Supporting Information for “Building Generalized Linear Models
with Ultrahigh Dimensional Features: A Sequentially Conditional

Approach” by Qi Zheng, Hyokyoung G. Hong, and Yi Li

A: Proofs of main theorems

The proofs of the main theorems and corollaries are contained in this section.
Proof of Theorem 3.1: Given an index set S and r € S¢, let BX(d1) = {Bg : |85 — 85| <
A /(KVE)) and Blo(dy) = {8, « |6 — Bl < do/K), where di = Au/plogp/n and
dy = AGW with A, and Ag defined as in Lemma 6.
We first define an event
Op={ s |G {1(BEXs,Y) ~ 1 (B X, Y) }| < 243d1V/plogp,
|1S|<p,B s€B%(d1)

sup ‘Gn {l (,6§XS + /BT‘XT)
1S|<p,rese,Bs€BY(dr),BreB! 4(da)

—1(B%" Xs + BsXr )}| 2A3(dy + da)+/plogp,

max |G, {l B Xy, )} | < T(A2K L + bmax)\/plog p,

IS|<p

|S|<p,rese

max |G, {l B X —|—5T‘SXT,Y }| > 7( 2A2KL+bmaX)\/plogp},
where A; and Aj are defined as in Lemma 4. By Lemma 4, P(€3) > 1 — 24 exp(—6plogp).
In the rest of the proof, we consider the sample points in (23.

In the proof of Lemma 6, we show that maxs<,||Bs — Bl < AsK'(p*logp/n)/?

almost surely given §23. Given an index set S and B¢ such that |S| < p,||Bg — Bsl| <
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A K (p?log p/n)'/2, and for any j € S°,

Csugiy (Bj151Bs) — £s(Bs)
= 072G, {I(B5Xs + 86X, Y) = UBS Xs + 55X, Y )}
+ 072G, {1(BE X + 85X, V) } + E{UBEXs + 85X, Y)} — E{I(B5Xs,Y)}
n2G, {I(B5Xs,Y) — 1(B5'Xs, V) } — 712G, {1(B5 X5, Y)}
—243A1p% log p/n — T(2A2 K L + bmax) v/ plog p/n + E [Lsu((B8;5185)] — E {£s(Bs)}
— T(AyK L + byax)\/plog p/n — 245(As + Ag)p? log p/n
> —OmaxAmax A K " (p*1og p/n)|B16| + owmin/37/2
— T(BA3 KL + 2byay )/ plog p/n — 2A5(2A4 + Ag)p? log p/n,

where the first inequality follows from the definition of 23 and the last inequality follows

from part (4i7) of Lemma 5. Thus,

Csuy(BysIBs) — Us(Bg) = inf Csugy (BislBs) — Ls(Bg)

18 s—BsI<AK= (o2 logp/n)1/?

2 _Umax>\maxf44[(_1(p2 logp/n)1/2|5]*|5| _I_ Uminﬁ;ﬁs/z
— T(3A3K L 4 2byax) v/ plog p/n — 2A3(24,4 + Ag)p* log p/n.

By Lemma 1, if M € S, 9r € S°NM, such that |5:\s’ > Co L n=®. Thus, there exists some

max

constant C that does not depend on n such that

Hé%xﬁsm}( B:51Bs) — Cs(By)

> C20min0 2,0 2 /2 — OpaxAmax As K "1 (p* log p/n)/*Cot

— T(3A3 KL + 2byax) v/ plog p/n — 2A3(2A4 + Ag)p® logp/n = Cyn™?

provided pn~1t4*log p — 0. Moreover, we obtain that

‘S‘gﬁgs%%}fg%{a}{(ﬁs Brs(Bs)'} — ls(Bs) = |S|<I,roll/I\}l,@SIjIé%§€SU{]}{ i15(85)|Bs} — £s(Bs)

> B:4lBs) — ls(Bg) = Cin~ 2
/‘Slg}lﬂl}@s%%i(gsw{y}( BslBs) — Ls(Bg) = Cin™™,



where the inequality follows from Bj‘ S(B\S) being the maximizer of ésu{j}(ﬂj@ g)-

Withdrawing the restriction to €23, we obtain that

—2a > _ _ .
PLSKIEIIAI;ZS%VSU{J}{@s(ﬁs>!ﬁs} ls(Bs) > Cin }/1 24 exp(=6plogp)

This completes the proof of Theorem 3.1. U

Proof of Corollary 3.1: Define

0, { | min max b (Bys(BIB) — t5(B) > G},

|S|<p,MZS jeS©

Qg, = {Sup ‘]En {Z(BTX, Y)}| < (\/§M + 2,umax)T[(L + bmax} .

