Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Journal of

Multivariate
Analysis

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Journal of Multivariate Analysis 102 (2011) 1175-1193

Contents lists available at ScienceDirect

Multivariate
Analysis

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

A new class of minimum power divergence estimators with applications
to cancer surveillance

Nirian Martin®*, Yi Li "<

2 Department of Statistics, Carlos IIl University of Madrid, 28903 Getafe, Madrid, Spain
b Department of Biostatistics & Computational Biology, Dana Farber Cancer Institute, United States
¢ Department of Biostatistics, Harvard School of Public Health, United States

ARTICLE INFO ABSTRACT

Article history:
Received 10 May 2010
Available online 7 April 2011

The annual percent change (APC) has been adopted as a useful measure for analyzing
the changing trends of cancer mortality and incidence rates by the NCI SEER program.
Difficulties, however, arise when comparing the sample APCs between two overlapping
regions because of induced dependence (e.g., comparing the cancer mortality change rate
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of California with that of the national level). This paper deals with a new perspective
for understanding the sample distribution of the test-statistics for comparing the APCs
between overlapping regions. Our proposal allows for computational readiness and easy
interpretability. We further propose a more general family of estimators, namely, the
so-called minimum power divergence estimators, including the maximum likelihood
estimators as a special case. Our simulation experiments support the superiority of the
proposed estimator to the conventional maximum likelihood estimator. The proposed
method is illustrated by the analysis of the SEER cancer mortality rates observed from 1991

Poisson sampling to 2006.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

According to the World Health Statistics 2009, published by the World Health Organization, in 2004, the age-standardized
mortality rate in high-income countries attributable to cancer deaths was 164 per 100,000. Cancer constituted the second
highest cause of death after cardiovascular disease (its age-standardized mortality rate was equal to 408 per 100,000).
For cancer prevention and control programs, such as the Surveillance, Epidemiology and End Results (SEER) in the United
States (US), it is very important to rely on statistical tools to capture downward or upward trends of rates associated with
each type of cancer and to measure their intensity accurately. These trends in cancer rates are defined within a specific
spatial-temporal framework, that is, different geographic regions and time periods are considered.

Let r; be the expected value of the cancer rate associated with region k and the ith time point in a sequence of ordered
I time points {tki}g": ;- We shall assume that Region 1 starts with the earliest time. Each point represents an equally spaced
period of time, for instance a year, and thus without any loss of generality, t;; = i,i = 1, ..., I; (any change in origin or
scale with respect to time should not affect a measure of trend). The cancer rates are useful for evaluating either the risk of
developing cancer (cancer incidence rates) or dying from cancer (cancer mortality rates) at a specific moment. Statistically,
the trend in cancer rates is an average rate of change per year in a given relatively short period of time framework when
constant change along time has been assumed. The annual percent change (APC) is a suitable measure for comparing recent
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Fig. 1. Two overlapping regions not sharing the same period of time.

trends associated with age-adjusted expected cancer rates:

J
i = Za)jrkji, (1)
j=1

where J is the number of age groups, {a)j}fz] is the age distribution of the Standard Population (ZL] wj = 1,07 > 0,

j=1,...,])and {rkﬁ}fzl is the set of expected rates associated with the kth region (k = 1, 2) at the time point t; (i =
1, ..., Iy), or the ith year, in each of the age groups (j = 1, ...,J). For example, the SEER Program applies as standard the
US population of year 2000 with J] = 19 age groups [0, 1), [1, 5), [5, 10), [10, 15), ..., [80, 85), [85, *). More technical
details can be found in [4] and [14]. The APC removes differences in scale by c0n51dermg the proportion (T i+1 — Tk.i) /Tki =
Tvi+1/Tki — 1 under constant change assumption of the expected rates. Proportionality constant 6, = rip/ry = -+ =

T, /T, 1,—1 constitutes the basis for defining APC, = 100(8; — 1) as a percentage associated with the expected rates {rkj,-}j:l
of the kth region. Since the models that deal with the APCs consider the logarithm of age-adjusted cancer rates, the previous
formula is usually replaced by

