Biometrika (2012),99, 1, pp. 1-12
© 2012 Biometrika Trust Advance Access publication on 31 July 2012
Printed in Great Britain

Supplementary material for “Covariance-Enhanced
discriminant analysis”

By PEIRONG XU
Department of Mathematics, Southeast University, Nanjing, 211189, China
xupeirong@seu.edu.cn 5

JI ZHU
Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109, U.SA.
jizhu@umich.edu

LIXING ZHU

Department of Mathematics, Hong Kong Baptist University, Hong Kong, China 10
[zhu@hkbu.edu.hk

AND YI LI
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.SA.
yili@umich.edu
1. TECHNICAL PROOFS 15

Proof of Theorem 1. The proof is summarized in the following three steps. Firge
proveQy, (w*, u*, ) > Qn(w, u*, Q%) for [jwy — wikl)H% = 0,(n~1). In Step 2, we show that
Qn(w, 1", %) > Qp(w, p*, Q) for || — Q*H% = Op{(pn + an)log pp/n}. In Step 3, we prove
that Q, (w, p*, Q) > Qn(w, 1, Q) for || — p*||3 = O,(pn log pn/n). The following are the de-
tails. 20

Sep 1. Let A, = w) — wjy), and hwn)) = Y, S ik logwy, wherewy =1 —

S K wr. We denote by, = (1, ...,0k)T the Jacobian matrix, wherd, (1 < k < K) is
a (K — 1)-dimensional unit vector with théth component being 1, andlx is a (K — 1)-
dimensional vector of ones. An application of Taylor expangyields

Qn(w, ,U'*v Q*) - QH(W*v lu’*7 Q*)
* 2 *
nY dw DR O R n Owdwl TR
1 02h(w,)
T 4T &)
+0p {Aw(l) Jw <—EW JwAw(l) . (1)
Note thatn " Z?:l{nkw;_l - Tin;(_l} = 0p(1) because £, = wj fork=1,...,K.Con- s
sequently, we have
1 . 0h(wy) B B
I AL <20, (1) Au < (K = 1)V20,(07 )| A
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Further, sincer ™! > L Tisz_2 £, w;;‘l fork=1,..., K, we have
1 0*h(w?)
T (1) P T
. {_;W o = Jy B >0,

whereH is aK x K diagonal matrix with theth elementu,j‘l. Hence,

2 *
Ly gr 19 h(w(l)) 1 2
58wy Ju {_EW JuBugy 2 50p (W[ Aug, 2,

implying that it dominates both the first and third terms ijy @iformly in [l ) — o[l =
Op(n~"). ThereforeQ,, (w*, u*, Q%) > Qu(w, u*, Q*) for lway = Wa)H% = Op(n~).
Sep 2. Let Ag = Q — Q* andS = S(u*). Consider the difference
Qn(wnu*? Q) - Qn(wnu*v Q*) = Bl - B2 - B37
where
By =271 (log|Q| — log |2*]) — 27 tr(SAg),

By = Aoy, Z (192;u] = 1€51),
(7,1 eAj#

Bs=Xam Y (1] — Q5.
(J,hHeA

An application of Taylor expansion with the integral rentnyields that
1
log | — log || = tr(Z*Aq) — A {/ (1-v) e Q;ldv} Aq,
0

whereQ), = Q* + vAqwith0 <ov <1, EQ is the vectorization of\p, and® is the Kronecker
product. ThereforeB; can be written a$3; = —2~!(I; + I3), where
L =tr{(S—-X"Aq},
1
L =A% {/ 1-v)'® Q;ldv} Ag.
0

First considerl;. Let s, a;l, andAgqj; be respectively th¢j, [)th element ofS, ¥* and Aq.

Denote byC = {(j,j) : 5 =1,...,pn}. Then, itis clear thal; | < I;; + I12, where

In=| > (si— o)Al

(G.)eAuC
Iy = | Z (sj1— 05)Aqjl-
(4,1)€A,j#
Let z; = Yoo, Tan(ws — ) for i = 1,...,n. By the assumptionz; = (i1, ..., 2;)7's are

i.i.d. p-variate normal random variables with mean 0 and covarianagrix X*. Note that
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sjp=n"13" | zjz;. Using Lemma 3 in Bickel & Levina (2008), we have w©

I < +a,)? ma s — ool |A
S Gt on)' g b =il Iale

< Op[{(pn + an)log pn/n}?] - | Al r
= Op{(pn + an)log p/n}.

