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Proof of Theorem 1
Step 1: Show ¢;(®¢;y) — cjo(y), where ¢;(®;y) is the estimator of cjo(y) given O,
cijo(y) is the true value of ¢;(y) = cjy,.

It follows from the uniform law of large numbers that for any n > 0, ¢ > 0,
uniformly in y € [a;,b;],j =p1+1,...,pand ® € D, = {0 : |© — Oy < n},

%zn: {I(Yz‘j <y) - (CjO(y) _VW] o C)}

J

B {q) (CjO(?/) - Wy (@0)) & (CjO(y) - Wi (©) C) }’

VjO Vj

almost surely as n — oo, where Wj; (@) = Xi8; + ajvZ; and v; = /o) X.a; + 1,
vjo is the true value of v;. Then it follows that for sufficiently large n and (,

y € [aj,b;] and ©® € D,, % ?1{[(Y4§y)—®(w—(’>} > 0 and
%Z?:l {I Y, <y —@ (% + C)} < 0. This, together with the monotonic-

ity and continuity of ®, implies that there exists a unique ¢; (®;y) such that
Vj

When © = O, denote f(c;(Op;y)) = >0, {I (V; <y)—@ (Cj(go;y)ufowij(GO)) } :
Then the ﬁrst order derivative of f(c;(®g;y)) with respect to ¢;(Go;y) is:

—LI vjo (CJ (So; y)y - ”(@O)) < 0. Thus it ensures uniqueness of the root of f(¢;(®o;y)) =

0 in the entire domain of ¢;(y). Note that, ¢;(®y; y) satisfied (S.1), hence f(¢;(®¢;y)) =

0. On the other hand, f(cjo(y)) — 0 (given the uniform law of large numbers). By

the standard inverse function theorem, we have that ¢; (@¢;y) — ¢;o(y).

Step 2: Show e — Q.
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Let bf = s bossy 0 } and u = (wy/,uy’,d3)’, where b,; = n= "2 + a,;
0 0 bpoJ3

by = n~ /2 +an,2; a1 and a,s are defined in Section 4; .J;, Jo, J3 are identity matrices

with the same dimension of ©1, o, and 7, respectively; and uy, ug, Uz are any vectors

with the same dimension of ©1, o, and 4, respectively. We need to show that for any

given € > 0, there exists a large constant C such that:

P ( sup Q{Op+bju;c (0 +bu)} <Q {@0;6(90)}) >1—¢, (S.2)
[[ul[=C
where ¢ = (¢p,+1,- -+ ,¢,)’. This implies with probability at least 1 — ¢ that there

exists a local maximum in the ball {®, + biu : ||u|| < C}. Hence, there exists a local
maximizer such that ||, — ol = Op(bn1), || — Yol = Op(bn2) and ||(:)1 — Oyl =
O, (n=1/2).

Using py,,(0) = pp,,(0) = 0, we have
Dp(u) = Q{0 + byu;c (0 + byu)}t — Q {O©g; ¢ (O)}

<log L, {®¢+biu;c (0 +byu)} —log L, {Oy;c(Oy)}
hy

s q
=1 Y Appun(10ejo + brtiz]) = Ppr (0ejo)} =1 > {Dpon (Vje0 + bustize) = Do (1irol)}

j=1 j=1 r=1

Denote L, (©)) = %ﬁ;é(@)). By the Taylor expansion, we have

D, (u) < {n_l/an(@m)/lh + bnan(an)/UZ + anLn(’?O)/ﬁ?)}

1| . 0L,(© - dL, (©
+§ {n 11'11/ aélllo) uy +2n 1/2bn1111/ 8(5_6/10) [85)]

Ol (O10) . 0Ly, (o
a(i’ 2 aée' =

AL, (0e0) _, 0L, (7).
8—7’0)113 + big“g#“iﬁ {1+0,(1)}

+2n*1/2bn2u1’

+2b,1bp2us’

s

=D [buibpr, (0ejo)uz; + nbyiip,, (oejo)us; {1+ o(1)}]

j=1
q hj
37 [busbpnn (irol)59n(ir0)tsge + 102, (ol iy, {1+ 0(1)}]
j=1 r=1
= Il+IQ—I3—I4.