APC, = 100 (exp(Bi) — 1), (2)

and we would like to make statistical inferences on parameter Sy, (see [3] and [15] for more details about the APC).
The data that are collected for modeling the APC associated with region k, are:

e dy;;, the number of deaths (or incidences) in the kth region, jth age group, at the time point t;;

e 1y;; the population at risk in the kth region, jth age group, at the time point t;;
so that the r.v.s that generate dy;;, Dy, are considered to be mutually independent. In a sampling framework we can define
the empirical age-adjusted cancer rates as Ry, = Z§:1 iRy = Zj:] wj%, whose expected value is (1). Even though
the assumption of “independence” associated with Dy; simplify the process of making statistical inference, it is in practice
common to find situations in which the two APCs to be compared, APC; and APC,, share some data because there is an
overlap between the two regions. For example, in [13] county-level data on 22 selected cancer sites during 1996-2005 are
analyzed, so that the APC of each county is compared with the APC of Oregon state. It is not possible to assume independence
between the data of counties (local level) and their state (global level). Moreover, the APC comparison between overlapping
regions is more complicated when the APCs are not for the same period of time. For instance in the aforementioned study
that appeared in [13], while Oregon APC was obtained for a period of time ending in 2005, the US APC was calculated for a
period of time ending in 2004 because the US data of year 2005 were not available. Fig. 1 represents the most complicated
overlapping case for two regions, where {1, 6} x {5, 8} is the set of points of the first region, {5, 9} x {2, 6} is the set the
points of the second region, {5, 6} x {5, 6} is the set of points of the overlapping region (boxed points). Each of the two
regions have a portion of space and period of time not contained in the other one (circular points for region 1 and diamond
points for region 2).

This paper is structured as follows. In Section 2 different models that establish the relationship between ry; and Sy, are
reviewed and the two basic tools for making statistical inferences are presented, the estimators and test-statistics for equal
APCs. Specifically, the Age-stratified Poisson Regression model, introduced for the first time in [7], is highlighted as the
model that arises as an alternative to improve the previous ones. Based on Power divergence measures, in Section 3 a
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family of estimators that generalize the maximum likelihood estimators (MLEs) are considered for the Age-stratified Poisson
Regression model. In addition, a new point of view for computing the covariance between the MLEs of 8y is introduced
inside the framework of this family of estimators and this is the key for substantially improving the Z-test statistic for testing
the equality of APCs for the Age-stratified Poisson Regression model. In addition, such a methodology provides explicit and
interpretable expressions of the covariance between the estimators of 81,. We evaluate the performance of the new proposed
methodology in Section 4 through a simulation study and we also consider an application example to Breast and Thyroid
cancer data from California (CA) and the US population, extracted from the SEER*STAT software of the SEER Program.
Finally in Section 5 some concluding remarks are given.

2. Models associated with the annual percent change (APC)

When non-overlapping regions are taken into account, there are basically two models which allow us to estimate the
APC starting from slightly different assumptions, the Age-adjusted Cancer Rate Regression model and Age-stratified Poisson
Regression model. The main difference between them is based on the probability distribution of D;;, number of deaths in the
kth region, jth age group, at the time point t;;: while the Age-adjusted Cancer Rate Regression model assumes normality for
log Ry; with Dy;; having the same mean and variance, the Age-stratified Poisson Regression model assumes directly a Poisson
random variable (r.v.) for D;. The Age-adjusted Cancer Rate Regression model establishes log Ry; = Bok + Biktki + €ki, where

i = N (O, o) with o = Z§:1 WP i /Mg = Z§:1 w? myi/ngy; under

E[Dyji]l = Var[Dyji] = nyitiji = Myji, (3)
i.e. log Ry e N (log 1y, 0%) with

Ti = eXp(Bok) eXp(Biktki)- (4)
According to the Age-stratified Poisson Regression model [7], Dy;; e P (nyjiryji) and for ry; it holds

Myji

log i = Bowj + Pkt or log = Pokj + Piktui- (5)

Nyji
Observe that the parametrization of both models is essentially the same because the expected age-adjusted rate ry; in terms
of (5) is equal to (4), where

J
exp(Bor) = Y _ @; exp(Boi), (6)

=1
and thus for both models it holds that

1
trr, —t
b = (”—’) T = exp(Bu). ™)
Tk1

The original estimators associated with the Age-adjusted Cancer Rate Regression model and Age-stratified Poisson
Regression model are the Weighted Least Square estimators (WLSE) and Maximum Likelihood estimators (MLE) respectively.
The hypothesis testing for comparing the equality of trends of two regions, #, : APC; = APCy, is according to (2),

equivalent to J, : 811 — B12 = 0. Hence, the Z-test statistic for both models can be defined as

7 — E]] _312 (8)

VVar(Bii — Bi)

where Blk, k = 1, 2 are the estimators of 8y associated with each region, \ﬁr(ﬁn — Blz) is the estimator of the variance of

