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Dear Prof.Shao:

We are pleased to resubmit an edited version of our manuscript  entitled `Factor
Analysis of Correlation Matrices When the Number of Random Variables Exceeds the
Sample Size' which was originally submitted as an Original Article.  We thank the
editors and reviewers for their thoughtful and constructive feedback, which contributed
greatly to many significant improvements in this manuscript. Thank you for your
consideration of this very timely piece. We respond to each comment below.

COMMENT 1

The motivation to develop structure-inferring methods for correlation matrix need to be
explained. There already are similar methods developed for covariance matrix. Since
usually in practice research obtain covariance matrix first and then obtain correlation
matrix. What is the use of the proposed approach if structure can be readily learned
from covariance matrix? Is there additional insight from structure learned from
correlation matrix?

Response: We thank the reviewers for this great point. In some instances, starting with
the correlation matrix instead of the covariance matrix is scientifically just. In our
proposed data analysis and in the field of cancer mortality change pattern trends, the
use of the correlation matrix helps standardize the different types of cancers which will
not let factor analysis be driven by cancers with large variances as covariance matrices
do. We have included language in the introduction to help motivate this further.
Specifically, we added: "In many studies where the random variables of interest are
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highly variable (e.g. cancer mortality rates), it is common to standardize the random
variables and analyze the correlation matrix. Standardization ensures that results from
factor analysis will not be driven by random variables with large variances, which is a
challenge when performing factor analysis on covariance matrices." We also added a
section in the discussion that calls out further research to identify the similarities and
differences between starting with the covariance or correlation matrix. See below.

COMMENT 2

In what sense are Models (1) and (2) equivalent? Is
$LF=\sum_{l=1}^m\sqrt{\lambda_l}F_le_l$?

Response: The reviewer is correct. Using an eigenvalue decomposition,
$\bs{L}\bs{L}^T=\lambda_1\bs{e}_1\bs{e}_1^T+\dots+\lambda_m\bs{e}_m\bs{e}_m^T$
with $m$ orthonormal eigenvectors $\bs{e}_l$ for $l=1,\dots,m$ such that $\lambda_1
\geq \lambda_2 \geq \dots \geq \lambda_m \geq 0$ and
$\bs{e}_l^T\bs{e}_k=\delta_{lk}$, which equals 1 if $l=k$ and 0 otherwise. Isolating
$\bs{L}$ and plugging that in model (1) results in
$LF=\sum_{l=1}^m\sqrt{\lambda_l}F_le_l$ that is reported in model (2). We have
updated the manuscript to make this more clear.

COMMENT 3

Page 3, Line 19, provide reference for the theoretical distribution for the largest
eigenvalue.

Response: We thank the reviewer for this comment. We have included the appropriate
reference.

COMMENT 4

Page 3, Line 34, change M to X to make the notations consistent.

Response: The have updated the proposed change.

COMMENT 5

Page 5, Line 24, the Tracy-Widom test was used for the largest eigenvalue. How was it
used to identify $\lambda_1,\dots, \lambda_{k-1}$?

Response: Given that the Tracy-Widom test can only be used for the largest
eigenvalue, we needed to develop a sequential method that removes the information
from the first factor and produces new data matrix $\bs{X^{(k)}}$ from which we can
construct a new correlation matrix and estimate a new 'largest eigenvalue' and test
again using the Tracy-Widom test. This approach helps identify the number of factors
that are relevant and as such, the $\lambda_1, \dots, \lambda_{k-1}$. We have
updated the manuscript to clarify this. Specifically, we moved the previous paragraph
before section 3.1 into section 3.1 and added the following sentence: "Given that the
Tracy-Widom test is used to test the largest eigenvalue, we propose a sequential
method that removes the effect of the first factor (if significant) and produces a new
data matrix from which we can construct a new correlation matrix and
apply once again the Tracy-Widom test on the new largest eigenvalue."

COMMENT 6

In data analysis, it will be interesting to compare the results obtained on covariance
matrix and those obtained on correlation matrix.

Response: We thank the reviewer for this suggestion.  The proposed comparison will
answer: `How do the covariance and correlation matrix results differ?'. We believe that
this is important but it is peripheral to the question of interest: `How do you do factor
analysis on correlation matrices?'. Given that this question is outside the scope of this
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manuscript, the limited word limit constraints and the short time window for a
manuscript revision, we did not produce this analysis. We believe that this is an
important question, but it would require more time and space to do it justice. If the
editors wish, we would be happy to produce this. This is a great suggestion and we
encourage future research to be done to answer the question. We have added a
section in the discussion that calls out further research to identify the similarities and
differences between starting with the covariance or correlation matrix. Specifically we
included: "Lastly, although our focus was on the study of the correlation matrix when
$p>n$, future studies should compare the performance of the Tracy-Widom test and
sequential-rescaling procedure on covariance matrices to compare the performance
and generalizability of these methods."
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ABSTRACT
Factor analysis which studies correlation matrices is an effective means of data re-
duction whose inference on the correlation matrix typically requires the number of
random variables, p, to be relatively small and the sample size, n, to be approaching
infinity. In contemporary data collection for biomedical studies, disease surveillance,
and genetics, p > n limits the use of existing factor analysis methods to study the
correlation matrix. The motivation for the research here comes from studying the
correlation matrix of log annual cancer mortality rate change for p = 59 cancer
types from 1969 to 2008 (n = 39) in the US. We formalize a test statistic to perform
inference on the structure of the correlation matrix when p > n. We develop an ap-
proach based on group sequential theory to estimate the number of relevant factors
to be extracted. To facilitate interpretation of the extracted factors, we propose a
BIC-type criterion to produce a sparse factor loading representation. The proposed
methodology outperforms competing ad hoc methodologies in simulation analyses,
and identifies three significant underlying factors responsible for the observed cor-
relation between cancer mortality rate changes.