€B

By Theorem 3.1 and Lemma 3, the event €24 N Q5 holds with probability at least 1 —
26 exp(—6plog p). We thus restrict our attention to the event 2y N 5.

Given any S such that |[S| < p, M € S, let r be the index selected by SC. Then given
Q4NQs, Lsugry (BSU{T}) —l5(Bg) = Cin=2e If pn~ 14 log p — 0, then n~' (log n+2nlog p) =

o(n™2%) and thus,
EBIC(S U {r}) — EBIC(S)

= —2l500 (Bsugry) + (1] + 1)(log n + 2nlog p) /n — {25 (Bs) + [ S|(log n + 2plog p) /n}

—2C1n** + (logn + 2nlogp)/n < 0,

when n is sufficiently large. Therefore, our proposed SC does not stop when M Z Sy and |Si| <

p. Noting that

2(V2M + 24t ) T L + 2be > sup B, {1(BTX,Y)} — énf E,{l(B'X.,Y)}
eB

Ber

2 gsk (Bsk) gSO /650 Z {gSt IBSt gSt—l(BSt,1>} 2 k01n72a7

1<t<k

we have that M ¢ Sy implies 2(]1_1{(\/§M+2umaX)TKL—|—bmaX}n2"‘ > N, which contradicts
the definition of N. Hence, we have some k < N such that M C S, with probability at least

1 — 26 exp(—6plogp). This completes the proof of Corollary 3.1. O
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Proof of Theorem 3.2: In the proof of Corollary 3.1, we have shown that, with probability
going to 1, SC will not stop when M ¢ S and |S| < p.
For any r € S°NM°, B4 is the maximizer of E{(s.(,1(5:|85)}. Hence, by the concavity of
[ﬁsu{r} (57",65)} "5 18 the unique solution to the equation £ [{Y p(ﬁ Xg + 5, r) }Xr}
= 0. By the mean value theorem,
B Y = u(B5Xs) }x,| = B [{n(BTX) - n(85Xs) } X. |
— B [{n(85X) = (85" Xs) } Xo| = B [{n(8IX) = (B Xs + 815X,) } X, |
= BsE {0 (BT Xs + 5, X,) X2},

where BT is some point between 0 and 6;f| S

By Conditions (A) and (B),

< 1185111 Xsllos + 1B:/1X,| < 2K L. Thus,

‘ (/6 XS + 5r 7")| Omin and

o) = |B [{¥ — n(B8Xs) } .|

Therefore, |ﬁ;‘|s| = o(n~*) and consequently maxg.|sj<p,resenme

*
7‘|S"

= |85 {0 (857 Xs + 5. X,) X2} | 2 oin |8

Brsl = o(n™).
Under Q3 that is defined in Theorem 3.1, maxs|<, 1Bs — B5l < AK 1 (p*logp/n)'/?
almost surely. For any r € S¢,
lsuiry (BrislBs) — €s(Bs)
= n'G, {I(B§Xs + 15X, Y) — I(B5 Xs + 815X, V) }
+ 072G, {1(B5 Xs + B1s X, Y) } 4+ E{U(BEXs + 85X, V) } — E{I(B5Xs,Y)}
n G, {U(B5Xs,Y) = U(BE X5, Y)} —n G, {18 Xs,Y)}
< 243A1p" log p/n + T(2A2 K L + bnax)\/plog p/n + E [Csupy (Bs18s)] — E {€s(Bs)}
4 T(AK L + bunae)\/plog p/n + 2A5(As + Ag)p*log p/n
< Omax Amax AdK " (p*log p/n) | B5s| + Omin 35 /2
+ T(BA3K L + 2byax )/ plog p/n + 2A5(2A4 + Ag)p*log p/n,

where the first inequality follows from the definition of €23 and the second inequality follows



from part (éi7) of Lemma 5. Thus,

fsu@(ﬁﬁs@s) - ES(BS) < Sup Csu(sy(B)1518s) — €s(Bs)

185 B5I<A1K=1(p? logp/n)1/2

< O_max)\maxA4K_1(p2 10g p/n)1/2|ﬁ;f|5’| + O'minﬁ;kﬁg/2

+ T(BA KL 4 2byay )/ plog p/n + 2A3(2A4 + Ag)p® log p/n.