Buir — B2, Var(Bi1 — Biz). The expression of the variance is Var(B11 — Bi2) = o} + o}, witho}, = Var(Bu), k = 1, 2, for
non-overlapping regions. When overlapping regions are taken into account, the methodology for obtaining the estimators as
well as Z-test statistic (8) remain valid, but the given expression for Var(811 — B12) is no longer valid. When the overlapping
regions do not share the same period of time (t;; # t; or I; # I), we must consider a new reference point for index

i, denoted by I, such that t,; represents the time point within {ty; ?:1 where the time series associated with the second

region is about to start, i.e. we have {tz,-}?:1 such that t;; = t;7 + 1. In particular, if t; = i,i = 1,...,I;, then ty = [+1i,
i = 1,..., . Observe that {t”}?:I L Or equivalently {ty; :1=—11 is the time series associated with the overlapping region
(ti=ty;_ji=1+1,...,).InFig. 1I; = 6,1, = 5,1 = 4 and thus we can distinguish three subregions {5, 6} x {1, ..., 4},
{5,6} x {5,6}and {5, 6} x {7, ..., 9}. Without any loss of generality each random variable D;; can be decomposed into two
summands

1 2
iji = Dl(cji) + Dl(cji) (9)
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where D,(ql,), {1, ..., I}, is the number of deaths (or incidences) in the kth region, jth age group, at the time point t;; for

the subregion where there is no overlap in space; D,(;i), i € {1,..., I}, is the number of deaths (or incidences) in the kth
(2)
kji

myi(By) = mkl)(ﬂk) + mkﬂ) (B,)- Observe that when i € {I+1,...,L),rvs Dgfl) and D(z) ; are associated with the same
overlapping subregion. Revisiting the example illustrated in Flg 1, 1t should be remarked that in the y-axis (space) there are
more points than those that represent one realization of all r.v.s Dkﬁ in each time point, but grouping the points belonging

to the same vertical line inside the portion marked in dash we are referring to one realization of them (for instance, for

region, jth age group, at the time point t;; for the subregion where there is overlap in space. Similarly, ny; = nkﬂ + n;;; and

t11 = 1 we have two groups of points associated with Dﬁﬁ D% respectively, while for tyj5 = tpj; = 5 we have three groups
of points associated with Dg}g D% or Dgi , Dg}i ). Grouping points symbolize different extension in regions. In Fig. 1 there are

20 realizations of all r.v.s Dkﬂ in total, 12 for region 1, 10 for region 2 and 2 r.v.s are shared for both regions.

(b))

b € {1, 2} as “homogeneous contributors” with respect to Dy;;, i.e. DY ~ (mkﬁ

It is important to understand r.v.s D 0

kji

such that (10) holds, and hence {m(]i)(ﬂ )}l i and mg)(ﬁz)} ! are only equal when 817 = B (or equivalently,

when 8, = B,). Now we can say thoroughly that under ﬂn = pi2, the reason why Cov(,Bn, ﬂlz) = 0 is not true
inside Var(,Bn — ﬁu) = Var(,311) + Var(,312) — 2Cov(,311, ﬁlz) for overlapping regions is that {Duz}z 1, 0:;j=1,...; and

{Dyji}i=1,...1p:j=1,...; are not independent, because both regions share the same the set of r.v.s {D]}, Yicitt, 1pj=1,...y With
2 (2)
DUl D2]1 I
: (b ind , (b)
Assumption 1. D;;; ~ »(m;), b € {1, 2}, where for nkﬂ > 0 the following holds
n®
b kji
my = —Lmy, be (1,2} (10)
Niji
We accept the case where n,(;i) = 0, for some b € {1, 2}, so that Dg-’i) = 0 a.s. (degenerate r.v.) because m,(;i) =0.

Regarding the basic models considered in the papers dealing with overlapping regions, the Age-stratified Poisson
regression model can be considered as the most realistic one, actually they have been constructed by successive
improvements on the previous models so that initially normality assumptions were taken as approximations of underlying
Poisson r.v.s. In the first paper concerned about trend comparisons across overlapping regions [7], it is remarked that *...the
derivation of Cov(811, B12), ..., is nontrivial as it requires a careful consideration of the overlapping of two regions”. The
assumption considered by them (which is based on Pickle and White [11]) for the overlapping subregion is similar to the
assumption considered herein in the sense that the overlapping subregion follows the same distribution considered for the
whole region. A similar criterion was followed in [8,7].

