b = \left((X_{S_{0,n} \cup S^{(1)}}^b{}^T X_{S_{0,n} \cup S^{(1)}}^b)^{-1} X_{S_{0,n} \cup S^{(1)}}^b{}^T Y^b \right)_{S^{(1)}}. \tag{A.29}$$

Notice that $|S^{(1)}| = p_1 = O(1)$, as $n \to \infty$, $|S_{0,n} \cup S^{(1)}| = O(|S_{0,n}|) = o(n)$, so that the above quantities are well-defined. Next

$$W^{(1)} = \sqrt{n} \{ \Sigma^{(1)} \}^{-1} (\hat{\beta}_{S^{(1)}}^0 - \beta_{S^{(1)}}^0) \xrightarrow{d} N(0, I_{p_1}) \quad \text{as} \quad n \to \infty,$$
 (A.30)

where $\Sigma^{(1)} = \sigma^2 \left(\Sigma_{S_{0,n} \cup S^{(1)}}^{-1} \right)_{S^{(1)}}$. Similar to (A.15), we decompose $\sqrt{n} (\hat{\beta}_{S^{(1)}} - \beta_{S^{(1)}}^0)$ into three parts:

$$\sqrt{n}(\hat{\beta}_{S^{(1)}} - \beta_{S^{(1)}}^{0})
\doteq Z^{(1)} + \Delta_{0}^{(1)} + \Delta_{1}^{(1)}.$$
(A.31)

For the sake of space, we prefer not to write out these quantities, but it is straightforward analog that $\Delta_0^{(1)} = \Delta_1^{(1)} = o_p(\mathbf{1}_{p_1})$ and $\Sigma^{(1)} = Z^{(1)} - W^{(1)} = o_p(\mathbf{1}_{p_1})$ as well, which completes the proof.

2 Web Appendix B

Technical details on useful definitions, lemmas and related proofs.

Lemma 1. Assume $X = (X_1, ..., X_p) = (x_1^T, ..., x_n^T)^T$ where x_i 's are i.i.d. copies of a sub-Gaussian random vector in \mathbf{R}^p with covariance matrix $\Sigma_{p \times p}$, with

$$0 < c_{\min} \le \lambda_{\min}(\Sigma) \le \lambda_{\max}(\Sigma) \le c_{\max} < \infty.$$

For any subset $S \subset \{1, 2, ..., p\}$ with $|S| \leq \eta n$, $0 < \eta < 1$, and $\forall j \in S$, with probability at least $1 - 2\exp(-\frac{\varepsilon^2 \eta}{C_K}n)$,

$$\frac{c_{\min}}{2} \le \frac{1}{n} X_j^{\mathrm{T}} (I_n - H_{S \setminus j}) X_j \le c_{\max} + \frac{1 + c_{\min}}{2}$$
 (B.1)

where $\varepsilon = \min(\frac{1}{2}, \frac{c_{\min}}{2})$ and C_K is the constant depends only on the sub-Gaussian norm $K = ||x_i||_{\psi_2}$.

Corollary 2. Given model (1) and assumptions (A1,A2), consider the partial regression estimator on (X,Y) given subset S. If $|S| \leq \eta n$, $0 < \eta < 1$, then with probability at least $1 - 2 \exp(-\frac{\varepsilon^2 \eta}{C_F} n)$,

$$\hat{\beta}_j \le C_\beta n^{c_1},\tag{B.2}$$

where C_{β} depends on $c_{\min}, c_{\max}, c_{\beta}$.