KEYWORDS
Alpha spending function; BIC; Cancer surveillance; Eigenvalues; Sparse factor
loadings

1. Introduction

Due to its flexibity in characterizing multivariate data, high-dimensional factor analysis
is becoming popular in many scientific disciplines including genetic (Zhou, Wang,
Wang, Zhu, & Song, 2017), biomedical (Shimizu et al., 2016) and economic studies
(Fan, Lv, & Qi, 2011). The objectives of exploratory factor analysis are two-fold: 1)
identify the number of factors that influence a set of random variables; 2) measure the
strength of the relationship between the extracted factors and each random variable.

In many studies where the random variables of interest are highly variable (e.g.
cancer mortality rates), it is common to standardize the random variables and analyze
the correlation matrix. Standardization ensures that results from factor analysis will
not be driven by random variables with large variances, which is a challenge when per-
forming factor analysis on covariance matrices. Additionally, in the cases where the
number of random variables exceeds the sample size, a couple statistical challenges
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arise in the analysis of correlation matrices via factor models. First, existing inference
methods rely on the number of random variables, p, to be relatively small and fixed,
and the sample size, n, to be approaching infinity (Anderson, 1963; Johnson & Wich-
ern, 1998). Another complication is that factor analysis is not invariant to change on
the scale of variables. Methods that infer structure from covariance matrices (Bickel
& Levina, 2008; Carvalho et al., 2008; Fan, Fan, & Lv, 2008; Ghosh & Dunson, 2008;
Huang, Liu, Pourahmadi, & Liu, 2006; Patterson, Price, & Reich, 2006; West, 2003;
Wong, Carter, & Kohn, 2003) will not always perform similarly on correlation matri-
ces. There appears to be a lack of methodology for performing inference on correlation
matrices using factor analysis when p > n. Furthermore, traditional methods for esti-
mating the number of factors to be extracted and their interpretation are insufficient
and need further development for correlation matrices when p > n.

We make several contributions with this paper. First, we formalize a test statistic to
perform inference of the structure of the correlation matrix using the limiting distri-
bution of eigenvalues. This test statistic from Johnstone (2001) but was not delineated
as fully as we do in this paper. Secondly, we extend the work of Johnstone (2001) to
identify the true number of underlying factors present in a factor model, while con-
trolling the type I error. Finally, we propose a BIC-type criterion to produce sparse
factor loadings to ease interpretation of extracted factors.

The format of this paper is as follows. In Section 2, we present a test for inference on
the structure of the population correlation matrix, which we term the Tracy-Widom
test. In Section 3, we develop a sequential-rescaling procedure to test for the number
of significant factors in a given factor model. Section 4 describes a sparse factor model
that aids in interpreting the factors detected from the proposed test. Section 5 presents
some designed simulation studies based on the proposed methodology. Section 6 applies
the developed methodology to study the correlation matrix of cancer mortality annual
rate changes data, followed by our concluding remarks in Section 7.

2. Methods

2.1. Factor model formulation

Consider a random vector X = (X1, . . . , Xp)
T where each componentXj follows a stan-

dard normal distribution. Because different cancers have varying degrees of volatility,
normalization will ensure that the analysis will not be dominated by a few cancer
types. The primary aim of this project is to study the correlation matrix of X.

A factor model postulates that X is linearly dependent on a few underlying, but
unobservable, random quantities F1, . . . , Fm called common factors and p additional
sources of variation ε1, . . . , εp called white noise or specific factors, such that

X = LF + ε (1)

where F = (F1, . . . , Fm)T ∼ MVN(0, Im) is a vector of m common factors, L =
(`1, . . . , `m) is a p × m matrix of factor loadings with `l = (`l1, . . . , `lp)

T for l =
1, . . . ,m and Im is an identity matrix of dimension m. We denote the residual as
ε ∼ N(0,Ψ) where Ψ is a p× p diagonal matrix with the lth diagonal element being
ψl = 1− `21l − · · · − `2ml to ensure that V ar(Xj) = 1.

If we assume that F and ε are independent in (1), then it follows that the correlation
matrix for X is R = LLT + Ψ. Using an eigenvalue decomposition, LLT = λ1e1e

T
1 +
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· · · + λmeme
T
m with m orthonormal eigenvectors el for l = 1, . . . ,m such that λ1 ≥

λ2 ≥ · · · ≥ λm ≥ 0 and eTl ek = δlk, which equals 1 if l = k and 0 otherwise. Hence,
LF =

∑m
l=1

√
λlF lel and results in

X =

m∑
l=1

√
λlF lel + ε (2)

where λ1, λ2, . . . , λm correspond to the m largest eigenvalues of R.

2.2. Testing Complete Independence of the Correlation Matrix

One of the first objectives of studying the correlation matrix of a set of random vari-
ables is to determine if factor analysis is a reasonable method of analysis. This is
equivalent to performing inference on the structure of the correlation matrix with test
of H0 : R = I versus the alternative Ha : R 6= I. We base our test for H0 : R = I
on the largest eigenvalue of the sample correlation matrix of X. A result of random
matrix theory (RMT) suggests that we can build a theoretical distribution for the
largest eigenvalue of random matrices under the null hypothesis of complete inde-
pendence (Johnstone, 2001). A test of complete independence about the p random

variables compares the observed sample eigenvalue λ̂1 to the theoretical distribution
of λ1 under RMT prediction. This test will reveal one of two possibilities: the first be-
ing that λ̂1 will be determined to not significantly differentiate from RMT prediction.
This suggests that H0 : R = I cannot be rejected and therefore that factor analysis
will not prove to be useful because specific noise factors play a more dominant role in
the observed correlation than common underlying factors. The second possibility for a
test of the largest eigenvalue is that it will determine λ̂1 to significantly deviate from
RMT prediction (i.e. H0 : R = I is rejected in favor of the alternative). This scenario
suggests that one (or possibly more) underlying factor(s) could be responsible for the
observed correlation between the random variables.