First, we consider ;. By Taylor series expansion,

: dlog Ly, (Oy: cy) "L (0%logL; (®y:co) ..
L _ E E ) Vi) = con(Yis
n(@lo) 861 e 68180] ) (C]<®07 U) CJO( Z]))

Furthermore, by (S.1) and Step 1, we have

~ v
¢ (®0;y) — cjo(y) m/O Zw” + 0p(n™1?), (S.4)
J i=1

where 7#](9) E¢ (M) and wlﬂ(y) _ I(Y;j < y) _ P (cjo(y)—Wij((Bo))7

defined in Appendix 7.1. éubstituting (S.4) into (S 3) and exchanging tjfle sum-
mations, we get L (©1) = LELOU) LS S (0 o) (14 0,(1)),
where ¢;;1,1 and ;21 are defined in Appendix 7.1. Because Fy;j11 = 0, Fp;jo1 =0
and % = 0,(n'/?), we get n= /2L, (@19) = O,(1). Similarly, we can get
V2L, (00) = 0y(1), n" V2L, (F,) = O,(1). Thus, I, = O,(n'/?b,; + n'/?bys).

For I, note that

; _ 0L, (6n) 8210gLn(®;c)+ “ i 9*logL; (®;c) 9¢;(©;Y;)
T VA 90,00/, 80,0¢;(Y;) 00,

i=1 \j=p1+1

N Z”: 0’logL; (©;¢) 0¢;(©;Y;; — 1) e
00,0c;(Y;; —1) 08O}, ¢=¢(©).6=00"

Jj=p1+1

By differentiating both sides of (S.1) with respect to ®, we obtain the identity

1 Wz (©)) [ aWi;(8) | &(©y)-Wi;(®) dv;
%(@,y) Zz 1¢< : >{ BJG) + = vj . d_é}

i (®;y)—W,;;(©
00 %Zi:lgb(j( y)yj 4 ( ))

By standard arguments, we have %(:yj) — d;(y;), and %brk — By, where dj;(y;)
and B, are defined in Appendix 7.1. Thus, 11 = 1(n="?uf, b, 1u}, byou})

x B x (n~Y2u), b,iul, buotiy)' {1 + 0,(1)}. By Condition (1) stated in Appendix 7.2
that B is negative definite, we get that I, is negative definite, and by choosing a

(S.5)

sufficiently large C, I, = O,(nb?%, + nb?,) dominates [; uniformly in |jul| = C

Furthermore, I3 is bounded by snb,an ||uz||4+nb2, max {|p,,, (0cjo)| : 0ejo # 0} ||uz]]?
and I, is bounded by »7_, hjnbpaans||ts|| + nbZy max {| Py, (|7jr0)| = vjro # 0} ||Us]2.
Hence, given the condition max;{|f,,, (gejo)| : 0ejo # 0} — 0, and b,ya,; is bounded

by b2,, we see that I3 is dominated by I,. Similarly, I is dominated by I5.
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Hence, by choosing a sufficiently large C, D,(u) < 0 and (S.2) holds. This com-
pletes the proof of the second part of Theorem 1.

Step 3: Prove ¢j(y) — cjo(y).

Because ¢;(y)—cjo(y) = ¢;(O;y)—cjo(y) = (@(@; y) = ¢(Oo; y)) +(¢(O0;y) = cjo(y))
given the result from Step 1, we see that ¢;(©g;y) — cjo(y). However, given the result
from Step 2, © —, ©,. Hence, we see that |[&;(y) — ¢jo(y)|| = Op(n"Y/2 + a,), where

a, = maz(ap1,aye). This completes the proof of the first part of Theorem 1.

