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For completeness of presentation, we first provide some useful technical lemmas and
their proofs, and then give the proofs of the main theorems in this supplementary material.
Since corollaries are direct results of corresponding theorems, their proofs are straightfor-

ward thus omitted.

1 Technical Lemmas

We first introduce some additional notation in counting processes. For the ith subject in the
kth stratum, define the Counting process Ny;(t) = 1(Yi; < t,0x; = 1). The corresponding
intensity process Ag;(t fo (Yii > s) exp(XEB)dAor(s), where Ao (t) fo Aok (s)ds is
the baseline cumulatlve hazard function for the kth stratum, k =1,--- ,K s =1, ng.
Let M(t;8) = Npi(t) — Awi(t; 3), then My(t; 8°) is a martingale with respect to the
filtration Fy;(t) = 0{Ngi(s), 1(Ye; > 8), Xpi = s € (0,¢]}.

Recall that the stratum-specific weighted covariate process 7y (¢; 8) = 11k (t; 8) /1iox (t; B),
where fi,(t;8) = (1/ng) >0 1V > t) X" exp{X[;8}. Their population-level coun-
terparts are fi(t: ) = E[1(Yin > X exp{X76Y] and mo(t: 8) = uaelts 8), pon(t: 5),
r=0,1,2,k=1,--- K. It is easily seen that the process {Xy; — N (t; 3°)} is predictable
with respect to the filtration F(t) = o{Nyi(s),1(Yri > s), Xg; : s € (0,t],k=1,--- | K, i =

1, )



Lemma S.1. Under Assumptions B.1-B.3, for k=1,--- , K, we have

sup |ior(t; 8°) — po(t; 8°)| = Op(+/1og(p) /ni),

te[0,7]

s%p]llﬁm(t;ﬁ) 1k (t; )]l = Op(v/1og(p) /n1),
te|0,7

i 17 (£ 5°) — 1o (t; 8°)[lse = Op(+/10g(p) /).
te|0,7

Lemma S.1 is simply the result of Lemma Al in Xia et al. (2021) applied to each of the
K strata. We omit its proof here.

Lemma S.2. Assume p?log(p)/nmin — 0. Under Assumptions B.1-B.5, for any c € RP

such that ||c|lo = 1 and ||c||; < a. with some absolute constant a, < oo, we have
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Proof of Lemma S.2. We rewrite

2 N(0,1).
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dMy(t).  (S.1)
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process for U(t) is
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By Assumption B.4, following the same lines in the proof of Lemma A2 in Xia et al. (2021),



we have

O [ [ oy _ Punls BV (w3 5°)
CT@5OC |:/ {M%(UJ, 50) - ﬁok(?ﬁlﬁo) } dAOk(u)] @ﬁoc
TO 4 t 39T (u: 3°
:cCT@;oc [/O {M%(u; 80 — Mk(uﬂok(zjjgo(;b )} dAok(U)] Ogoc + 0p(1)
—u(t; ).

Since ng/N — g, then (U)(t) —p S0, rrvg(t; c).
b ' Opo {Xk' k(s 8%
VN N /cTOpoc " o (u; 89)

process U (t Z Z/ Gri(u)1(|Gri(u)| > €)dMy;(u). The variation process of U.(t) is

k=1 i=1

For any € > 0, define Gy;(u) = } and the truncated

K

=35 [ GG > )

k=1 i=1

where dAg;(u) = 1(Yi > w)eX4# dAgg(u). Since

IVNGi(w)] < a.]|@pol112M il 2(Op0) = O(V/),

min

then 1(|G;(u)| > €) = 0 almost surely as p/N — 0. So (U.)(t) —p 0. By the martingale
central limit theorem, we obtain the desirable result.
O

Lemma S.3. Under Assumptions B.1-B.5, for A < \/log(p)/nmin, the lasso estimator B
satisfies

18— 8°lh = Op(s0)), ZZ X5 =8 = Op(s0)).
k: 1 =1
Proof of Lemma S.3. This result is from the proof in Kong and Nan (2014), with minor
modifications as follows. An intermediate replacement for the negative log-likelihood in the
kth stratum