To proceed, we describe the test statistic for testing H0 : R = I. Suppose that data
matrix X = (Xij)n×p has entries that are independent and identically distributed as

standard normal. Let ξ̂1 ≥ ξ̂2 ≥ · · · ≥ ξ̂p denote the sample eigenvalues of a Wishart

Matrix, XTX. We can test the significance of ξ̂1, the largest eigenvalue of XTX, with
test statistic

Tnp =
(ξ̂1 − µnp)

σnp
(3)

where

µnp =

{
(
√
n− 1 +

√
p)2, when n ≥ p

(
√
p− 1 +

√
n)2, when p > n

and

σnp =

{
(
√
n− 1 +

√
p)( 1√

n−1
+ 1√

p)1/3, when n ≥ p
(
√
p− 1 +

√
n)( 1√

p−1
+ 1√

n
)1/3, when p > n.

Johnstone (2001) has shown that under H0, and n, p→∞ such that n/p→ γ for γ

3
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some constant and the test statistic Tnp
d→ W1, where W1 is called the Tracy-Widom

distribution (Tracy & Widom, 2000). We term (3) the Tracy-Widom test and will
reject the null hypothesis of H0 : R = I when Tnp > W1,1−α where W1,1−α is the
(1 − α) × 100 percentile of the Tracy-Widom distribution. One of the strengths of
this test is that it can be applied in the classical setting where n > p as well as in
high-dimensional settings where p > n.

2.3. Correlation correction of Tracy-Widom test

A technical note suggests that the Tracy-Widom test applies to the study of covariance
matrices and does not directly apply to correlation matrices, which is problematic for
distribution theory (Anderson, 1963). To be able to apply the Tracy-Widom test to
study correlation matrices, we expand on the procedure that was briefly mentioned
in Johnstone (2001) but has not been fully studied. To this end, suppose we draw
n i.i.d. row vector samples from N(0,Σ) to produce data matrix Xn×p. Under the
null hypothesis, the column vectors Xj are i.i.d on the unit sphere Sn−1. As a result,
we can multiply each Xj by an independent chi-distributed length to synthesize a

Gaussian matrix, call it X̃ such that X̃ = [X̃1 . . . X̃p] where X̃j = ψjXj and ψ2
j ∼

χ2
(n−1). We can then construct a sample pseudo-covariance matrix S̃ = X̃

T
X̃ which

approximately follows a Wishart distribution with n−1 degrees of freedom. Under the
null, this data augmentation allows us to apply the Tracy-Widom test on the largest
eigenvalue of S̃ to test H0 : R = I.

3. Identifying Additional Factors

If H0 : R = I is rejected, then at least one latent factor is useful in describing the
observed correlation among the p random variables. One of the most crucial steps of
factor analysis is to estimate the true number of underlying factors, m, as misspec-
ification of the number of factors retained can lead to poor factor-loading pattern
reproduction and interpretation (Hayton, Allen, & Scarpello, 2004). Furthermore, es-
timation of the number of factors can affect the factor model results more than other
decisions, such as the factor rotation method used (Zwick & Velicer, 1986). In this
section, we extend the work of Johnstone (2001) to identify the number of relevant
factors to be used in a factor model.

Previous work on estimating the number of factors have focused on factor analy-
sis for covariance matrices (Bai, 2003; Bai & Ng, 2002; Leek, 2011; Onatski, 2009).
Johnstone (2001) and Baik and Silverstein (2006) have considered the asymptotic be-

havior of ξ̂r+1, the (r + 1) − th largest eigenvalue of a covariance matrix, when the
true population covariance follows a spiked model with Σ = diag(τ1, . . . , τr, 1, . . . , 1),
where τ1 ≥ · · · ≥ τr > 1. As factor analysis is not invariant to changes in the scale of
the variables, it is often recommended that factor analysis be performed for standard-
ized variables. Standardization converts a covariance matrix problem into a correlation
problem and it is unclear how these methods would be applied to the study of sample
correlation matrices.

Common ad hoc methods of determining the number factors to extract from corre-
lation matrices include the scree plots, Guttman-Kaiser criterion and parallel analysis.
The number of extracted factors based on the scree plot are highly subjective as the
estimate is visually selected as point that resembles an elbow. The Guttman-Kaiser
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criterion (Guttman, 1954; Kaiser, 1960) selects the number of factors to be equal to
the number of sample eigenvalues of the correlation matrix that are greater than one.
Parallel analysis (Horn, 1965) is a simulation-based approach that compares the eigen-
values of the sample correlation matrix to eigenvalues from a matrix of random values
of the same dimensionality. The estimated number of factors retained are the number
of observed sample eigenvalues greater than the 95th percentile of the distribution of
eigenvalues derived from the random data.

3.1. Sequential-Rescaling Testing Procedure

We propose to view the testing procedure of extracting relevant underlying factors as
a sequential procedure. Given that the Tracy-Widom test is used to test the largest
eigenvalue, we propose a sequential method that removes the effect of the first factor
(if significant) and produces a new data matrix from which we can construct a new
correlation matrix and apply once again the Tracy-Widom test on the new largest
eigenvalue. In general, we will test for the significance of λk only after verifying that
λk−1 are significantly different than RMT prediction and after eliminating the effect
of the first k − 1 factors. We remove the effect of the first k − 1 factors because of
the phenomenon where the largest eigenvalue has the potential to pull other sample
eigenvalues away from unity. The resulting procedure is termed a sequential-rescaling
procedure. The advantage of the procedure that follows is that it controls the type
I error through the use of an alpha spending function, and it is not a conservative
technique based on what has been proposed in Patterson et al. (2006).