3. Minimum power divergence estimators for an age-stratified Poisson regression model with overlapping

Let m; be the expected value of the r.v. of deaths (or incidences) Ds associated with the sth cell of a contingency table with

My = JIycells(s = 1, ..., My). In this section, we consider model (5) in matrix notation so that the triple indices are unified
in a single one by following a lexicographic order. Hence, the vector of cell means m(B;,) = (m1(By), ..., My, BT =
(My11(By), - - -, Mg (By))" of the multidimensional r.v. of deaths (or incidences) Dy = (D1, ..., Dy,)" = (Dx1, - ... Digy)7,
is related to the vector of parameters B, = (Bok1, - - - » Bok» Bik)| € O = R according to

log (Diag™" (m) m(B)) = XiB, or my(B,) = Diag(m) exp(XiBy), (11)
where Diag(n,) is a diagonal matrix of individuals at risk n, = (nq, ..., an)T = (M1, .-+, nk]]k)T (ng >0,s=1,...,M)
and

1],( tk
X = : =031, t),
L B/ g

witht, = (t;q, .. ., tk,k)T, a full rank My x (J + 1) design matrix. Based on the likelihood function of a Poisson sample D, the

kernel of the log-likelihood function is given by

My

gﬂk (Dk) = Z Dy log ms(ﬂk) - Z ms(ﬂk
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and thus the MLE of B, is
By = arg max Lg, (Dy).
Breo

It is well known that there is a very close relationship between the likelihood theory and the Kullback-Leibler divergence
measure [6]. Focused on a multinomial contingency table it is intuitively understandable that a good estimator of the
probabilities of the cells should be such that the discrepancy with respect to the empirical distribution or relative
frequencies is small enough. The oldest discrepancy or distance measure we know is the Kullback divergence measure,
actually the estimator which is built from the Kullback divergence measure is the MLE. By considering the unknown
parameters of a Poisson contingency table, the expected values, rather than probabilities and the observed frequencies
rather than relative frequencies, we are going to show how is it possible to carry out statistical inference for Poisson models
through power divergence measures. According to the Kullback divergence measure, the discrepancy or distance between
the Poisson sample Dy and its vector of means my(f,) is given by

My
diutt Dy, mi(By)) = Z ( s log

s=1

B b+ m8 )) (12)
ms(B) SR

Observe that dgun (Dy, mg(B))) = —£g, (Dy) + Cy, where C; does not depend on parameter B,. Such a relationship allows us
to define the MLE of $, as minimum Kullback divergence estimator

B = arg min dg,;(Dy, m(By)),
BreOk

and the MLE of m, (8, functionally as mk(’ﬂ\k) due to the invariance property of the MLEs. The power divergence measures
are a family of measures defined as

A+1

My
S —Dy(1+4 1) + Amg . Aég{o, —1 13
RESES <m?(ﬂk) 1+ + m(ﬂk)> ¢ { } (13)

d)\. (Dk , My (ﬂk)) =

such that from each possible value for subscript A € R— {0, —1} a different way to quantify the discrepancy between Dy and
my(f,) arises. In case of . € {0, —1}, we define d, (Dy, my(B,)) = lim,_,, d,(Dy, m(B,)), and in this manner the Kullback
divergence appears as special case of power divergence measures when A = 0, do(Dy, my(8;,)) = diun (D, mx(B,)) and
on the other hand case A = —1 is obtained by changing the order of the arguments for the Kullback divergence measure,
d_1(Dy, m(B))) = dygun(mi(By), Dy).

The estimator of B, obtained on the basis of (13) is the so-called minimum power divergence estimator (MPDE) and it is
defined for each value of A € R as

ﬂk ) = arg mm dA(Dka mk(ﬁk)) (14)

BreOk

and the MPDE of m;(B,) functionally as m(B, ;) due to the invariance property of the MPDEs. Apart from the MLE (8, or
ﬂk o) there are other estimators that are members of this family of estimators: minimum modified chi-square estimator,
ﬂk _,; minimum modified likelihood estimator, ﬂk _1; Cressie-Read estimator, ﬂk 23> minimum chi-square estimator, ,B,<1
These estimators were introduced and analyzed for multinomial sampling by Cressie and Read [ 12], but for Poisson sampling
were applied for the first time in [10]. The so-called minimum ¢-divergence estimators are a wider class of estimator that
contains MPDEs as special case (see [9] and [5] for more details) and this statistical problem could be easily extended for
these estimators.