: - —1+4
Since maxg.|s|<p,resene ﬂ:\s| =o(n™®) and pn~'"**logp — 0,

DX Csugry(Brys1Bs) — Ls(Bs)

< OumacAmax A4l (07 log p/n)2o(n”*) + ommo(n~**) /2
+ T(3A2 KL + 2bmax) v/ plog p/n + 245(244 + Ag)p*log p/n < Crn™/3.

By Part (ii) of Lemma 6, with probability at least 1 — 12 exp (—6plogp),

max  Lsyqr) {Bfls(BS)lﬁs} —ls (,[A'-J'S>

|S|<p,reSeNMe

< max
|S|<p,reSecnMe

45u{r}{§r|5(as)|3s} — Lsugry (5:|s|Bs>‘

Loy (Bs1Bs) — Ls(B
g max Lsu }H(BrislBs) — €s(Bs)

< Azp?logp/n+ Cin~2*/3 < Cin~2*)2.
Withdrawing the restriction on €23, we obtain that with probability at least 1—36 exp(—6plog p),

max  Lsugy{Bus(Bs)Bs} — s(Bs) < Cin /2.

|S|<p,reSenMe
Therefore, if M Z S, SC would select a noise variable with probability less than 36 exp(—4plogp).
For k > |M|, M € S, implies that at least k — | M| noise variables are selected within the

k steps. Then for k = Cy| M| with Cy > 1,
k

PMZS)< Y (];){36exp(—4plogp)}j < [MIEMI{36 exp(—dplog p) }
j=hM]

< 36 exp(—4plogp + log M| + [M]log k) < 36 exp(—3plogp).
Therefore, M C S¢, )z With probability at least 1 — 36 exp(—3plogp). This completes the

proof of Theorem 3.2. O
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Proof of Theorem 3.3: As shown in Corollary 3.1, SC will not stop when M Z S and |S| <
p with probability converging to 1. Also, by Corollary 3.1 or Theorem 3.2, M will be included
in Sy for some k£ < p with probability going to 1. Therefore, SC stops at the kth step if
EBIC(Sjs1) > EBIC(S}).

On the other hand, it is easy to see that EBIC(Sy1) > EBIC(S}) if and only if 2, |, (ESHI)—
20, (Bsk) < (logn+2nlogp)/n. By Lemma 7, conditions (A5) and (A6) in Chen and Chen
(2012) are satisfied with probability tending to 1. Thus, following the proof of Equation (3.2)
in Chen and Chen (2012) with [Sky1| — |Sk| = 1, we can show that with probability tending

to 1,

25,1 (Bs,,,) — 205.(Bs,) < (logn + 2nlogp)/n,
for all n > 0. Thus, with probability tending to 1, the procedure stops at the kth step. This

completes the proof of Theorem 3.3. U

B: Additional lemmas and proofs

We state and prove several needed lemmas.

LEMMA 1:  Given a model S such that |S| < p, M € S, under Condition (E),

(i) Ir € S°NM, such that )5 # 0.
(it) in addition, if Conditions (A) and (B) hold, then 3r € S°N M, such that B¢ =

Co-l n=,

max

Proof: As ﬁj’f'S is the maximizer of F'{{sy;)(5;/8%)}, by the concavity of £ VSU{J'}(@"IBE)}’
ﬁj’?'S is the solution to the equation F [{Y — M( ETXS + ﬁJXJ') }XJ} =0.

(7): Suppose that Bis =0,Vj € 5N M. Then,

0=FE HY — (85 Xs + 85X;) }Xj]

+ g P00 -0}

B [{n(8X) ~ n(B7Xs) } X,

0,




which contradicts Condition (E). Thus, 3r € 5N M, such that 35 # 0.

(71): By the mean value theorem,

B {Y - u(85Xs) } X, | = B [{1(BYX) - n(85"Xs) } X, |
= 5 [{(B1%) - n(87%s) } .| — B [{1(81%) - n(B5Xs + 675%,) } X,
:5:‘515{ (85 Xs + 5,X,) X }
where 3, is some point between 0 and 5;5,3.

By Conditions (A) and (B), < 185X sllo + 15,11 X,| < 2K L. Thus,

| (/6 XS+/6’I‘ r)| Omax and

cn < B [{n(B1X) - n(85"Xs) }x,]

Therefore, |B:|S| > Co! n=® This completes the proof of Lemma 1. O

max

= |52 {0 (B5"Xs + B.X,) X2 | < o [35].