(M (B) = ! Z lﬁTin — log {nik Z 1(Yi; > Yii) exp(BTij)}] Oki
j=1

n
k=



can be defined as
- 1 &
((8) = T Z {B" Xii — log puox (Yas; 8) } Ori,
i=1

which is a sum of n; independent and identically distributed terms. The target parameter

K
B= argmﬁinE {Z %Z(k)(ﬁ)} .

k=1

18

Then the excess risk for any given [ is

K K
_ U k) _ M5k (3
EB)=E {Z 7 w)} E {Z L (6)} .
k=1 k=1
We refer remaining details to Kong and Nan (2014). O

Lemma S.4. Under Assumptions B.1-B.5, assume \ < \/1og(p)/Nmin, then it holds with
probability going to one that ||@50§ — D)oo < 7, with v < ||©go]|11{maxi<<x |np/N —
Tk| + SQ)\}.

Lemma S.4 shows that when v < ||Ogo]|1 1 {maxi<r<x |nk/N — 75| + soA}, the jth row,
J = 1,---,p, of ©g will be feasible in the constraint of the corresponding quadratic

programming problem with probability going to one.
Proof of Lemma S.4. We first derive the rate for || — Y 50|l Note that
||E - 250 ||oo

<

%Z Z /OT [{in — T(t; B)}*2 — { Xis — meo(t; ﬁo)}m} dN}i(t)

k=1 i=1

o0

+

1 K ng -
N 2 Z/O {Xki = mo(t: B7)}*2dNki(t) — Sgo

k=1 i=1

[e.9]

= an1 + ana.



Due to the boundness Assumption B.1,

ani <
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N 0
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§4M0p( log(p)/nmm) + 4MOP(SO>\) = OP(SO/\),

where the last inequality is a result of Lemma S.1 and the fact that sup,c(o . [|7k(t; 8°) —
Mt B)|lse = Op([1B = B°ll1) = Op(soA) (see the proof of Lemma A4 in Xia et al. (2021)).
Since EBO = Z?:l TkZﬂ)’k,

K ng T
N 1
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k=1 i=1 00
K n
k
(5 )
k=1 00
K ng T
N 1 0\ ®2 (nk‘ )
S L Xpi — meol(t: AN (1) — & ") s
—;N nkzzl/o{ ki — Meo(t; B7) 77 d N (1) — Zgo ||+ 2.\ Tk ) 2igok

The proof of Lemma A4 in Xia et al. (2021) shows that, for k =1,--- | K,

= Op(+/log(p)/n4)

1 & [T
3 [k malts )Y AN (t) — S
i=1 70

by Hoeffding’s concentration inequality. So ays = Op(+/10g(p)/nmin) + O(maxy, [ng /N —

rx|). Then, combining the bounds on ay; and ays, || — sl = Op(soA + maxy, [ng /N —

Tk|)



Finally, it is easy to see that
10505 — Iplloc = [[©p0(X — Zgo)[[oc < [[Ogo]]1,1[[X — Egol|oo,

and (/005 — L|loc = Op(||Opo]11{s0A + max |ng/N — 74]}). O

Lemma S.5. Under the assumptions in Lemma S.4, if we further assume for some constant

"€ (0,1), limsup, ., py<1—¢€, then we have 16 — Os0llcc = Op(Y[|Op0]|1,1)-
The proof of Lemma S.5 follows that of Lemma A5 in Xia et al. (2021), thus is omitted.

Lemma S.6. Under Assumptions B.1-B.3 and B.5, for each t > 0,
P(H€</BO)HOO > t) S 2Kp€7nmint2/(8M2).