Consider B, — I for penalties. Note that\gj; = €;; for all (j,1) € A, j # . Invoking
Lemma 3 in Bickel & Levina (2008) again, we have

By —La > Aoy Z €] — D(fl,fg(\sjl — a5l Z [ Aajil
(A, j#1 ” (A, j#1
> > Dan— Op{(logpn/n) Y]]
(G,)eA,j#
>0

for A2, = O(log p,,/n). For the termBs, we have

By =Xon Y (9] — 195])
(J,heA

< A2p Z | Aqjil
(J,hHeA
< Aana/? || AqllF
= p{(pn + an) 1ngn/n}'

Finally, we bound/s. Recall thathyi, (M) = minj,— T Mz for any symmetric matrix\/.
Then, under condition (A), we have s

1
> _ : ro-1 1 A2
B> [ (1=0) min Auial25" © 5o | Zal

_ 1% 2 : —2
= 5l Aall2 min Ay (S)

max

1, _
> Sl 8all3{A +o(1)} 2
= Cl(pn + an) Ingn/na

for a large constant;. To derive the above inequality, we have ugellg| < [[Aqllr =
O{(log p,)=™/2} = o(1) by our assumption. Therefor&, dominates botH;; and B; with a
large constant’;. With B, — 112 > 0, this completes the proof of the Step 2.

Sep 3. Let Ay, = (A Ay, )V = —pf, for k=1,... K, and A, =y — p*,
Then, for eachl <k < K, A, = (I,, ® e} )A,, where I, is ap, x p, identity matrix s
and e, is a K-dimensional unit vector wittkth component 1. For the sake of simplicity, let
%= S0 (s — pf) and By = S5 (I, @ €l), for i = 1,...,n. Consider the differ-
ence

Qn(w, 1,Q) = Qn(w, ", Q) =TI} = I + I
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where

1 n
I = - > BN,
=1

1 n
r_ TrToym AT
=53 1A“Ei QE;AT,
1=

Pn
I = _)‘1"2 Z {!Mkj — gl — ‘MZ]’ - Nz’j’} :

J=11<k<k'<K

Let A,(f) be thesth component ofA,, and ¢/, be a(Kp,)-dimensional unit vector wittsth

component 1, fos = 1,..., Kp,. Then, it can be seen thgt | = Zf:”f nsAff), where

1<~ 7
ns = E;zi OFE;d,
1=

for s =1,...,Kp,. Now, consider the evenf = (2 {|n,| < A1,}. Since ||Q —Q*|| =
op(1), we have ||QX* — I, || = 0,(1) by condition (A). Thus,|QX*Q — Q¥ = ||[(QX —
I,) (2 — Q*)|| = 0p(1). Consequently,

1 o R

= ST EI O QE;S, = = 6T ETQ Ed, + 0,(1)
" i=1 " i=1

£ My + o,(1).

Therefore, using the probability bound on the tail of thedgad Gaussian distribution, we know
that

Kpn
Pr(F°) < Z Pr(n1/2|773| > nl/zx\ln)

s=1

n\?
<0,(1) Y exp (— 2M1")

B nA?,
2maxs{ M}

< Op(Kpy,) exp {

which tends to 0 when\;,, = [2max,{M,}logp,/n]'/?. Consequently, by considering the
eventF, we have

Kpn
1< D InslIAR] < Al Al
s=1
with a probability tending to one. Note thak;| < A, >0 371 e [Bpgy — Dy, | <

(K — 1)1, ||ALll- Thus, with a probability tending to one, we have
11| + [ I3] < KAiallAulh
< K3P2piP A Aulle
= Op(pn log pp/n).
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The proof can be concluded from proving tHat> Csp,, log p,,/n for some constant’s.
Since||Q — Q*|| = 0,(1), we have

I & .
Ih = o > ATETQ*EAT +0,(1)
=1

1 [1&E
— = A3
e {nk—1nkH ukH2}

1
> 2 min - [|A,3
Ko 1<k<K n

v

- CZPn IOg pn/n
with a probability tending to one. This finishes the proof. O
Before proving Theorem 2, we first prove the following lemma.