LEMMA 2: Let &,i = 1,...,n be n i.i.d random variables such that || < B for a
constant B > 0. Under Conditions (A), (B), and (C), we have E (|Y;& — E[Yi&] ™) <

m!(2B(V2M + pimax))™, for every m > 1.

Proof: By Conditions (A) and (B), |8, X;| < KL, Vi > 1. Thus, |u(8,X;)| < funax and
consequently, E (|Y;]) < E{|Y; — u(B; X:)| + |M X)) )|} < Ella]] + pmax < E(‘f?)lm +

Limax < V2M 4 fimax, Where the last inequality follows from Condition (C). Then

E(Y|™) = E{|e + p(BTX,)|"} < E {Z (T) il }uw*TXz-)!m‘t}

t=0

S () ey < 3 () e+ 35 (1) e i

t=2

< e+ mE (Je) it + 31 (””) Mt

=2
o m
{Iumax + \/_M:umax + Z ( )Mty’g’faxt} g m'(\/ﬁM + ,Umax)m7
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for every m > 1. By the same arguments, it can be shown that, for every m > 1,

B{|Yi& - EIYi&] "} < E{(Vigil + |E Vg )"} < E {Z (7 )meliz el rm-t}

t=0

<y (m)E (Vi) B'E (W)™ B < m{2B(V2M + i)} ™

t
t=0
This completes the proof of Lemma 2. O

LEMMA 3:  Under Conditions (A) — (C), when n is sufficiently large such that 28+/plogp/n <
1, we have SUP G ‘En {l(,@TX,Y)}’ < (V2M + 2imax)TK L + bay, with probability 1 —
2 exp(—8plogp).
Proof: By Conditions (B), SUP gy ‘,3 X| < 7KL. Thus,

P E. {I(B"X,Y)}| < sup [E, ([YB"X])[ + sup E, {|b(B8"X)[}
€B

€B €B

E, (1Y) TKL + b < |

‘|

where the last inequality follows from Lemma 2.

= E(YD} + E(YD] 7KL + b

— E(Y)}H] 7KL+ (VEM + o) 7KL + b,

Taking & = 1{Y¥; > 0} — 1{}; < 0} in Lemma 2, we have E [||Yi| — E[|Y;|]|"]
M (2(V2M + fimax))™. Let Ay = 2(v/2M 4+ pimax). Applying Bernstein’s inequality (Lemma

2.2.11 in van der Vaart and Wellner (1996)) yields that

Z{\Y! E(Yi))}

< 2e><p(—8p10gp),

49A%nplogp
> TA1/nplogp| <2 - 1 !
M@] eXp( A+ uA/nplogp)

when n is sufficiently large such that 28/plogp/n < 1. Thus,

sup |E.{{(8"X,Y)} = 2(V2M + ftnax) TK L + biax

BeB
< P |sup |E, {I(B"X, Y)}’ > (TA1\/plog p/n + V2M 4 fimax ) TE L + byax
BeB

< 2exp(—8plogp).

This completes the proof of Lemma 3. U



LEMMA 4: Given an index set S andr € 5S¢, let BY(d1) = {Bs : |Bs—B%| < di/(K/s)}

and B} g(dz) = {5, - |5, — Bisl < do/ K}, where di,d> < KL and s = |S|. Under Conditions

(A) = (C), when n is sufficiently large such that 28+/plogp/n < 1, we have

(1) |Gn [l (BsXs,Y) — 1 (B Xs,Y)] | < 243d1y/plogp, uniformly over B4 € Ba(di) and
|S| < p, with probability at least 1 — 6 exp(—6plogp), where As := T(2v/2M + 3fimax).-
(ii) |G, [l (B5Xs + 5, X,) — (,3 Xs + By Xr >] | < 2A3(dy+ds)\/plog p, uniformly over
Bs € Bg(dy), B € B} g(da),r € S¢ and |S| < p, with probability at least 1—6 exp(—6plogp),
(iii) |Gy [U(BE X5, Y)] | € T(A2K L+byax)v/plog p, uniformly over |S| < p, with probability
at least 1 — 6 exp(—6plogp), where Ay := 2(v/2M + fimax)-
(iv) |G, [Z(BETXS + Bis X Y) ‘ T(2A3K L + byax)Vplog p, uniformly over r € S¢ and

|S| < p, with probability at least 1 — 6 exp(—6plog p).