Suppose we have declared the first k − 1 eigenvalues to be significantly different
than RMT prediction. The following procedure tests the subsequent eigenvalue λk.
The procedure assumes the Tracy-Widom test has already identified λ1, λ2, . . . , λk−1

to be significant. Associated with eigenvalue λ` is its corresponding eigenvector e` =
(e`1, . . . , e`p). We proceed to test λk through the following two-step procedure:

Step 1. Construct a data matrix X(k) such that

X(k) = Dk−1
−1/2(X(k−1) −

√
λk−1ek−1Fk−1) (4)

where Dk−1 is the rescaling diagonal matrix with its i-th diagonal element being

Dk−1,ii = 1−λk−1e
2
k−1,i. The rescaling matrix,D

−1/2
k−1 will assure the desirable property

that var(X(k)) = 1. Note that we have removed the effect of the first k − 1 factors in

(4) through the (X(k−1) −
√
λk−1ek−1Fk−1) term.

Step 2. It can be shown that the sample correlation matrix for the rescaled X(k),
on which we will test the significance of λk using the Tracy-Widom test proposed in
(3) is

Rk
def
= D

−1/2
k−1 (Rk−1 − λk−1ek−1e

′
k−1)D

−1/2
k−1 (5)

We perform this two-step procedure applying the Tracy-Widom test on each subse-
quent eigenvalue until an eigenvalue is no longer significant.

We note that caution should be taken when testing subsequent sample eigenvalues.
To circumvent the multiple testing issues that are present in this procedure, we apply
methodology from the group sequential analysis literature to control the type I error.
Lan and DeMets (1983) proposed an alpha spending technique in which the nominal
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significance level needed to reject the null hypothesis at each analysis is less than α
and increases as the study progresses. If an overall type I error (α) is desired, we
propose to use the following alpha spending function

α∗(k) = α/2k (6)

where α∗(k) is the significance level for the kth hypothesis test. This is opposed to
Lan and DeMets (1983), as alpha spending function (6) does not depend on the overall
number of tests being conducted. Therefore one need not specify the maximum number
of eigenvalues being tested, which is ideal for unsupervised learning.

We define type I error as the probability of incorrectly choosing a model that has
extracted more factors than the true model. Compared to Lan and DeMets (1983) who
suggest that the alpha spending function should be nondecreasing, our spending func-
tion is nonincreasing (α∗(1) > α∗(2) > · · · > α∗(K)); because finding a parsimonious
model is preferred, we need strong evidence for choosing a more complicated model
with more significant eigenvalues over a simpler one. We have shown in supplementary
material that the overall type I error rate using the proposed spending function (6)
will not exceed α.

4. Interpretation of Factors

After an estimation is made for the number of factors to be used, the next objective
in factor analysis is to provide an interpretation for each underlying factor. In prin-
ciple, the factor loadings provide the basis for interpreting the factors underlying the
data. The size and direction of the extracted factor loadings denote the strength and
direction of the correlation between the random variables and the extracted factors.
Traditionally, the task of interpreting factors has been subjective and unsatisfactory.

Because the original factor loadings may not be easily interpretable, it has become
common to rotate the loadings (e.g. varimax, oblique, etc.) to increase or decrease the
size of factor loadings to ease of interpretation. Unfortunately, regardless of the factor
rotation used, it is rare for factor loadings to be set exactly to zero which would ease
in the interpretation of the underlying factor.

With the recent developments of regularized regression in mind, we propose to
implement a regularization technique to detect a set of sparse factor loadings for easier
interpretation of identified factors. The resulting sparse factor loading vector sets the
loadings of negligible random variables to zero, assuring that they will not contribute
to the interpretation of the underlying factor, making the interpretation of the factors
more straightforward. Additionally, because negligible random variables are removed,
the variance explained by the sparse factor loadings will not suffer much from their
removal.

Eigenvalue decomposition (2) provides the factoring of the correlation matrix of R.
The factor loading matrix L is given by L = (

√
λ1e1, . . . ,

√
λmem) where (λl, el) are

the eigenvalue-eigenvector pairs of R. Producing sparse factor loadings is equivalent
to setting components of el to zero. It can be shown that apart from the scale value√
λl, the factor loading column el are the coefficients of the principal components of

the population. This observation allows us to implement well studied sparse principal
components methods to produce sparse factor loadings.

We propose to regularize el for l = 1, . . . ,m using the sparse principal components
analysis (SPCA) method proposed by Zou, Hastie, and Tibshirani (2006). SPCA es-
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sentially takes the problem of setting PCA loadings to zero and transforms it into
a regression-type problem that uses an elastic net regularization technique to detect
sparse loadings even when p > n. Details of SPCA methodology can be found in Zou
et al. (2006), but we provide a brief description below.

4.1. SPCA for Sparse Factor Loadings

We consider the problem of producing sparse factor loadings for the m estimated
factors. Let Ap×m = (α1, . . . , αm), Bp×m = (β1, . . . , βm) and X be the n × p data
matrix as before and Xi denote the ith row vector of X. The problem of producing
sparse factor loadings can be transformed into the following regression-type criterion
with an elastic net penalty

(Â, B̂) = argmin
A,B

n∑
i=1

||Xi −ABTXi||2 + γ

m∑
l=1

||βl||2 +

m∑
l=1

γ1,l||βl||1 (7)

subject to ATA = Im×m

for any γ > 0. The last term in (7) uses the L1 penalty to produce sparse factor loadings

because the estimated sparse factor loadings, defined as êsl = βl

||βl|| for l = 1, . . . ,m,

are a function of the sparse βl vector.