Taking into account that the asymptotic distribution of all MPDEs tend to be “theoretically” the same, including the
MLE, we are going to propose an alternatlve method for estlmatmg Var(,Bn - ﬂu) = Var(B11,0 — ,312 o) that covers a new
element for overlapping regions, Cov(,Bn, ﬁ12) = Cov(ﬁn 0, ,312 0).- We postulate that for not very large data sets, the MLEs,

,311 0 — ﬂ12 o0, might be likely improved by the estimation associated with A = 1, ,311 11— ,812 1, when overlapping regions
are considered.

In order to obtain the MPDE of (2), KITC,{,,\ = 100(exp(,§1k,k) — 1), we need to compute the estimator of the parameter of
interest by following the next result.
Proposition 2. The MPDE of B, /,51,(, 1, 1S the solution of the nonlinear equation

Ik

f(,/glk,)t) = Z tyi Y = 0,
p
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with
J —~
Yii = Z myi(B;) (@i — 1),
j=1

Al
mii(B;) = i exp(Pog.) exp(Buuiati) and @i = | —=— )
mkji(ﬂ,\)

1

Iy A1
exp(Bokj,x) = <Z plqsllf]i}:_]) N T
s=1

MNjs €XP(Bk, 1 tks) Dyjs
Dkjs = ; and wkjs = —
k -~ Njs EXP (,Blk,ktm)
> Nijn eXp(Bik,atin)
h=1

Our aim is to show that /Bn, 3 — 312, » is asymptotically normal and to obtain an explicit expression of the denominator
of the Z-test statistic (8) with MPDEs

.311,A - ;312,1

\/Var(ﬂn,x — B12,2)

when the random vectors of observed frequencies of both regions, D; and D, share some components (those belonging
to the overlapping subregion). Since (15) is approximately standard normal for min{Ny, N,} large enough, we can test
FHo : APCy = APGC; (B11 = Pr2) vs. #1 : APCy # APC, (B11 # B12), so that if the value of |Z, | is greater than the quantile
zi_g (i.e, Pr(z, < zl,%) =1- %), Fo is rejected with significance level .

7 (15)

The following result is the key result for estimating the variances and covariance of the estimators of interest, EM,
k = 1, 2. It allows us to establish a linear relationship between the parameter of interest and the observed frequencies
under Poisson sampling when the expected total mean N in each region (k = 1, 2) is large enough and the way that N
increases is given in Assumption 3.

Assumption 3. m;ﬁﬁ(ﬂg) = mkﬁ(ﬂg)/Nk remains constant as Ny increases, that is, mkji(ﬂg) increases at the same rate as N;.

)

where superscript 0 is denoting the true and unknown value of a parameter, o is denoting a little o function for a stochastic
sequence (see Chapter 14 in [2]) and

Theorem 4. The MPDE of By, Ek, » k=1, 2, can be expressed as

Dy — my(BY)
Ny

B]k,k — B% = o2t (BHX! (D — m(BY) + 0 (

J Ix -1
o = GZ(ﬂﬁ)XkTDiag(mk(ﬂ?ﬂ))Xk?k(ﬂi))*1 = (Z Z My (BY) (txi —%(Bﬁ))z) , (16)
=1 i=1
G = (taB) - B 1),
Ik
i Migi (BR) b
Ty(B) = =, : (17)
> myi(BY)
i1

Theorem 5. The MPDE of By, ,/ém, k=1, 2, is asymptotically Normal, unbiased and with variance equal to (16).

Note that Theorem 5 would be more formally enunciated in terms of «/Nk(,’&“ — B%), because o, is not constant
as Ny increases. We have avoided that in order to focus directly on the estimator of interest. Due to Assumption 3 and

T (B = Yk mj;(BY)tui, what is constant is

J o I -1
Var(y/NiBi1) = Neo, = (Z > mi(BY) (b —?kjw;:)f) :

=1 i=1
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Let N be the total expected value of the region constructed by joining regions 1 and 2. Note that N < N; + N,, being
only equal with non-overlapping regions. In order to establish the way that N increases with respect to Ny, we shall consider
throughout the next assumption.

Assumption 6. N; = N" (k =1, 2)is constant as N increases, that is N increases at the same rate as Nj.