Proof: (i): Let R(dy) denote a ball with dimensionality s and radius d;/(K+/s). Then
BY(dy) = Rs(dy) + B%. Let Cs := {C(&,)} be a collection of cubes that cover the ball Ry(dy),
where C(€,,) is a cube containing &, with sides of length d;/(K+/sn?), and &, is some point
in R,(d;). Since the volume of C(&;) is {d;/(K+/sn*)}" and the volume of R,(d;) is less
than {2d;/(K+/s)}*, we need no more than (4n?)* cubes to cover R (d;). Thus, we can
assume |C,| < (4n?)® without loss of generality. For any & € C(§,), ||€ — &.]| < di/(Kn?).
In addition, let T15(¢) = E,[Y€"Xg], Ths(€) = E, |b{(85 + &) Xs} — b(B5 X5s)|, and
Ts(&) = Tis(&) — T2s(8).

Given any & € Rs(d;), we can find some C(§;,) € Cs containing &. It is easy to see that

Ts(&§) — E{Ts(§)} < |Ts(§) = Ts(&)| + |Ts (&) = E[Ts(Ep)]l + [E[Ts(8)] = E[Ts(&4)]|

= I+I11+1II.
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We deal with I71 first. By the mean value theorem,
E{Ts(&,)} — E{Ts(&)} = E [Y (&, — €)' Xs +b{(B5s + &) Xs} —b{ (85 + &) " Xs}]
— B{Y (&~ &)"Xs}+ B [u{ (85 + &) "X} (6 — "Xs]
where £ is some point between € and &,. We bound the two items separately.
|E{Y (& — &) "Xs}| < E(Y]) di/(KEn*)VsK < (V2M + fimax)di/5/n”, (2)

where the first inequality follows from the fact & € C(€,) and Condition (B), and the second

E [u {(ﬁs +E)TXS} (&, — €>TXSi| ‘ <

inequality follows from Lemma 2. On the other hand,

pmaxd1~/S/n?. This, coupled with (2), yields that
|E{Ts(&)} — EA{Ts()} < (V2M + 2ptna)di/5/n°. (3)
Next, we evaluate 1. Since |Xs€| < d; for all € € Ry(d;), by Lemma 2,
E{|YE&IXs — B (YELXs)|™} < m{2(V2M + jinax)di }™ = m!(Asdy)™.

By Bernstein’s inequality,

P L<1§Ea}§2)s n|Tis(§x) — E{Tis(&x)} > TAadiv/np logp}

1 49(Aady)*plogp
22(Agdy)? + 7(Agdy)24/plogp/n

when 7 is sufficiently large such that 28,/plogp/n < 1.

< (4n?)" 2exp (— ) < 2exp(=8plogp),  (4)

As [{(Bs+&,)" Xs} — b(B5 X s)| < fimaxdi, applying Bernstein’s inequality again yields

that

P { max 1 |Ths(§y) — E{Tas(&)} > 7umaxd1\/np10gp} < 2exp(—8plogp).  (5)

1<k<(4n2)°

Combining (4) and (5) together

P [ max  n|Ts(&,) — E{Ts(&)} > Agdlx/nplogp} < 4exp(—8plogp), (6)

1<k<(4n2)®

where Az := 7(2v/2M + 3fimax)-
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We now assess I. Following the same arguments as used for Lemma 3,

P {Esg(lg | I T5(€) — Ts(€)] > (2V2M + 3umax)d1¢§/n2} < 2exp(—8plogp). (7

Combining (3), (6), and (7) together yields that

P o T5(8) — E{T5(&)}| > 2Asd1+/plogp/n
ERS 1
<P sup Ts(€) — E{T5(&)} = Asdiy/plogp/n + (2V2M + 3umax)d1x/§/n2]
EGRS dl

< Gexp(—8plogp).
By the combinatoric inequality (’S’) < (ep/s)®, we obtain that

P

sup G, {l (BXs,Y) — 1 (85 X, )}\>2A3d1\/plogp]
|S|<p,B 5€BY(d1)
P

<) (ep/s)*6 exp(—8plogp) < 6exp(—6plogp).

s=1

(#1): Let I(dy) denote the interval [—dy/K, dy/K]. Then B} ¢(dz) = Bis + 1(dz). Let D :=
{D(v;)} be a collection of intervals that cover I(ds), where D(1;) is an interval containing
v, with length do/(Kn?), and v; is some point in I(dy). Then |D| < 4n? and || < d/K.
Since the length of D(14) is do/(Kn?) and the length of I(dy) is less than 2dy/ K, we need
no more than (4n?)* cubes to cover R4(d;). Thus, we can assume |C,| < (4n?)® without loss
of generality. For any v € D(1,), |v — 1| < da/(Kn?).