4.2. Selection of Tuning Parameter

The optimization problem in (7) contains two tuning parameters that must be selected.
The first tuning parameter, γ, is the same for all the m factors. It has been shown
(Zou et al., 2006) that when p > n, a positive γ is required to produce exact loadings
when the second tuning parameter is set to zero. The tuning parameter γ has been
studied and is well understood. Empirical evidence has shown that for the case when
n > p, γ can be set to zero. When p > n, γ can be set to a small positive number to
overcome collinearity between the columns of X.

The second tuning parameter γ1,l is a factor-specific tuning parameter and requires
more development. Zou et al. (2006) did not provide clear guidance on selecting γ1,j ,
other than choosing γ1,j such that it provides a good compromise between explained
variance and sparsity. Other methods exist for selecting the tuning parameters, such
as cross validation (Shen & Huang, 2008) which could be computationally extensive
and requires a large sample size. We add to the current literature on producing sparse
factor loadings by proposing a BIC-type criterion for selecting the factor specific tuning
parameters (γ1,1, . . . , γ1,m).

For a fixed γ, we propose to use the following BIC-type criterion for selection of
tuning parameters (γ1,1, . . . , γ1,m)

BIC = log

 1

np

n∑
i=1

p∑
j=1

(Xij − ˆ̀
jF̂i)

2

+ df(γ1,l, L̂)
log(np)

np
(8)

where ˆ̀
j = (ˆ̀

1j , ˆ̀
2j , . . . , ˆ̀

mj) = (
√
λ̂1ê

s
1j , . . . ,

√
λ̂mê

s
mj), L̂ = (`1, . . . , `p)

T is the factor

loading matrix and F̂i = (λ̂1
−1/2

ês1Xi, . . . , λ̂m
−1/2

êsmXi) whereXi = (Xi1, . . . , Xip)
T .
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We define the degrees of freedom, df(γ1,l, L̂), to be the number of nonzero loadings in

the loading matrix L̂. Zou, Hastie, and Tibshirani (2007) showed that the number of
of nonzero coefficients in lasso regression provides an unbiased estimate for the degrees
of freedom and suggests that BIC can be used to determine the optimal number of
nonzero factor loadings.

5. Analysis of Simulated Data

To assess the performance of the proposed method, we simulate data from factor
models where the p observable random variables are constructed from zero, one, two or
three underlying factors. The zero factor model is given by Xj = εj where εj ∼ N(0, 1)
for j = 1, . . . , p. The one factor model is given by

Xj = U1F1 + ε1j ε1j ∼ N(0, 1), j = 1, . . . , 30

Xj = ε0j ε0j ∼ N(0, 1), j = 31, . . . , p

where U1 ∼ Unif(0, 1) and F1 ∼ N(0, 1). The two factor model is simulated from

Xj = U1F1 + ε1j ε1j ∼ N(0, 1), j = 1, . . . , 30

Xj = U2F2 + ε2j ε2j ∼ N(0, 1), j = 31, . . . , 50

Xj = ε0j ε0j ∼ N(0, 1), j = 51, . . . , p

where U2 ∼ Unif(0.5, 1.5) and (F1, F2)′ ∼MVN(0, I). Finally, the three factor model
is simulated from the following model:

Xj = U1F1 + ε1j ε1j ∼ N(0, 1), j = 1, . . . , 30

Xj = U2F2 + ε2j ε2j ∼ N(0, 1), j = 31, . . . , 50

Xj = U3F3 + ε3j ε3j ∼ N(0, 1), j = 51, . . . , 75

Xj = ε0j ε0j ∼ N(0, 1), j = 51, . . . , p

where U3 ∼ Unif(1, 1.5) and (F1, F2, F3)′ ∼MVN(0, I).
We consider configurations of the data by taking n samples from each of the factor

models and we vary p to be less than, equal to, or more than n. The following parameter
configurations are considered: (p = 100, n = 500), (p = 500, n = 500), (p = 500, n =
100). We also consider the special case when p = 59, n = 39, which is the number
of distinct cancer types and the sample size of the SEER cancer mortality data. In
this special case, the number of random variables loading on F1 is 25, the number of
random variables loading on F2 is 15 and 10 on F3.

5.1. Simulation Results for Estimating the Number of Factors

In this section, we use the simulated data sets to demonstrate the behavior of the
sequential-rescaling procedure when used to estimate the number of factors in a model
with zero, one, two or three underlying factors. We compare the proposed procedure
to the Guttman-Kaiser criterion and parallel analysis.
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Table 1. Simulation results based on 1500 simulated data sets for selecting the true number of factors com-

paring Guttman criterion (Gu), parallel analysis (Pa) and the proposed methodology (Pr). Presented is the

discrete probability of the estimated number of factors (m̂) and its corresponding mean and standard deviation
for one, two and three factor models. The number of random variables (p) and sample size (n) are varied.