Proposition 3 (Cauchy interlacing theorem). Let A be a symmetric $n \times n$ matrix. The $m \times m$ matrix B, where $m \leq n$, is called a compression of A if there exists an orthogonal projection P onto a subspace of dimension m such that $P^{T}AP = B$. The Cauchy interlacing theorem states:

if the eigenvalues of A are $\lambda_1 \leq ... \leq \lambda_n$, and those of B are $\nu_1 \leq ... \leq \nu_m$, then for all j < m+1,

$$\lambda_j \le \nu_j \le \lambda_{n-m+j}$$

Proposition 4 (Corollary 5.50 in Vershynin (2010)). Consider a $n \times q$ matrix X whose rows \mathbf{x}_i 's are i.i.d. samples from a sub-Gaussian distribution in R^q with covariance matrix Σ , and let $\epsilon \in (0,1), t \geq 1$. Denote the sample covariance matrix as $\widehat{\Sigma}_n = X^T X/n$ Then with probability at least $1 - 2 \exp(-t^2 q)$ one has

If
$$n \ge C(t/\epsilon)^2 q$$
 then $\|\widehat{\Sigma}_n - \Sigma\| \le \epsilon$. (B.3)

Here $C = C_K$ depends only on the sub-Gaussian norm $K = \|\mathbf{x}_i\|_{\psi_2}$ of a random vector taken from this distribution.

Definition 1. The sub-Gaussian norm of a random variable V is defined as

$$||V||_{\psi_2} = \sup_{k \ge 1} k^{-1/2} (E|V|^k)^{1/k}$$
(B.4)

then the sub-Gaussian norm of a random vector V in \mathbb{R}^q is defined as

$$||V||_{\psi_2} = \sup_{x \in S^{q-1}} ||V^{\mathrm{T}}x||_{\psi_2}$$
(B.5)

Remark 1. Assume $V_0 = (v_1, v_2, ..., v_q)$ is a sub-Gaussian random vector in \mathbb{R}^q , and $V_1 = (v_1, v_2, ..., v_r), r < q$ is the sub-vector of V_0 . By taking $x = (x_1, ..., x_r, 0, ..., 0) \in S^{q-1}$, we have $||V_1||_{\psi_2} \leq ||V_0||_{\psi_2}$.

Corollary 5. For two $n \times n$ positive definite matrices Σ_1 and Σ_2 , if $\|\Sigma_1 - \Sigma_2\| \leq \epsilon$, then

$$\lambda_{\min}(\Sigma_2) \ge \lambda_{\min}(\Sigma_1) - \epsilon$$

$$\lambda_{\max}(\Sigma_2) \le \lambda_{\max}(\Sigma_1) + \epsilon.$$
 (B.6)

Proof. On one hand, $\forall n$ -vector X with $||X||_2 = 1$,

$$\epsilon \ge \|\Sigma_1 - \Sigma_2\|
\ge \|(\Sigma_1 - \Sigma_2)X\|_2
\ge \|\Sigma_1 X\|_2 - \|\Sigma_2 X\|_2$$
(B.7)

then take X to be the eigenvector for $\lambda_{\min}(\Sigma_2)$, we have

$$\lambda_{\min}(\Sigma_2) = \|\Sigma_2 X\|_2$$

$$\geq \|\Sigma_1 X\|_2 - \epsilon$$

$$\geq \lambda_{\min}(\Sigma_1) - \epsilon.$$
(B.8)

On the other hand,

$$\lambda_{\max}(\Sigma_2) = \|\Sigma_2\|$$

$$\leq \|\Sigma_1\| + \|\Sigma_2 - \Sigma_1\|$$

$$\leq \|\Sigma_1\| + \epsilon$$

$$= \lambda_{\max}(\Sigma_1) + \epsilon$$
(B.9)

Proof of lemma (1). Note that

$$\frac{n}{X_i^T(I_n - H_{S\setminus j})X_j}$$

is the $(j,j)^{\text{th}}$ entry of $\widehat{\Sigma}_S^{-1}$, where $\widehat{\Sigma}_S = (X_S^T X_S)/n$ is the sample covariance matrix corresponds to subset S. Therefore

$$\frac{1}{\lambda_{\max}(\widehat{\Sigma}_S)} \le \frac{n}{X_j^T (I_n - H_{S\backslash j}) X_j} \le \frac{1}{\lambda_{\min}(\widehat{\Sigma}_S)}.$$
 (B.10)