Note that for overlapping regions, Nj + NJ > 1 holds and under the hypothesis that ;811 = ﬂ]Z‘ we have a common
true parameter vector g° = ﬂg k = 1, 2). Hence, under the hypothesis that /3?1 = /8?2, since Nf + N; = 1+ Zle

,{1:1’ g{; (B°)/N is constant, the overlapping death fraction, ZJ Zf;ll gq) (B%)/N, is also constant as N increases.

Theorem 7. Under the hypothesis that ,8?1 = ,3?2, the MPDE of B11 — B12, ,311,)\ — Eu, is decomposed as

Biig — Bras = X1 + X + X3 + Y, (18)
X, = o{ (BOX] D" —m'" (8%,

X, = —oit (B)X] (DY — mi" (%)),

X3 = (oht] (BOX] — oty (B9)X]) (DP —m® (B°)),

Y:O( D, —m;(B° )+0( D, — my(B°) )’
1, ty

N, N,
where X, is an amplified (I + L) x (J + 1) matrix of X;,
Xk = = (l] ®ik’ 1]®ik)a

ik

&/ 1t xg+1)
1T=(1,Tl,of+l ) and 1,=(0.1)),

t| =(,0 ie,_r,)  and t =(0,t),

and D® = (D11, ..., Dy, i) m® (g% = m'>, (8. .. ﬁ)w (B°))T are the vectors obtained joining D for k = 1,2
and m(z) (ﬂo) for k = 1, 2 respectively, i.e.

D® = ((Di11, ..., Dy, (D(z))T)T D(z) = (D211, - - -, Do),
m® (%) = ({3, (B%), ..., mP (B, mP BN, mP (%) = (m3, (B, ..., my, (BN

Theorem 8. Under the hypothesis that ﬁ?l = ,8?2, the asymptotic distribution of 73\11, 3 — /Bu, 5 is central Normal with
Var(Bi15 — Pi2s) = 04y + 05 — 20,0561

2
where o5, is equal to

J - I I J -1
o = (Zkaﬂ(ﬂ ) (i — T (B)) ) = (Z mygi (B°) 6 — kaj.?ﬁ,(ﬂ(’)) : (19)
j=1

j=1 i=1 j=1 i=1

with mye = Y1, mii(B°), Tg(BY) is (17) and
-1 (2)

Ep = ZZ P (B (6 — Ty (B2 (6 — T (B%)

j=1 i=1 Tji
h=T ,@ h=T ,@
=y > 22’ my;i (B%)(65; + Ty (B) b (B ))—ZZ j my;i(B%)tai (T (B°) + Ty (B)). (20)
j=1 i=1 "4t j=1 i=1 i

That is, the covariance between 73\117 5 and ﬁn, 5 is given by

o1,12 = Cov(Bi1,a, Bi2,a) = 01210122512, (21)

and the correlation by pq,12 = COT(’BH,A, B]Z,A) = 011012612
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For the expression in the denominator of (15), we need to obtain the MPDEs of o, k = 1,2 and &1, 67 ;, k = 1,2 and
512, ,. respectively. A way to proceed is based on replacing B° by the most efficient MPDE

/ﬁ\o ﬂ] A lfN] ZNZ
ﬂZA’ lfN] <N2.

An important advantage of this new methodology is that the expression of the denominator of (15) is explicit, easy
to compute and can be interpreted easily. The term (20) determines the sign of (21). The structure of (20) is similar
to the covariance proposed in the model of Li et al. [8] for WLSEs or as well as for the estimators in the model of Li
and Tiwari [7] We can see that if there is no time point shared by the two regions, i.e. I > [y, then 6712, = 0 and

Var(ﬂ“ A — ,312 ) = Ofy; + 0py ;s if there is no space overlap, then it holds mzj)(ﬂA 0 for all i and j belonging to
the overlapping subregion and hence 67,12, = 0 and Var(,Bll 3 — ,812 3 = o“ ot + 012 ,. On the other hand, when the two

regions to be compared share at least one time point and there is space overlap, Var(ﬂn 3= ﬂu 3) = 0’1] T+ 012 . — 201,12,
holds, with 7.1, # 0. Moreover, when the period of time not shared by the two regions is large (small), the covariance

tends to be negative (positive) because the average values, tlj(ﬂl, ,) and tzj(ﬂz’ ,), are more separated from (closer to) the
time points associated with the overlapping subregion. We shall later analyze this behavior through a simulation study, and
we shall now investigate how is the structure of £y, when the two regions to be compared share the whole period of time.