Zero Factor One Factor Two Factor Three Factor
(p, n) m̂ Gu Pa Pr Gu Pa Pr Gu Pa Pr Gu Pa Pr

(100, 500) 0 0.00 0.95 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.04 0.02 0.00 0.92 0.98 0.00 0.00 0.01 0.00 0.00 0.00
2 0.00 0.01 0.00 0.00 0.08 0.02 0.00 0.99 0.97 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 1.00 0.97

4+ 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.03
mean(m̂) 45.32 0.07 0.02 41.68 1.09 1.02 35.81 2.01 2.03 25.26 3.00 3.03

sd(m̂) 0.73 0.34 0.14 0.73 0.33 0.15 0.74 0.10 0.17 0.75 0.00 0.17
(500, 500) 0 0.00 0.95 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.03 0.02 0.00 0.74 0.98 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.01 0.00 0.00 0.18 0.02 0.00 0.68 0.99 0.00 0.00 0.00
3 0.00 0.01 0.00 0.00 0.05 0.00 0.00 0.22 0.01 0.00 0.88 0.99

4+ 1.00 0.00 0.00 1.00 0.03 0.00 1.00 0.10 0.00 1.00 0.12 0.01
mean(m̂) 195.65 0.07 0.02 194.31 1.39 1.02 191.51 2.45 2.01 185.54 3.14 3.01

sd(m̂) 0.85 0.38 0.15 0.85 0.82 0.13 0.84 0.80 0.10 0.84 0.38 0.06
(500, 100) 0 0.00 0.97 0.97 0.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.03 0.03 0.00 0.47 0.98 0.00 0.00 0.01 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.19 0.01 0.00 0.02 0.98 0.00 0.00 0.01
3 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.01 0.01 0.00 0.00 0.98

4+ 1.00 0.00 0.00 1.00 0.25 0.00 1.00 0.97 0.00 1.00 1.00 0.01
mean(m̂) 99.00 0.03 0.03 99.00 21.94 1.00 99.00 382.91 2.00 99.00 445.02 2.99

sd(m̂) 0.00 0.18 0.16 0.00 88.39 0.14 0.00 126.46 0.15 0.00 5.50 0.13
(59, 39) 0 0.00 0.96 0.97 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.03 0.03 0.00 0.85 0.96 0.00 0.00 0.03 0.00 0.00 0.00
2 0.00 0.01 0.00 0.00 0.11 0.02 0.00 0.91 0.96 0.00 0.00 0.04
3 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.08 0.01 0.00 0.97 0.96

4+ 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.01 0.00 0.00 0.03 0.00
mean(m̂) 21.55 0.05 0.03 20.76 1.17 1.00 19.21 2.09 1.98 17.77 3.03 2.97

sd(m̂) 0.67 0.26 0.18 0.70 0.49 0.19 0.77 0.33 0.21 0.80 0.18 0.21

We present simulation results in Table 1 for 1500 simulated data sets derived from
zero, one, two or three factor models. The results in Table 1 shows that the proposed
method performs well, and in almost all cases outperforms the Guttman-Kaiser cri-
terion and parallel analysis. The Guttman-Kaiser criterion consistently overestimates
the number of factors to be retained, compared to other methods (even when n > p).
We note that when p is vastly larger than n, the Guttman-Kaiser criterion always
estimates the number of factors to be the rank of R̂.

The parallel analysis method of estimating the number of factors is relatively accu-
rate across the range of factor models when n > p. When p become comparable to n,
the parallel analysis estimator overestimates m compared to the proposed methodol-
ogy. As p becomes significantly larger than n, the parallel analysis estimator breaks
down and significantly overestimates m.

5.2. Simulation Results of BIC Criterion

For each of the simulated data sets, there are numerous random variables that have zero
loadings on the underlying factors. We perform sparse principal components analysis
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Table 2. Simulation results based on 200 simulated data sets for the proposed BIC-type criterion tuning

parameter selection. The |`m| denotes the true number of random variables that load on each corresponding

factor and |ˆ̀m| denotes the mean number of nonzero factor loadings for each factor across the simulated data
sets. FP and FN denote the false positive rate and false negative rate, respectively. The number of random

variables (p) and sample size (n) are varied.

(p, n) One Factor Two Factors Three Factors
F1 F1 F2 F1 F2 F3

(100, 500) |`m| 30.00 30.00 20.00 30.00 20.00 25.00

|ˆ̀m| 30.10 29.96 20.00 30.01 20.06 25.76
FP 0.001 0.000 0.000 0.000 0.001 0.010
FN 0.000 0.001 0.000 0.000 0.000 0.000

(500, 500) |`m| 30.00 30.00 20.00 30.00 20.00 25.00

| ˆ̀
m| 30.02 28.61 20.00 30.00 20.03 25.75
FP 0.000 0.000 0.000 0.000 0.000 0.002
FN 0.000 0.046 0.000 0.000 0.000 0.000

(500, 100) |`m| 30.00 30.00 20.00 30.00 20.00 25.00

| ˆ̀
m| 31.05 33.66 32.40 31.64 29.53 31.77
FP 0.008 0.012 0.026 0.009 0.020 0.014
FN 0.085 0.065 0.000 0.083 0.000 0.000

(59, 39) |`m| 25.00 25.00 15.00 25.00 15.00 10.00

| ˆ̀
m| 27.94 23.63 24.36 23.41 22.63 20.00
FP 0.177 0.122 0.228 0.115 0.310 0.289
FN 0.123 0.221 0.044 0.220 0.402 0.415

on each of the simulated extracted factor loadings to obtain vectors of factor loadings
with zero loadings that can help in interpreting the underlying factors. We choose the
factor-specific tuning parameters (γ1,1, . . . , γ1,m) based on the BIC criterion described
in Section 4.2. We consider 200 simulated data sets for one, two and three factors
models with varying (p, n) as describe earlier.

We present the estimated number of nonzero factor loadings, the false positive rate
and false negative rate for each factor based on sparse PCA using the proposed BIC
criterion in Table 2. Across all factor models, the BIC tuning parameter selection
method selects the true nonzero loadings with good consistency when n is large and
when n is larger or comparable to p. When p > n, the BIC tends to select larger
models for factor 2 and factor 3 and the false positive rate and false negative rate are
no longer negligible.

6. Data Analysis

The motivation for the proposed statistical methodology is derived from work on
identifying change patterns in cancer mortality trends. Cancer mortality data for the
United States comes from the National Cancer Institute’s Surveillance, Epidemiology
and End Results (SEER) Program. We analyze age-adjusted cancer mortality change
patterns separately for males and females. For the sake of brevity and to avoid redun-
dancy, we only present the results for males.