Let Tisr(€,v) :==E, {Y (¢'Xs +vX,) }, Tosr (&, v) = E, [b{(B5+€) X5 —i—(ﬁ;]s—i-y)Xr}_

b(Bs" Xs+ s Xr )], and Ts, (&, v) := Tis, (&, v) — Tos, (€, v). Given any (£7,v)" € R,(dy) X

I(dy), we can find a C(§;,) in Cs containing & and a D(v;) in D containing v. Then,
Tsr (€ v) = E{T5r (& v)}| < [Tsr(§,v) = Tsr(&ps ve) | + | Tsp (§p ve) — EA{Ti5r (&, 14) ]
+|EA{Ts. (&)} — E{Ts (&, v)}H = IV +V + VI,

The items IV, V, and VI can be evaluated by the same arguments as used for I, I1, and I11,

respectively. Thus, we omit the details here. Combining the bounds of the items IV, V, VI
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yields that

P sup G0 {1 (85K + 5,.X,) — 1 (8K + 535X, )|
|S|<prese,B4eBL(d).BreBL 5(d)

> 2A3(dy + da)+/plogp| < 6exp(—6plogp).

(73i) and (7v): The two parts can be easily proved following the arguments used for Lemma

3. We thus omit the details here. This completes the proof of Lemma 4. O

LEMMA 5:  Given a model S and r € S, under Conditions (A), (B), and (D), for any

1Bs = Bsll < L/v/s and B, € [-L, L},

(i) OminAminl|Bs — B5[1*/2 < E{ls(B5)} — E{ls(Bs)} < OmaxAmax||Bs — B5l%/2-
(”) O-min(ﬁr - ﬁ:|s)2/2 < E {ésu{r}(5:|5|/33 } E {£Su{r} BT|/BS)} O-max(ﬁ :|5)2/2
(iii)
- Umax)‘maXHIBS - ,3;” |5r - 5:\3’ + Uminwr - ﬁ:|s|2/2
<FE {fsu{r}(ﬁf\sfﬁs)} — E{lsuiny(B:18s) }

g O—max)\maxH/QS - B*S|H/6T - B:|S‘ + O—max’ﬁr - ﬁ:|3|2/2

Proof: (i): For any |85 — B4l < L//5, [|8s — B3lli < L. Then by Taylor’s Expansion,
B {ts(85)} - B {4s(83)}
= B{YXE ~ u(BXs)XE} (B — 85) + 5 (Bs — B E { ~o(BsXs)X5 } (85— 65)
= (85— 85" E {0 (BiXs) X?Q} (85— B3).
where B is between B¢ and B%. By Condition (D),
T hminllBs — B3I /2 < B {Ls(83)} — E {£5(85)} < as a8 — BEI?/2.

(ii): Similarly, for any g, € [—L, L], it can be shown that

O-min(ﬁ’r‘ - /6:|S) E {gsu{r} 7‘|S|BS } E {ESU{T} 67"':85’)} Jmax(ﬁr - ﬁ:|,5‘)2/2
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(iii): Noting that F [{Y u(ﬁ Xs + BrisXr )}XT] = 0, it can be shown that
E {lsupry (Br1Bs) } — E {lsury (Bys1Bs) }
= B{Y — u(BYXs + 515X:) } X,] (5. — Bis) — 5F {o (B5Ks + B.X) X2} (5 — B
= (6, - B15)E {7 (BsXs + BsX:) X, X5} (B — B)
- F {U(ngs + Brs X)X )X } (Br = Brs)%/2,

where ,@ ¢ is some point between B¢ and 3% and Bn 5 is some point between [, and ﬁ:l 5

By Conditions (A) and (B) and the facts that B¢ € B and 3, € [—L, L], simple algebra
shows |65X5 + 53715 Xr| < 2KL and |BeXs + 57» sX,| < 2K L. By Condition (D) and the
Cauchy-Schwartz inequality, we obtain that

— OmaxAmax||Bs — Bsll|Br — 85| — Omax|Br — Bris]*/2
< (5, — 1) E {0 (BsXs + 6,X,) X, X5} (Bs - B)
= B {0(BEXs + FusXe) X2} (8, — s 2
< O huax|1Bs = B5118: = Bjs| = Fwinl Br = Bl /2.