Proofs of Theorem 2 and Theorem 3

To prove Theorem 2, we first show that with probability tending to 1, for any given
© satisfying [|oc) — Teqpoll = Op(n™1/%), €1 = Oroll = Op(n2), [1F 1) = Yol =
O,(n~1/?) and any constant C; and Cy,

Q(6:86)) =  max  Q(©:E6)),

lloo(oylI<Cn—1/2

119 (2)l|<Can—1/2

where @ = (O, 0'2(1), 0, '7/(1), 0). In fact, it is sufficient to show that with probability

tending to 1 as n — oo, for any © satisfying |[o.1) — eyl = Op(n?), |©; —
Oyl = Op(n™12) and || 1) — Yayoll = Op(n™1/2), for some small e,; = C1n~/2 and
j:8+]—7'” » 4,
0Q (©;¢c(\
Q(—’C()) <0 for 0 < 0ej < ént, (S.6)
(9aej
and for small g, = Con™ Y2 j=1,--- ,gand k=h; +1,--- ,m,
0Q (©;¢c(\
M<O for 0 < vk < €n2
Mk
>0 for — En2 < Yjk < 0. (S?)

To show (S.6) and (S.7), using Taylor’s expansion, we get

0Q{0;c(O)} _alOgLn {©g;co} +i i (92109[4{@0;00}
9o h do; 9o;0¢;(Yij)

i=1 j=p1+1

GglogLi {@0 Co}
20 (2@ Vi — 1) — (Vi — 1
do.;0c;(Yi; — 1) (¢5(©0;Yyj — 1) = cjo(Yy ))}

+ b/22,j(0'e —0c) + bl?l,j<@1 — ©y) + bl23,j (¥ — o) + Rp; {©®%c(O@")} — ”ppm(aej)v
(S.8)

x (€j(®o; Yij) — cjo(Yij)) +




where b21j (b21 gls 7b21,jh)/; b22,j = (522,]’17 T, b22,jq)/7 b23,j = (b23,j17 ce 7b23,j,qm>,;
h is the length of ©y, b, ;; is the second derivative of log(L,(®;c)) with respect to
O,; and O4 at ¢ = ¢(0),0 = Oy. R,; {O";c(O")} is the remainder, and O lies
between © and ©,. If ® = ©, we denote b, ji, bay ;, baa; and bas ; by bF bgl,j’

b5, ; and by ;, respectively.

rs,j)

Because %bm = B,s + O,(1), then %b:s = B,s + O,(1), where b,; = (bys, k =
1,2,---) = 9Ln(6r0) 41 B, is defined in Appendix 7.1. Hence,

00/
R, {©%c(0)} = [Zq: Xq: 8532 2 (0t = Oet0)(Tek — Teko) 2‘1: (et — Tern) (8622 ﬂ)
=1 k=1 0k =1 00,
(01 = 0 +23 (o= ) () (770 +201 - 0w (552) (=70
+O1— 0wy (Tt} (@1 — 0w + (-7 (52 ) (7~ | (1+0,(0)
= 0,1

dlog L,{Op;co} \ __
BO'ej - Op(

O0,(n12), |©, — Oy = O,(n"12) and ||§ — ¥, || = O,(n~1/?). Given Step 3 of the
proof of Theorem 1, we have |[¢;(©;y;) — cjo(y;)|| = Op(n~/?). Hence,

00 {0©;¢c(©)}

80'6]'

However, n~! n~Y2), and by the assumptions | |01 — T e(1y0]| =

= NPin {Op(n_l/Q/pln) - pl_nlpmn (Jej)} )
where lim inf lim mfppln(aej)/pln > 0 and n~'/2/py, — 0. Then (S.6) follows.
Similarly, we see that

0Q{©;c(®)}

0 = 1920 { Op (02 / p20) = P B (135G (730) }
Jgr

where lim inf lim mf pp2n(|vjr|) /pan > 0 and n=2/p,, — 0, the sign of the derivative

=00 sl

is completely determlned by that of v;,.. Hence, (S.7) follows.