In the study of cancer mortality change pattern trends, it is common to use the
log transformed annual rate change (ARC) instead of the actual mortality rate. The
ARC of cancer type j in year i denoted by ARCij is defined as ARCij = log rij −
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Table 3. Sequential-rescaling procedure: Largest four estimated eigenvalues of the pseudo covariance matrix

(ξ̂i) are denoted in the second column. The p-value for the corresponding Tracy-Widom test and alpha spending

function, α∗(k), are in the third and fourth column, respectively. The last column denotes the decision to retain
or not retain the factor.

Factor ξ̂i p− value α∗(k) Decision
1 268.90 <0.0001 0.0250 Retain
2 234.42 <0.0001 0.0125 Retain
3 219.46 0.0003 0.0063 Retain
4 207.17 0.0033 0.0031 Do not retain

log ri−1,j , where rij denotes the cancer mortality rate of cancer type j in year i, and
the log transformation is applied to normalize the data and the difference to construct
independent components (Kim, Fay, Feuer, & Midthune, 2000). Because the different
cancer types have varying levels of volatility, we will center and standardize ARCij
such that it has mean 0 and variance 1. We denote the standardized rate change as
Xij . We obtain an estimate of the correlation matrix, R̂ = 1

n−1X
TX where Xn×p is

the data matrix with Xij as its (i, j)-th entry. Cancer mortality rates were obtained
for p = 59 distinct male cancer types over n = 39 years (1969-2008).

6.1. Application of proposed methodology to SEER data

To visualize the correlation matrix of cancer ARC, we construct a correlation matrix
using ellipse-shared glyphs for each entry in Figure 1. Overall, Figure 1 displays how
the correlation matrix is dominated by low correlations between the cancer types. It is
feasible that the population correlation matrix of ARC could be equal to the identity
matrix and that the few moderate observed correlations are simply noisy estimates.

We begin our investigation of the correlation matrix of ARC by testing the null
hypothesis H0 : R = I versus the alternative HA : R 6= I. To test this hypothesis,
we study the largest eigenvalue of R̂ which was estimated to be 7.12. After perform-
ing the correlation correction of the Tracy-Widom test described in Section 2.3, the
estimated largest eigenvalue of the pseudocovariance matrix is 268.90. Applying the
Tracy-Widom test on this value, we calculate the test statistic Tnp = 8.63 where

µnp =
(√

59− 1 +
√

38
)2

= 189.89 and σnp =
(√

59− 1 +
√

38
) (

1√
59−1

+ 1√
38

)1/3
=

9.16. Compared to the Tracy-Widom distribution of order 1, the test statistic results
in a p-value < 0.0001. We reject the null hypothesis of complete independence in ARC
between cancer types which suggests that at least one factor is sufficient to describe
the observed correlation among the cancer types.

Next, we determine the number of factors to be used in the analysis using the
sequential rescaling procedure described in Section 3.1 and present those results in
Table 3. Table 3 suggests that three underlying factors are important in characterizing
the correlation matrix of cancer mortality ARC.

Next, for the three extracted factors we performed sparse principle components
analysis described in Section 4 to regularize the factor loadings. Only cancer types with
meaningful associations to each underlying factor will have a nonzero factor loading,
and we consider these to be important for the interpretation of the factors. We set
γ = 1.0× 104 in our SPCA analysis because the number of cancer types exceeded the
number of data points available. To determine the degree of sparsity for each factor,
we selected (γ1,1, γ1,2, γ1,3) to be the values that minimized the BIC criterion in (8).
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We present in Table 4, the 59 unique cancer types and their corresponding sparse
factor loadings for the extracted factors. Of all the 59 cancers, 28 cancer types had
zero loadings on all three factors. We note that lung and bronchus, prostate, and
colon cancer sites load heavily on the first factor but has exactly zero loadings for
factors 2 and 3. Factor 1 might provide more support to the hypothesis that, as
for colorectal cancer, early detection through screening and advances in treatment for
prostate cancer are important factors that underlie the change in mortality rate. Factor
2 appears to contrast soft tissue cancers and leukemia, however, it is not clearly evident
what is driving to their observed correlation. The interpretation of factor 3 appears
to be highly related to miscellaneous cancer types (miscellaneous malignant cancer,
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Figure 1. Visualization of the standardized log-annual cancer mortality rate change correlation matrix of

the 59 unique male cancer types. Ellipse-shared glyphs for each entry represent the level curve of a bivariate
normal density with the matching correlation. Ellipses in black denote a positive correlation greater than 0.4
and a red ellipse denotes a negative correlation of more than -0.4. The cancer type can be matched to the
number on the figure and in Table 4.
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other myeloid/monocytic leukemia, other digestive organs, etc.). Appendix Figure 1
provides additional information on each factor and their ARC change over time.

7. Discussion

We have described a methodology based on random matrix theory that uses factor
analysis to make inference on correlation matrices for settings where p > n. The meth-
ods described herein are applicable to a wide range of data, because it can be applied
to cases were p > n as well as to traditional cases where n > p. We observed that
current methods for selecting the number of factors (Guttman-Kaiser criterion and
parallel analysis) do not perform well when p > n. Thus, we developed a sequential-
rescaling procedure to determine the number of significant factors in a factor model
using the Tracy-Widom test. This procedure is based on group sequential theory to
control for the overall type I error. We described a practical approach to interpret the
significant factor loadings using sparse principal components analysis and a novel BIC-
type criterion which regularizes the noisy estimates of the factor loadings. Simulation
studies demonstrate great performance for the proposed methodology in selecting the
number of factors to be extracted and for identifying the important random variables
that load on the underlying factors.