This completes the proof of Lemma 5. U

LEMMA 6: Under Conditions (A) — (E),

(i) There exist some constants Ay and As that do not depend on n, such that ||35 -
Bill < ALK '/p?logp/n and 05(Bg) — ls(B%)| < Asp®logp/n hold uniformly over
S |S| < p, with probability at least 1 — 6 exp(—6plogp).
(ii) There exist some constants Ag and Ay that do not depend on n, such that |BT|5(ES) —
Bisl < A1 \/pTogp/n and |Lsug{Brs(Bs)IBs} — Lsuir (B5lBs)| < Azp?logp/n
holds, uniformly over S : |S| < p andr € S¢, with probability at least 1—12 exp(—6p log p).

Proof: Define

Q1 (dy) ::{ sup |G {1 (85X, Y) — 1 (85 Xs, )H<2A3d1\/plogp}.

15|<p.B 5B (d1)
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By Lemma 4, the event €2;(d;) holds with probability at least 1 — 6 exp(—6plogp). In the
rest of the proof of Lemma 6, we restrict our attention on €(d;) with d; = A4\/m
for some Ay > 2(0minAmin) K2 As.
(i): If [|Bs — Bl = AK'\/p?logp/n, then |Bs — Bsll < As/pPlogp/n/(K/5) and
consequently, B¢ € B(d;). By Lemma 5 (i),
ls(Bs) — Ls(Bs)
= (¢5(85) — E{ts(85)} — [ts(8s) — E{ts(Bs)}) ) + [E{s(8%)} — B {¢s(89)})
> Twinhnin|Bs — B511°/2 — 245d1\/plog p/n

= Omin min A3 p? log p/ (K*n) — 2A3A4p* log p/n > 0.
Thus,

inf fs(ﬁ*s) - fs(,@s) > 0.
1SI<p.llBs—B5ll=AsK~11/p? log p/n

Bs — ﬁsH < Ay K1/ p?logp/n.

On the other hand, for any ||Bs — B%|| < AsK~1y/p?*logp/n,

By the concavity of £(-), maxs|<,

|0s(B%) — €s(Bs)]
< |ts(By) - B {ts(89)} — [ts(8s) — E{ls(B)}] | + |E {¢s(85)} — B {¢5(85)}]
< T hmax[1Bs — B511*/2 + 243d1v/plog p/n < Asp*log p/n,
where As 1= 40maxAmax ATK > + 243A4. As max|g)<, 18s — Bsll < AyK~\/p?logp/n, we
obtain that maxg|<, ]ﬁg(,@s) —ls(B%)| < Asp?log p/n. Withdrawing the restriction to Q;(d;),

we complete the proof of part (7).

(77): Define

QQ(dlu d2) = { sup |Gn {l (IBEXS + /BTX’I’)
1S|<prese,BseBY(d),preBl ¢ (d)

—1 (ﬁETXS + 5:|SXT)}} < 2A3(dy + dg)\/plogp},
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where d; = Ay\/p3log p/n and dy = Ag(p®log p/n)"/? for some Ag > 0 satisfying opin AZK 2 —
OmaxAmax A1 Ag K2 — 2A3(A4 + Ag) > 0.
By Lemma 4, the event € (d;)N§22(dy, d2) holds with probability at least 1—12 exp(—6plogp).
Thus we restrict our attention to 4 (d;) N Qa(dy, ds).
For any 3, satisfying |5, — 84| = A¢K~'(p*logp/n)'/?, B, € B} (d) and given any By
such that ||Bg — B%| < AsK~'\/p?logp/n, by part (iii) in Lemma 5,
Usugry (BrislBs) — Lsugry (BrBs)
= (55u{7«}(5:|s|5s) — E{lsupn(Bs1Bs) } — [Lsugry(Br1Bs) — E {supy (Brs|Bs) } ])
+F {&*u{r} (5:|5|,35)} - F {ESU{T}(/BTWS)}
> ~OmaxhmaxllBs = BE18; = Blis| + ol B, — B1isl*/2 = 245(d1 + d2)/plog p/n

2 _O'max)\maxA4A6K72p2 108;27/71 + UminA§K72p2 lng/Tl

— 243(A4\/pPlog p/n + Agy/p*log p/n)/plog p/n > 0.