Refer to Corollary 5.50 in Vershynin (2010) and choose $\varepsilon = \min(\frac{1}{2}, \frac{c_{\min}}{2})$. Then with probability at least $1 - 2\exp(-\frac{\varepsilon^2 \eta}{C_K}n)$,

$$\|\widehat{\Sigma}_S - \Sigma_S\| \le \varepsilon. \tag{B.11}$$

By Corollary (5) and Cauchy interlacing theorem,

$$\lambda_{\min}(\widehat{\Sigma}_S) \ge \lambda_{\min}(\Sigma_S) - \varepsilon \ge \lambda_{\min}(\Sigma) - \varepsilon \ge c_{\min}/2,$$
 (B.12)

and

$$\lambda_{\max}(\widehat{\Sigma}_S) \le \lambda_{\max}(\Sigma_S) + \varepsilon \le \lambda_{\max}(\Sigma) + \varepsilon \le c_{\max} + (1 + c_{\min})/2.$$
 (B.13)

Thus, with high probability,

$$\frac{c_{\min}}{2} \le \frac{1}{n} X_j^T (I_n - H_{S\setminus j}) X_j \le c_{\max} + \frac{1 + c_{\min}}{2}$$
 (B.14)

Proof of Corollary (2). From Lemma (1), we can bound $\hat{\beta}_j$ as below:

$$\hat{\beta}_{j} = \frac{X_{j}^{T}(I - H_{S \setminus j})Y}{X_{j}^{T}(I - H_{S \setminus j})X_{j}}$$

$$= \frac{n}{X_{j}^{T}(I - H_{S \setminus j})X_{j}} \frac{X_{j}^{T}(I - H_{S \setminus j})X_{S_{0,n}}\beta_{S_{0,n}}^{0}}{n}$$

$$\leq \frac{2}{c_{\min}} \frac{c_{\beta} \sum_{k \in S_{0,n}} |X_{j}^{T}(I - H_{S \setminus j})X_{k}|}{n}$$

$$\leq \frac{2}{c_{\min}} c_{\beta} \left(c_{\max} + \frac{1 + c_{\min}}{2}\right) n^{c_{1}}.$$
(B.15)

Let $C_{\beta} = \frac{2c_{\beta}}{c_{\min}} \left(c_{\max} + \frac{1 + c_{\min}}{2} \right)$, we complete the proof.

References

Freedman, D. A. et al. (1981). Bootstrapping regression models. The Annals of Statistics 9(6), 1218-1228.

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. arXiv preprint arXiv:1011.3027.

Web Table 1: Comparisons of SPARES and one-time SPARE based on 200 replications. Bias (SE) is displayed in each cell. LSE refers to least square estimation as if $S_{0,n}$ were known.

Index	β_j^0	SPARES	One-time SPARE	LSE
199	1.00	0.03(0.16)	-0.02(0.26)	0.03(0.16)
243	-1.00	-0.02(0.16)	0.03(0.26)	-0.02(0.16)
256	1.00	-0.002(0.16)	-0.007(0.26)	-0.002(0.16)
0's	0.00	0.000(0.16)	-0.001(0.26)	

Web Figure 1: Performance of SPARES under simulation example 2.1. X-axis is the variable index. **Topleft:** Average estimates and average CIs V.S. true signals. **Topright:** Bias of SPARES estimates for each j, red dots are non-zero signals, dashed lines indicate blocks of the predictors. **Bottomleft:** Coverage probability of β^0 for each j w.r.t. 0.95 norminal level. **Bottomright:** Empirical probability of not rejecting $H_0: \beta_j^0 = 0$.

Web Figure 2: Performance of SPARES under simulation examples 2.2.

Web Figure 3: Comparisons of SPARES with LASSO-Pro and SSLASSO under simulation example 4. Left panels: Mean estimates from each method and the true signals. Right panels: Coverage probabilities for each $j \in S_{0,n}$ and 20 representatives of $j \notin S_{0,n}$.

Web Figure 4: Correlation among predictors: left panel - riboflavin data; right panel - multiple myeloma data.

Web Figure 5: Results of the riboflavin genomic data analysis. Left panel: selection frequency of each gene; Right panel: confidence intervals of the top five most significant genes.

Web Figure 6: Results of the Multiple Myeloma genomic data analysis. Left panel: selection frequency of each gene; Right panel: confidence intervals of the top two most significant genes.