By (S.6) and (S.7), part (a) has been proved. Now we prove part (b). With part

(a), there exists @, o.q) and ¥ in Theorem 1 that is a root-n consistent local



maximizer of ) ( S ,E(é)) and satisfies the likelihood equations

aQ{esee)}

q _861 ’Ue<&eél>),®1él7’7<%%l)) =0, (S.9)
_ 0Q{©:;c(0)} _ _

425 = TLE:(AE(U) 6,26, ‘7:<:7(01)> =0,for y=1,---,s and (S.10)

 agece) o )

T P L

(S.11)

Note that ©j, o1y and :7(1) are consistent estimators; by (S.4) and (S.5), the
equations (S.9), (S.10) and (S.11) can be written as

-~

311(91 - @10) + B(12)(5'e(1) — O¢(1)0) T+ B(13) (’7(1) - ’7(1)0) =

dlog L, {®p;co} 1 zn: Zp: —1/2
- - (ik1,1 + Pika,1) + op(n / ), (S.12)
nd®; [ —

B21)(©1 — ©19) + (Baz) — Us) (G ey — Tero) + Beasy (Y1) — Yayo) =

dlog L, {®; ¢~ v
_ OlosLni®oico} Z Z (@) + Pirz () +0p(n”1/?) and (S.13)

ndo n
e(1) i=1 k=p1+1

by

—

B31)(0©1 — O10) + Bso) (Te1) — ocyo) + (Bsy — Us) (Y1) — Yay) =

dlog L, {®y; c l = < _
by — s Gi 0; Co} - = Z Z (%k1,(3) + %‘kz,(:&)) + 0,(n 1/2)7 (S.14)
oY) (L N—t

where p;p1; and @i ; are defined in Appendix 7.1, pir1,j) and @0 () are the corre-
sponding subset of ;11 ; and ;e ; to nonzero parameters, respectively, and Uy, Uz, by, by

are defined in Appendix 7.1.

It follows from (S.12), (S.13), (S.14), Slutsky’s theorem and the central limit
theorem that the proofs of part (b) of Theorem 2 and Theorem 3 are finished.



Proof of Theorem 4
With the proof of part(b) of Theorem 2 and Theorem 3, we see that
©1 — Oy = A{'Ciiby + A7'Cioby
— A i1 Z {muiYiqy + mi2Yiz) + mazTig) } + op(n"?),
Ge1) — Oe(1yo = (Ao +Uy) 7" 0211;1 + (Ag +U;) ' Cyaby
— (Mg + Uy )~ Z {mng + maaTi(9) + m23Ti(3)} + Op(n_l/z),

1 — Yo = (Az + UQ) 'Cy1b1 + (As +Us) ' Caoby

=21

A3 + Z/{Q Z {m31T + m32T (2) + mgng(g } + Op 1/2), (815)

where Ay, mjg, Cii, Tiy, b1,ba, Uy and Uy are defined in Appendix 7.1.
With (S.4) and (S.5), we see
&(y) = cio(y) = (€(8:9) = &(O0:)) + (@(Ouiy) — cjo(y))
= d1;(y)(©1 — Oug) + daji1)(y) (Feqr) — 0'6(1) 0)

o - Vjo
+ dsin (V) Ty = Vo) + — 1/ Z @ij(y) + op(n~/?),
J i=1

where v, ¥;(y), Wij(©q), dij(y), d2jy(y), dsjay(y) and w,;(y) are defined in Ap-
pendix 7.1. Substituting (S.15) into the above equation, the proof of Theorem 4 is
finished.

More Simulations and Results

Simulation 2. The purpose of this simulation is to assess the finite-sample per-
formance of the proposed method in terms of bias and empirical standard deviation
(SD). We also examine the performance of models (3.16) and (3.17) in Section 3.4
in selecting py, and po,.