Corollary 9. When = 0 and I, = I, under the hypothesis that %, = %,

1 I mD
b=+ U m@ @) - T BN E) B - T (B, (22)

U](z) =1 Myje Mpje

with

Z Z my (B°) (2 — T3 (B)?,
01(2) j=1 i=1
Ik
2’: m;ﬁfi) (Bt
W)=
Zm,g’(ﬂ )

I
(b) (b) (1) (2)
Myje = Z My (ﬂ )s Mije = My, + Myjes
i=1

I I
@ @, g0 @), g0
m =) ma (B = ) mii (7).
i=1 i=1

012(2) represents the variance of Elz » focused on the overlapping subregion. In particular, if region 2 is completely contained in
region 1, &, = 1/012(2) = 1/012, mgz =0forallj=1,...,], and hence

Vaf(,/gn,x — Eu,x) =0}, — 0} (23)

4. Simulation studies and analysis of SEER mortality data

When dealing with asymptotic results, it is interesting to analyze the performance of the theoretical results in an
empirical framework. Specifically, for Poisson sampling what is important to calibrate is the way that the total expected
value of deaths (or incidences) N, affects the precision of the results. Other characteristics such as the percentage of
overlapping regions “in space” or “in time”, as well as the suitable choice of A values are also worth to be analyzed. As
a preliminary study, before focusing on N;, we have considered thyroid cancer mortality (rare cancer) in three regions,
Western (W) US population (composed of Arizona, New Mexico and Texas), South Western (SW) US population (composed
of Arizona, California and Nevada) and West Coast (WC) US population (composed of California, Oregon and Washington).
APC comparison of W vs. SW (Arizona is shared) on one hand and SW vs. WC (California is shared) on the other hand
are considered. We have taken different scenarios with different time periods, 1998-2007 for SW in all scenarios and
1986-1995, 1989-1998, 1992-2001, 1995-2004 and (1998-2007) for the other region (W or WC) in each of scenarios A’,
B, C’, D’ and E’ respectively. In Table 1 the percentage of expected deaths in the regions to be compared with respect to
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Table 1

Overlapping percentages for W vs. SW and SW vs. WC in five scenarios.
Space \ Time sc A’ scB scC’ sc D' sCE’
W vs. SW 18.96%; 13.03% 12.66%; 9.12% 6.94%; 5.24% 1.66%; 1.32% 0%; 0%
SWvs. WC 81.80%;78.39% 59.09%; 54.06% 34.75%; 30.30% 8.93%; 7.40% 0%; 0%

the shared part (the percentages of overlapping) are shown, when 87 = B2 = —0.005 (APC; = APC, >~ —0.5) for W
vs. SW, and 813 = B4 = 0.02 for SW vs. WC (APC3 = APC4 =~ 2.02). Observe that in the same scenario but different
couple of comparisons, the change in overlapping percentage is due to the space overlapping (the overlapping percentages
are greater for SW vs. WC, actually the shared part is a large state, California). In addition, we have chosen some values of A,
A e {=05,0,2 £, 1, 1.5}, in order to compare the performance of minimum power divergence estimators. In Table 3 these
results are shown for W vs. SW. From scenario B’ to E’ (i.e. when the overlapping percentage is increasing), the covariance
is increasing, starts with negative values at B’ (1 time point is shared), decreases at E’ (4 time points are shared), later
positive values but small are reached at F’ (7 time points are shared) and finally at E’ (10 time points are shared) ends
with positive and high values. It seems that more or less the sign of the covariance changes in the middle of time points
considered for each of the regions. In scenario A’ the theoretical covariance is zero, actually the two regions do not share
observations. By asterisk we have marked the variances and significance levels obtained by simulation which are greater
than its corresponding theoretical values, in order to visualize them as the worst cases. From the results it is concluded
the minimum power divergence estimators with A = 1, that is the minimum chi-squared estimators provide empirically
efficient estimators and their Z-test statistics have good performance with respect to the theoretical significance level in
the sense that tend to be much smaller. We have omitted the results for SW vs. WC because we have seen that the space
overlapping by itself do not affect much the covariances of ,BM . That is, there were no remarkable difference among the
covariances in case of choosing SW vs. WC rather than W vs. SW, because the sign of the covariances starts at the same
scenario and it is just the value of the covariance what marks the difference between both of them. The behavior of minimum
power divergence estimators is very similar too. Hence, in the simulation study that follows we are going to focus only on
fixed overlapping percentages and one of them is going to be 100% and the focus of interest are going to be the MLEs and
the MCSEs.