LEMMA 1. Let |- [[rp : R — R be the fused penalty |z]lrp = Y1 <poper |k — Tr]. w0

Then, || - || rp isconvex and, for any z € R, the subdifferential d||z|| »p isthe set of all vectors
s € R¥ such that

S; = ngr(l’l —l’j),
J#i
fori=1,... K.

Proof. For eachj =1,...,K — 1, let HY) be a(K — j) x K matrix with HZ.(Z?) = —1,
Hfjl)ﬂ =1fori=1,...,K — j and 0 otherwise. Denote h{ the K (K —1)/2 x K matrix

with jth row block matrixi ). Then, for anyr € RX, ||z||pp = || Hz||1. Note that thé; norm

Il - 1|1 is convex and| - ||p is the composition of a linear functional by tthe norm. Hence,
| - |l=p is convex. Further, by the definition of the subdifferentitihel; norm, for anyy € R¥,

[Hyl1 < |Hx|i+ < H(y —z),v > (2)

holds if and only ifv € W,, ¢ REK(K=1D/2 whereW, is the set of all vectors = sgrn(Hz).
Note that

80

<H(y—w),s9nHz)>= > {(yw —2w) — (y — 21) }SGNap — 1)

1<k<k'<K
=273 (e — ) — (e — x0)ysON(a — 2x)
k' £k
K
=> (—)§ > sgn(zy — zp)
=1 k'#k

Thus, equation (2) is equivalent to

lyllrp < l|zllFp+ <y —z,5 >,

wheres is a K -dimensional vector withith component; = ., sgn(z; — x;). The set of all
such vectors is, therefore||z|| rp. O
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Proof of Theorem 2. First, we prove the sparsistency of the precision matixregor (2. The
derivative ofQ,, (w, i1, Q) w.r.t. Q;; for (j,1) € A% j # lat(w, 1,2) is

0Qn (@, i1, $2)

90, = Gj1 — 8j1 — 2222S9N(Y1),

wheres;; is the(j, 1)th element ofS = S(/1) and sgria) denotes the sign af. Note that

n K
* 1 *
S=8(u") - EZZTMA/%(‘TZ' _,Uk)T
=1 k=1
n K

n K
_% ZZTZR(%Z - MZ)AZ,C + % ZZTMA/%A/:ZC

i=1 k=1 i=1 k=1
20— I — I3+ I

Then, we decomposg;; — s;; = Ay + Az + Az, where
Ay =65 — oy, As = o5 — Tiji, A = Ioji + I35 — Ly,

where Bj; denotes thej, [)th element of matrix3. Now, consider the order of;. Under con-
dition (A), we havel|2*|| = O(1) and||Z|| < {Amin(Q — ) + Amin (%)} =1 = O,(1). Thus,

x| <[5 - =7
< 20 1€ =) - 1=

— 0, ().

By Lemma 3 in Bickel & Levina (2008), we havyels| = O,{(log p,/n)"/?}. Now, we estimate
the order ofA3. Sincemax <<y, [|fi;) — M*(j)H% = Op(pn1) for a sequence,,; — 0, we have

1 n K
DIET) LN
=1 k=1

251 =

k=1
K 1/2
<0p(1) - (Z A) = 0p(p2)")
k=1

Similarly, we havel 3| < O,(pr)) and|Li;i| < Op(pn1). Thus,|As| < O,(pr)’). Combining

above results yields that

max|3j1 — 511 = Op{(log pu/m)/? + 9, + priy'}.

Hence, we need to havegp,/n + pn1 + pn2 = O(\3,) in order to have the sign of
Qu (@, f1,Q) /0 that depends on s¢ft;;) with a probability tending to one. This completes
the proof of Thearem 2(i).
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Next, we prove the second result of Theorem 2. The main idg¢heoproof is inspired by
Rinaldo (2009). Lef, = n~! > Tk k=1,..., K. Then, by Lemma 1, we know that