We simulate 1000 data sets, each with n = 500 observations. For each sub-
ject, the latent variables are generated by §&;; = Z;'yj + e, J = 1,2,3, where
Z;, = (Zi,Zia, Zi3)', Zij, j = 1,2, 3 are independently drawn from the standard normal
distribution, v, = (1,0,0)’; v, = (0,1,0), v3 = (0,0,1), ¢; = (e“,eig,eig)’ is a nor-

mal random vector with mean zero and covariance matrix E = diag(o?, 0%, 0%) =
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diag(1,1,1). The four outcomes, Y; = (Yi1, Yia, Yis, Yis)'—where the first three are
continuous and the last is ordinal-—are generated by U;; = X{jﬁj + 1€ + oo +
a;3&is + €5, 7 = 1,2,3,4, with Y}; = U,;, for j = 1,2,3, and Uy, is the underly-
ing continuous variable of Y;;. The relation between Uy and Yy, is Yy = [(Uy <
—1) 4+ 2I(-1 < Uy < 2.5) 4+ 31Uy > 2.5); hence, ¢4 = (C40,Ca1,Ca2,Ca3) =

(—o0,—1,2.5,00). Here, Xj; is a two-dimensional vector and generated from the nor-

mal distribution with mean (0,0) and covariance matrix diag(1,1) for j = 1,--- ,4;
By = (1,2), By, = (2,2), B3 = (1,1), and B, = (1.5,2); &; = (i1, €i2,€i3,€ia) 1S a
normal random vector with mean zero and covariance matrix 3. = diag(o?, 03,032,02) =
Q11 Qe Qa3 1 0 O
diag(1,1,1,1); and a = L 08 00 . The structure of a
Q31 Q39 (33 08 0 1
(4] iy (43 0.8 0 0.8

implies that &; and &;3 are latent variables and that &, = 0.

To investigate the robustness, efficiency and oracle property, we compare the per-
formance of the proposed method with two models: (1) the model with known (true)
latent variables, termed Ideal, and (2) the model without latent variable selection
(i.e., including three latent variables), termed Non-penalty or Non-p. The simula-
tion results of the proposed, Ideal and Non-penalty methods are summarized in Table
2 and Figures 1-4. The proposed, Ideal and Non-penalty methods converge 993, 993
and 999 times, respectively, out of 1000 replications; we conducted 500 Monte Carlo

replications to approximate conditional means.

Table 2 shows that the proposed method performs very well in selecting latent
variables and predictors, with 99.8% of the replications identifying &, as zero and
100% identifying =12, 713,731, and 732 as zero. From Table 2, we can see that the
Non-penalty estimator is biased, especially for the estimators of o5 and .9, suggesting
that the presence of a non-significant latent variable can lead to biased estimators for
the variance parameters. The comparison of the proposed estimators and the Ideal
estimators suggests that the proposed method does have the oracle property because

the two estimators are very similar.



Table 2: Latent variable selection and parameter estimation for Simulation 2.
Ideal Proposed Non-penalty
Bias(SD) Bias(SD) Bias(SD)

cgn -0.019(0.150) -0.020(0.149) -0.070(0.448)

cao  0.043(0.287)  0.044(0.286) 0.164(1.027)

B, 0.003,-0.002 0.003,-0.002 0.003, -0.002
(0.064, 0.063)  (0.064, 0.064) (0.064, 0.063)

B,  0.003,0.001 0.003, 0.001 0.003, 0.001
(0.057,0.057) (0.058, 0.057) (0.057, 0.057)

Bs  0.001, 0.000 0.001, 0.000 0.001,-0.001
(0.072,0.071) (0.073,0.073) (0.072, 0.072)

B,  0.026,0.032 0.026, 0.033 0.097,0.123
(0.159, 0.197) (0.160, 0.197) (0.599, 0.763)

az; -0.001(0.047) -0.000(0.048) -0.027(0.052)

az; -0.001(0.055) -0.000(0.056) -0.018(0.060)

ayq;  0.012(0.104)  0.012(0.105) 0.036(0.327)

as3  0.013(0.117)  0.014(0.117) 0.049(0.307)

o?  -0.013(0.102) -0.011(0.103) -0.045(0.093)

o3 -0.008(0.087) -0.011(0.088) -0.365(0.061)

o3 -0.007(0.143) -0.008(0.149) -0.023(0.154)