Therefore,

inf gSU{T}(ﬁ;]SLBS) - gsu{r}(ﬁrWs) > 0.

|S|<pv7'€ch|BT,S_B:|S|:A6K71 (p2 Ing/n)l/2
18— B5lI<A1K 1 (p? logp/n)*/2

By the concavity of {sur)(5-|Bs),

sup Br1s(Bs) — Bysl < AcK ' (p*logp/n)'/?.
X |S|<p,rese,
18s—Bgll<AsK =1 (p? log p/n)*/?
Under Q4 (d;), max;g|<, HBS—ﬁEH < AsK Y (p?*log p/n)'/?. Therefore, max|s|<, rese BT|5(ES)—
5:\5| < AﬁKil(PZ logp/n)l/Q.
Analogous to part (7), it can be shown that
max _ [¢sugry{ Bs(Bs)IBs } — Loy (85185 ) | < Arp*logp/n.
|S|<p,rese
Withdrawing the restriction to € (d;) N Qa(dy, ds) completes the proof of Lemma 6. O

LEMMA 7:  Suppose Conditions (A) — (D) hold and by, = supy <.k, [V (t)] < oo.

max
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(1) The conditions (A4) and (A5) in Chen and Chen (2012) are satisfied for all S such
that M C S and |S| < p, with probability at least 1 — 2 exp(—3plogp).
(ii) There exists some constant Ayy such that |E, [{Y — pu(B5" Xs)}X,] | < Ani/logp/n,

uniformly over S : M C S,|S| < p,r € S, with probability at least 1 — exp(—3logp).

Proof: Given any index S such that M C S and |S| < p, then 81X = 81, X, where
B, is the subvector of 3, corresponding to S. Thus,
E[{Y — u(B:sXs)}Xs] = B (E[{Y — n(B:pXm)}Xs] Xs) =0,

which implies 35 = 3,5.
(i): Given any w € RIS, let h(m,Bg) = (OmaxK?[S]) 1o (B5Xs) (ﬂ'TXS)z. By Conditions
(A) and (B), h(m) is bounded between —1 and 1 uniformly over ||w| = 1 and B4 € B(d,).
Define the function class Hg := {h(m, Bg) : ||| = 1,85 € B%(d1)} . By the arguments used
for Lemma 11 in Belloni and Chernozhukov (2011) and Lemmas 2.6.15 and 2.6.17 in van
der Vaart and Wellner (1996), there exists some universal constant Ag such that the class
of functions Hg has a VC index bounded by Ags (for the definition of the VC index, we
refer to page 85 in van der Vaart and Wellner (1996)). By Theorem 2.6.7 in van der Vaart
and Wellner (1996), for any probability measure @), there exists some universal constant Ag,
such that the covering number sup, N(E”HSHQ’Q, Hs, Lg(Q)) is bounded by (Ag/€)*"** for
any € > 0 (for the definition of covering numbers, we refer to page 83 in van der Vaart and
Wellner (1996)).

Thus, by Theorem 1.1 in Talagrand (1994), there exists some constant Ao that de-

pends on Ag and Ag only, such that P [SUPlelzlﬁseBg(dl) |Gy, {P(,Bg)} = Am\/,ologp} <

exp (—bplogp) and consequently,

P[ sup
|S|=s,||7]|=1,3 4 €B%(d1)

P
6 S
>A10K2\/p310gp/n} <) (f) exp (—5plogp) < exp(—3plogp).  (8)

s=|M|

£ o (c150) (x7%4)"} - 2 o (xt0) (="%:) ")
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By Condition (D), Ominfimin < Amin [E {0 (XEBs) X5} < i [E {0 (XEBs) X5} <

Omaxfmax, Tor all By € BY(dy) and S : M C S, |S| < p. This, coupled with (8) implies that,
Jmin“min/2 < >\min [En {U (XE/B*S) X?Q}} < )\max [En {U (XEIB*S) X?Q}} < 20’max"£maxv

uniformly over all S satisfying M C S and |S| < p, with probability at least 1—exp(—3plog p).
Therefore, the condition (A4) in Chen and Chen (2012) is satisfied with probability at least
1 — exp(—3plogp).

Noting that VB¢ € BX(d;),

E, {0 (X385) (n"Xs)"} —E. {0 (X3B.5) (x"Xs)"}
E, {0 (XE8s) (n"Xs)"} — £ {0 (X385) (v"Xs)"}|
+ B {0 (XT8s) (77Xs)"} - B {0 (XE8.5) (v7Xs)"}
E, {0 (X18.5) (n7Xs)"} - B {0 (XEB.5) (7"Xs)"}
< 2A410K%V/p¥10g /1 + el Bs — Busl VK A

<

~

_|_

Then the condition (A5) in Chen and Chen (2012) is satisfied uniformly over all S such that
M C S and |S| < p, with probability at least 1 — exp(—3plogp).
(77): Part (ii) can be proved by slightly modifying the arguments used for (8). We thus omit

the details. O
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