A number of open problems present themselves. The methods herein were con-
structed under the normality assumption. It is unclear how to determine complete
randomness against any deviation from normality. For future work, it would be ideal
to study the robustness of this methodology and the Tracy Widom test against differ-
ent distributional assumptions. Another limitation is that we have not explored any
methods that test whether the change patterns of any two specific cancer types are
correlated over time. Factor analysis identifies groups of cancers that are linearly de-
pendent upon a few unobservable latent random variables, but cannot make specific
statements about pairwise correlations. Identifying specific pairs of cancers that share
similar change patterns could be extremely useful for cancer researchers. One avenue
to explore related to the identification of significant pairwise change patterns would be
to regularize the elements of the correlations themselves, which have been extensively
studied for covariance matrices (Cai & Liu, 2011; Fan, Liao, & Liu, 2016; Rothman,
Levina, & Zhu, 2009). Lastly, although our focus was on the study of the correlation
matrix when p > n, future studies should compare the performance of the Tracy-
Widom test and sequential-rescaling procedure on covariance matrices to compare the
performance and generalizability of these methods.
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Table 4. Specific male cancer types and their corresponding sparse factor loadings. Sparse loadings are
estimated by SPCA.

# Cancer Type Factor 1 Factor 2 Factor 3
1 Lip
2 Tongue
3 Salivary gland -0.10
4 Floor of mouth
5 Gum and other mouth
6 Nasopharynx
7 Tonsil
8 Oropharynx
9 Hypopharynx 0.01
10 Other oral cavity and pharynx -0.04
11 Esophagus
12 Stomach
13 Small Intestine
14 Colon excluding rectum -0.14
15 Rectum and rectosigmoid junction 0.02
16 Anus, anal canal and anorectum 0.22
17 Liver -0.11
18 Intrahepatic bile duct -0.04
19 Gallbladder
20 Other biliary
21 Pancreas 0.04
22 Retroperitoneum
23 Peritoneum, omentum and mesentery
24 Other digestive organs 0.30
25 Nose, nasal cavity and middle ear
26 Larynx -0.01
27 Lung and bronchus -0.16
28 Pleura -0.02
29 Trachea, mediastinum and other respiratory organs
30 Bones and joints -0.24
31 Soft tissue including heart 0.18
32 Melanoma of the skin -0.05 -0.05
33 Other non-epithelial skin 0.05
34 Breast -0.14
35 Prostate -0.12
36 Testis
37 Penis
38 Other male genital organs
39 Urinary bladder
40 Kidney and renal pelvis -0.06 -0.08
41 Ureter
42 Other urinary organs 0.08
43 Eye and orbit -0.13
44 Brain and other nervous system -0.05 -0.05
45 Thyroid
46 Other endocrine including thymus
47 Hodgkin Lymphoma
48 Non-hodgkin lymphoma -0.08
49 Myeloma -0.10
50 Acute lymphocytic leukemia -0.03
51 Chronic lymphocytic leukemia
52 Other lymphocytic leukemia 0.14
53 Acute myeloid leukemia
54 Acute monocytic leukemia 0.10
55 Chronic myeloid leukemia -0.05 -0.12
56 Other myeloid/monocytic leukemia 0.24
57 Other acute leukemia
58 Aleukemic, subleukemic and NOS
59 Miscellaneous malignant cancer 0.34
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9. Appendices

In this section, we show that the proposed alpha spending function

α∗(k) =
α

2k

to test the number of significant factors will not exceed α, by calculating three prob-
abilities.

(1) Probability that a model with one or more factors is chosen given a true zero
factor model.
Let Lm be the event that the true model has m significant factors and L̂m the
estimated number of factors. Then it follows that

P (L̂k≥1|Lo) = 1− P (L̂0|L0) = 1− (1− α) = α

(2) Probability that a model is selected with k factors given a true zero factor model
for any k ≥ 1.

P (L̂k|L0) =
(

1− α

2k+1

) k∏
q=1

α

2q

Because
(

α
2k+1

)
< 1 it follows that

P (L̂k|L0) <

k∏
q=1

α

2q
< α

k∏
q=1

1

2q

where the last equality follows as the result of αk < α as α ∈ (0, 1). Finally, as∏k
q=1

1
2q < 1, we get the result that

P (L̂k|Lo) < α

(3) Probability that a model is selected with more than k factors given a true factor
model with k factors.

P (L̂q>k|Lk) =

∞∑
w=1

(1− α

2k+w

) k+w∏
q=k+1

α

2q


<

∞∑
w=1

k+w∏
q=k+1

α

2q

<

∞∑
w=1

α

2w
= α

Thus, the type I error does not exceed alpha in any of the settings.
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In Appendix Figure A1, we plot the cancer mortality standardized log ARC over
time for for all 59 cancer types and also three separate plots for the cancer types that
have non-zero loadings for each factor. To visualize the pattern over time, we fit a
Lowess smoothing line across time. Overall, when we consider the change patterns
of ARC for all 59 cancer types simultaneously, we do not observe much change in
ARC over time. The factor analysis performed identifies three distinct cancer mortality
patterns of ARC over time. Factor 1 is a collection of cancer types (primarily influenced
by colon, prostate and lung cancers) that have exhibit a decrease in ARC cancer
mortality across time. The cancer types in factor 2 have decreasing ARC that levels
off after the year 1990. Finally, factor 3 (miscellaneous) cancer types show no change
in ARC over time.
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Figure A1. Line plots of standardized log annual cancer mortality rate change over time. Left panel includes

all cancer types and the last three panels plots the standardized log ARC for the cancer types that have
non-zero loadings on factors 1, 2 and 3, respectively. The solid red line denotes Lowess smoothing curves.
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