Y1 0.001, 0,0 -0.000, 0, 0 0.001, 0.001, -0.000
(0.055, 0, 0) (0.057,0,0) (0.059, 0.062, 0.058)

Y3 0, 0,-0.006 0, 0,-0.006 0.015, 0.003, -0.006
(0, 0,0.063) (0, 0,0.064) (0.080, 0.069, 0.068)

0% -0.007(0.104) -0.008(0.106) 0.015(0.098)

o2 -0.013(0.162) -0.011(0.171) -0.005(0.171)

0% 0%
Y2 * 1 0
o2, * 0.998 0

* Not applicable.

“0%” represents the proportion of cases where the parameter is estimated

as zero over convergence replications.

We also examine the performance of equations (3.16) and (3.17) in Section 3.4
in selecting p1, and po,. For that, we first select a typical data set from 1000 data
sets. To avoid subjectivity, we define criteria for selecting a representative data set

whose mean square error (MSE) of estimator © is the median of 1000 MSE values
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over 1000 datasets. This selection method has been used in the literature (e.g., Fan
et. al., 2006; Cai et. al., 2000). Based on this typical dataset, we take py,, to be one of
{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.40} and po, to be one of {0,0.05,0.1,0.15,0.2,
0.25,0.3,0.35,0.40}. Given a combination of py, and pa,, we estimate ©, then BIC,
and BIC; as well as |6 — o and || — v,||. Figure 5 displays the plot of || — ]|
against BICy and the plot of ||& — || against BIC) as the combination of p;,, and
pan varies. Obviously, a good py, should minimize || — || and a good pg, should
minimize |5 —v,||. In practice, || — o] and |5 — || are not available because the
true values o and 7, are unknown. The results of the simulation study shown in
Figure 5 demonstrate that BIC is a monotonic decreasing function of || — || and
that BICy is a monotonic decreasing function of |5 — -,||. Hence, we can estimate
p1n by maximizing BIC) and p,, by maximizing BIC,, suggesting that equations
(3.16) and (3.17) work well in selecting the tuning parameters py, and po,.
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Figure 1: Distribution of B over 1000 replications for Simulation 2.

Simulation 3. Table 2 shows that the proposed method is almost 100% accurate
in selecting zero and non-zero components for a large sample size. However, it is
also interesting to consider a case in which the procedure does not perform perfectly.
Hence, we choose a smaller sample size of n = 200, denoted as Case 1. The pro-
posed algorithm for Case 1 converges for 890 of 1000 replications due to insufficient
information. In addition, when analyzing the real data in Section 6, we treat ordi-

nal responses taking values 1 to 10 as continuous. To investigate the validity of the
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Distributions of & and ¢ over 1000 replications for Simulation 2.
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Figure 4: Distributions of 3. and =, over 1000 replications for Simulation 2.

=
=3
= =
7 s _
=
0
=
= _| s
= =
7 7
o —
= — >
= =
=
=8 = -
g T
A
] —
s |
=
=3 T
=3
=
D
T T T T T T T T
0.0 Oo.5 1.0 1.5 o.4 O.6 o.8 1.0
norm(gamma—hatgamma) norm(sigma—hatsigma)

Figure 5: BICy vs [|§ — 7.l and BICy vs ||l — o]

12



treatment, we also adopt the same setting as Simulation 2 except that n = 200 and

Y, are generated by

e Case 2: Y, = —8[(U11 <= —8) — 6[(—8 < U;y <= —6) — 4[(—6 < Uy <=
—4) — 2[(—4 < Uy <= —2) +0](—2 < U;y <= 0) +2](0 < Uy <= 2) +4](2 <
Uq <= 4) + 6](4 < Uy <= 6) + 8](6 < Uil);

e Case 3: Y, = —6I(U11 <= —6) — 3](—6 < Uy <= —3) + 0](—3 < Uy <=
0)+3[(0 < Uy <=3)+6I(3<Uy); and

e Case 4: Y = —3I(U11 <= —3) + 0](—3 < Uy <= 0) + 3[(0 < Uzl)