1 n

N N RSN

e = — Y Tkt — MnTy 'Sk
ny =

wheres, = (811, .-, 8kp,)" With jth elements,; = Y=, sgr(fix; — fur;). Hence, fork, k' =
1,...,Kandk<k’, 100

n

o ~ Tik! Tik T ——1 A 1
By — Hkj = E (n - n_> Tij — >\1n€j E(Tk/ Sgr — Ty, 5%)
; k' k
=1

whereey, is ap,-dimensional unit vector with théth component 1. Sinc.«(3) = |2 <
{)\min(Q - Q*) + )\min(Q*)}_l < k9 and ‘%]g_llgk’l — fk_l§kl‘ < 2(K — 1) for l=1,...,p,,
we have

X S 80 — 7780 2 < Amax(2) 175 80 — 7 8l2
< 22k (K —1). 3)

As aresult, the everft = B} occurs in probability if both

n
Tik'  Tik 1/2
max E — — x| <2 ko(K —1 4
B i=1 <nk/ nk> ) 1nPn 2( ) ( )
and 105
e T,
. Z ik’ ik o Tsv=—1a  =—1a

L i=1 <nk a n_k> Tij = Mn€; (T 8w — T 8k)| > 0 ©)

hold with a probability tending to 1 and — oo.
We first consider (4). For the sake of simplicity, et = 2xo (K — 1) andagi; = T /ngr —
Tik/Mk, @ = 1,...,n. Then, by condition (C)(i), we know that

n
Tik! Tik

D G
N ng

i=1

n

Z Akk’i€ij

i=1

max < max + OP(Alnprlzﬂ)v

wheree;; = z;; — S, Tikky,;» Which follows normal distribution with mean 0 and variance
ol Let P =351 appie, koK =1, K, k <k andj=1,...,p,. Itis easy to Show w
that Effkl =0, Var(f;?kl) = Y im1 0Rwi0); < 2075, and CO‘@?M7 = Qi for
each(k, K, j) # (I,I',t). For (k, K, j) € B, let¢M ~ N (0,37, af,,,07;) such that

E((Y)? = EEY)%. forall (hK.j) € 5.

E( ngk' tzz') > E( ?k’ il’% forall (k,k',7),(1,I',t) € Bandj # t.
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Then, by Slepian’s inequality (Ledoux & Talagrand, 19913 &hernoff’s bound for standard
Gaussian variables, we have

Pr(max \gkk | > Aipp/2M) < Pr(max ]Ckk | > Appl/2M)

< ZPr Ckk | > Anpl/2M)

o M?
< Z 2 exp { 15;1 }

max

A pnM
= 2exp{—% + log |B|},

max

which vanishes under condition (C)(i).
In order to verify (5), it is sufficient to show that

n

T ——12 1,
E agkri€ij — Mn€j X(Tp Sk — Ty k)
i=1

min
<oy,

max
Be

with probability tending to one as — oo. Using the triangle inequality, we only need to show
that

max ‘/\Me E(Tk, Sp — Ty, lsk)‘ omin /9 (6)

and

max a2 (7)

n
§ Apkri€ij| <
i=1

Because of (3), it is easy to see that the inequality (6) hotdier condition (C)(ii). Then, we
turn to (7). For(k, k', j) € B, let (" ~ N(0, 2b},,,) so that

max

E(GM)? = B2 forall (kK. j) € B,
E(CH ) > B e, orall (k, K, 4), (I, t) € B and;j # t.

Then, again, by Slepian’s inequality and Chernoff's boumdstandard Gaussian variables, we
have

Pr(max|¢f*| > o™ /2) < Pr(max (/| = a}i™/2)

mln 2
< Z2exp{ 16b* ) }

max

(amln)2
=2 —— 41 ¢
eXp{ T6b7 + log | B|

max

which vanishes under condition (C)(ii). Hence, the prooTbéorem 2(ii) is completed.  [J
Proof of Theorem 3. Given the estimate$, /1 and(2, a new observation* is assigned to the
kth class if

2T (fu, — fu) > log(@n /o) + { (i + ) /23 QU fur, — fua) (8)
fori=1,...,K andl # k, wherejis = > """ I(yi = s)xi/ > i I(yi=s),s=1,..., K.
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Given data(y;, z;) for i = 1,...,n, the conditional misclassification rate of the proposed
method is given by
2 1)k ST ¢ STAHR
1 0 Q —61Q0/2
1y q){ (1 — fix) — 873/ }
24 SO0
whered = iy — iz andd = jiy — jis. 0