Proof of Lemma S.6. Since ((°) = Y1 | "‘“6 *)(89), we have
. K
P ()l > 1) < (Z D) > t)
K .
> P (169 > 1)

—nkt2/(8M2).
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Note that | Xz — 7k (t; 8°) |l < 2M holds uniformly for all k£ and i. Then the last inequality
is a direct result of Lemma 3.3(ii) in Huang et al. (2013) when applied to each of the K
strata. O

2 Proofs of Main Theorems

Proof of Theorem 3.1. Let éj (6) be the jth element of the derivative {(B). By the mean

value theorem, there exists 3¢ between 3 and 4° such that l (B)—¢ 0:(8%) = dﬁf) 425 (E—

(Y). Denote the p x p matrix D = (321(5)

T
A .
op ‘ s=pn’ 5 ‘55@)) . By the definition of

op



the de-biased estimator /b\, we may decompose cT(/b\ — 3% as

(b~ ) = ~c"Omi(5") ~ (6 — O)(5")
— PO — L,)(B — £°) + ¢"O(E — D)(B — £°)
= —c"Ol(B°) + (i) + (id) + (iii),

where (i) = —cT(O—0)(8°), (ii) = =T (OS—1,)(3—°) and (iii) = "O(S—D)(3—5°).
We first show v/N (i) = op(1) and \/_( i) = op(1). By Lemma S.5 and Lemma S.6,

IVN@)] < VN|elli 18 = Opllooce - 108 [l
< VNa.Op(py]9p0]|1.1) Op(v/108(D) /Tinin)
= Op(||©s0]]1,1p7V/10g(p))

= 0P<1)7

where the last equality is a direct result of the assumption that ||©gol|7 ,{maxy |n,/N —

rr| + soA}py/log(p) — 0 when A\ < \/log(p)/nmin. By Lemma S.3,

VN (ii)| < VN|le1[[(BF — L)(B — )|
< VNa.|[OF — L[l 18 - B°Ils
< VNa7|8 - AL
= Op(VNyso))
= op(1).

We then show that vN(iii) = op(1). Note that & — D = (% — Ypo) + (g0 —
(%) + (£(8°) — D). By the proof of Lemma S.4, we see that with A = /1og(p)/Mumin,
||§] — Ypolleo = Op(spA + maxy |ng/N — ri|). Based on the proof of Theorem 1 in Xia
et al. (2021), for each stratum, [/ (5°) — D®)|| = Op(y/log(p)/ni), where D®) =

(k) (k)
Mla—ﬁ(ﬁ)‘ R W%—ﬁ(ﬁ)‘ 5 . Since the overall negative log partial likelihood ¢(3) =
8= B=p(P)

K
Z%N (8), and D = Z ZED® | then [[6(8°) — Dljs = Op(+/10g(p)/momin). Also,
k=1

1250 5 — £*(8%)||loe = Op ( log( )/ni) by the proof of Theorem 1 in Xia et al. (2021).



Then

K

K
ZTkzﬁng — Z %Eﬂo,k

k=1 k=1

K K
1250 — £(8°) |0 < E szﬁoﬁk _ E :Nk’g(k)(ﬁo)
k=1 k

+

o0

< Kmax(|ng/N = 1| [Ego plloo) + KOp(v/10g(p) /nmin)
= Op(m]?x |k /N — 71| + \/10g(D) /Mmin,)-
Therefore, for A < +/1og(p)/Mmin, H(:) — Dlloo = Op(soA + maxy, [ng/N — r¢|), and

VN (iii)| < VN||e|[1]|8]]oo00l|E = Dlloo]| B = 8l
< Op (VN 1©g0ll11(50A + max /N = 7)) o

< Op (VN/nminl©ll11 (30X + max ni/N = i )py/log(p)
= OP(l).

Finally, for the variance,

€70 — Og0)e| < [|c]2]1© — Opolos
< a20p(7]|Opoll1,1) = op(1).

By Slutsky’s theorem and Lemma S.2, v/ne? (b — 8°)/(c70c)/2 B N (0, 1).

Sketch proof of Theorem 3.4. Theorem 3.4 can be easily proved using Cramér-Wold

device. For any w € RP. since the dimension of w is a fixed integer, we can invoke Theorem
) )

3.1 by taking ¢ = JTw. Note that || JTw|; < [[JT]|l11llwlli = | |lsocollw|ls = O(1).
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