Table 3 summarizes the proposed method’s simulation results for Cases 1 to 4.
The summaries are based on 890, 926, 946 and 612 convergent replications out of 1000
simulation runs for Cases 1, 2, 3 and 4, respectively. Comparing the results of Case 1
with those from Simulation 2, we can see that although the signal is not sufficient—
resulting in more than 10% of replications failing to converge—the proposed method
still identifies &2 as zero with 98.1% accuracy and identifies ~q2, 713, V31, and 732
as zero with 100% accuracy, providing the algorithm converges. Furthermore, the
comparison of Cases 1 to 4 shows that overdiscretization of a continuous variable
(e.g., grouping as three levels) may lead to severely biased and unstable estimators
and decrease the ability to identify the latent variable. However, medium or mild

discretization of a continuous variable (e.g., grouping as five levels [Case 3| or nine

2
g,

the variance of the measurement error for U;;. This is not surprising because we use

levels [Case 2]) has little effect on the estimators of the parameters except for o

the response Y;;, the discretization of U;;, replacing U;;—hence, we are estimating

the variance of the measurement error for Y;;, not U;;.
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Table 3:

Latent variable selection and parameter estimation for Simulation 3

Case 1 Case 2 Case 3 Case 4
Bias(SD) Bias(SD) Bias(SD) Bias(SD)
csn -0.058(0.387) -0.030(0.292) -0.016(0.245) -0.008(0.284)
cso  0.109(0.733)  0.046(0.592)  0.011(0.443) -0.007(0.592)
B, -0.003,-0.004 -0.005,-0.011 -0.040,-0.075  -0.304, -0.604
(0.101, 0.097) (0.114,0.110) (0.132,0.126)  (0.108, 0.104)
B, -0.001,-0.001 -0.001,-0.000 -0.002,-0.000 -0.001,-0.002
(0.089, 0.090) (0.089, 0.089) (0.090,0.089)  (0.090, 0.085)
B; -0.003,-0.003 -0.002,-0.003 -0.002,-0.002  -0.000,-0.005
(0.113,0.115) (0.114,0.115) (0.113,0.115)  (0.112, 0.116)
B4 0.067,0.104  0.024, 0.042 0.003, 0.011 0.002, -0.002
(0.442,0.635) (0.349, 0.468) (0.263,0.323)  (0.368, 0.449)
az;  0.003(0.080)  0.003(0.087)  0.021(0.099) 0.300(0.499)
az; -0.003(0.094) -0.003(0.100)  0.011(0.113) 0.284(0.540)
aq;  0.034(0.261)  0.009(0.212)  0.010(0.169) 0.330(1.316)
as3  0.042(0.326)  0.008(0.242)  -0.005(0.187) 0.000(0.261)
0371 -0.016(0.168)  0.548(0.222)  1.616(0.308) 1.028(0.245)
03’2 -0.030(0.137)  -0.040(0.145) -0.059(0.156) -0.104(0.190)
0&?73 -0.007(0.281) -0.020(0.281) -0.030(0.279) -0.064(0.287)
Y1 0.000, 0, 0 0.001, 0,0 -0.017,0,0 -0.234,0, 0
(0.095, 0, 0) (0.106, 0, 0) (0.116, 0, 0) (0.125,0, 0)
Y3 0,0, 0.002 0,0, 0.004 0,0, 0.005 0,0, 0.007
(0,0,0.111) (0, 0,0.109) (0, 0,0.109) (0, 0,0.108)
0% -0.010(0.184) -0.006(0.199) -0.050(0.232) -0.460(0.213)
o2 -0.033(0.322) -0.027(0.334) -0.006(0.338) 0.053(0.348)
0% 0% 0% 0%
Y, 0.999 0.999 0.998 0.998
o2, 0.981 0.963 0.927 0.786

“0%” represents the proportion of cases where the parameter is estimated

as zero over convergence replications.

14