(i) Since||2 — Q*||> = O, (pn2) for a sequence,» — 0, we have
1= -2 = 5@ - )=
<10 - 12 =) =7
< 2] - Oplrzpyy).
Note that|| ]| < {Amin(Q — Q%) 4+ Anin(2%)} 1 = O,(1). Hence,
I1£ = =117 = Op(pn2)-
Consequently,
3TON* 06 = 701 + 0, (001} = 6T 6{1 + 0, (p 1)}

Without loss of generality, we assume that (57, 07)”, whered; is theb,-dimensional vec-
tor containing nonzero componentsdfLet §;, = (637,077, whered; is theb,-dimensional 1

vector containing nonzero componentsSprhen, from Theorem 2, we ha‘ég = b,, and con-
sequently,

16 = 85115 = 101 — 55113 = Op(bnpn1)
with a probability tending to one. It together with conditi¢A) implies that(s — &%)7Q* (5 —
5%) = Op(bupur)- Thus,(§ — §2)7Q767 < A, O, (b * pi?) and
0T = (5 —65)7Q" (0 — 7)) +2(6 — 07) T + A2
= Ain{l + Op(bl/2piz/12/APn)}'

Letiy — pi = (7, ~3)T, wherey; is ab,-dimensional vector. Partitiof* into 140

o = g o).
[ng Q22
whereQ;, is ab, x b, matrix, and partitior>*, Q2 and>: in the same way. Then,
0T Q(in — 1) = 67 Quimt + 67 Qa7
with a probability tending to one. Further, by Cauchy-Scimiaequality and the fad®;;* <
3%, we have (67Q1171)% < (6708)0, (b, /n) and (67 Qiav2)? < (57Q0) (v QE s e

{1+0 (pi/;)}]. Note that all eigenvalues of sub-matrices(®f and X* are bounded under
condition (A). Then, we have that 145

E(d Q751 Q072) < woE(W Q37 Q%572)
2
< By tr(Q5,913)

3

< k3a,/n.
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Therefore,

0T — 1) _ Op(\/bu/1) + Op(y/an/n)

STO%*Q0 1+ 0,(p?)

)

which also holds whep — 11} is replaced byis — 3 or & — 67 Furthermores” 6 = 676 +
0TQ (6 — &) + 6767, — 0) and {67 (67 — 0)}2 < (376 )Op(bnpnl). Therefore,

(U672 — i) = 6795/2 _ 0p(\/Bu/) + Op(/anf) + Op (bupa)

A3 1+ 0p(01)

B Ay, \/1 + Op ;L/zpiz/lz/Apn)

21/1+ 0,(01%)

= —{1 + Op(cn)}APn/2’

which implies the result in (i).
(ii) Let ¢ be the density of. Then, by the result in (i),

R,, — RopT = ¢(Vn)0p(cn)7

where v, is between—A, /2 and —{1 + O,(c,)}A,,/2. SinceA, is bounded,p(v,) is
bounded by a constant aiityptis bounded away from 0. Hence, the proposed method is asymp-
totically optimal andR,,/ Ropt — 1 = Op(cy,).

(iiiy When A, — oo, Ropr — 0 and by the result in (i)R,, —— 0, we haveR,, — Ropt —
0.
(iv) If A,, — oo and anf,n — 0, then, by Lemma 1 in Shao et al. (2011), we have

R, /RopT RSt 0

2. FIGURES FOR THE KIDNEY TRANSPLANT REJECTION AND TISSUE INJUR

Figure 1 summarizes the classification accuracy using btsxpbr the proposed covariance-
enhanced discriminant analysis, fusion-regularizedalingiscriminant analysis (Guo, 2010),
doubly [;-penalized linear discriminant analysis, sparse discrami analysis (Clemmensen
et al., 2011) and; -penalized linear discriminant analysis (Witten & Tibsimir, 2011). Figure 2
presents the heatmap of the estimated centroids for the &Binformative genes selected in the
kidney transplant rejection and tissue injury data set.
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Fig. 1. Classification accuracies of the five methods on tdedy transplant re-
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Fig. 2. The heatmap of the estimated centroids for the 19 mfustnative genes se-
lected in the kidney transplant rejection and tissue inflata set. Rows correspond
to genes and columns to classes. The right is the color key.
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