For studymg the precision of the results when N; changes, we have considered three proportionality constants x €
{1, & 00 300} associated with Ny in each of the following scenarios for Regions 1 and 2, with 8y, € {0.02, 0.005, 0, —0.005}
being equal for both (k = 1, 2) as it is required for the null hypothesis, i.e. APC; = APC, =~ 2.02, APC; = APC, =~ 0.50,
APC; = APC, >~ 0, APC; = APC, ~ —0.50:

e Scenario A: Low level overlapping regions, [; = 6,1, = 11,I; — [ = 3.
e Scenario B: Medium level overlapping regions, Iy = 10, = 11,1 — I =7.
e Scenario C: High level overlapping regions, I; = 8, =8,y — I = 8.

The values of ny;; have been obtained from real data sets for female:

e Scenario A: Region 1 = United States (US) during 1993-1998, Region 2 = California (CA) 1996-2006.
e Scenario B: Region 1 = US during 1993-2002, Region 2 = CA during 1996-2006.
e Scenario C: Region 1 = US during 1999-2006, Region 2 = CA during 1999-2006.

From the same data sets we have taken Boyj = log(x Dyj1/nkj1) — Bratki, focused on the Breast cancer for the first year of the
time interval (i = 1). All these data were obtained from the SEER database and hence we are taking into account ] = 19
age groups. Once the previous parameters have been established we can compute ina theoretlcal framework the individual
variances of estimators S, o]k, covariance oy 1 and Var(,Bn 3= ,312 2 = o“ + 012 201,12.- We can also compute the
theoretical value of , = Ni/(JIy), the average expected value per cell, which is useful to see if the value of Ny is large enough,
these values are in Table 2.

Since both regions share a common space, we have generated firstly its death counts by simulation and thanks to the
Poisson distribution’s reproductive property under summation, we have generated thereafter the death counts for each
region by adding the complementary Poisson observations. In Tables 4, 6 and 8 are summarized the theoretical results as
well as those obtained by simulation for the MLEs and in Tables 5, 7 and 9 for the MCSEs. The variances and covariances
appear multiplied by 10° in all the tables. We have added tilde notation for those parameter that have been calculated by
simulation with R = 22000 replications:

1

R R R 1R
512k,,\ =R Z(ﬁm,x(r) — E[Bus])?, E[Biks] = R Z,Bm,x(r),
r=1 r=1

1A~ PN ~ o
Grion == D Brua) = EBuaD Bras () — ElBras]).
r=1

It is important to remark that such a large quantity of replications have been chosen in order to reach a reliable precision
in the simulation study (e.g., it was encountered that R = 10000 was not large enough). The last column is referred to the
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Table 2

Average total expected means of deaths per cell.
K Bk Scenario A Scenario B Scenario C

m 12 m 12 m 12

1 0.020 2538.24 331.42 2741.10 331.42 2493.85 265.98
1 0.005 2441.69 292.43 2552.96 292.43 2360.81 251.71
1 0.000 2410.67 280.62 2494.19 280.619 2318.67 247.19
1 —0.0050 2380.23 269.35 2437.28 269.35 2277.59 242.79
1%0 0.020 25.38 3.31 27.41 3.31 2494 2.66
ﬁ 0.005 24.42 2.92 25.53 2.92 23.61 2.52
1%0 0.000 24.11 2.81 24.94 2.81 23.19 2.47
1%0 —0.0050 23.80 2.69 24.37 2.69 22.77 2.43
3%0 0.020 8.46 1.10 9.14 1.10 8.31 0.89
ﬁ 0.005 8.14 0.97 8.51 0.97 7.87 0.84
3%0 0.000 8.03 0.93 8.31 0.93 7.73 0.82
3%0 —0.0050 7.93 0.90 8.12 0.90 7.59 0.81

Table 3

Minimum power divergence estimators with A € {—0.5, 0, % 1, 1.5} for scenarios A’, B', C/, D’ and E'.
sc A 0121 5121,;\ (7122 51221 01,12 01,12, Var(ﬁn,x = 312.1) ‘7;1;(311,1 - Eu,x) a;,
A —0.5 10610694 117206.91 88722.57 96004.29 0.00 —190.20 194829.51 *213591.59 *0.056
A 0 106106.94 106482.52 88722.57 88399.60 0.00 —131.23 194829.51 *195144.57 0.050
A % 106106.94 100968.49 88722.57 84561.80 0.00 —64.51 194829.51 185659.31 0.047
A 1 106106.94 99842.89 88722.57 83793.94 0.00 —34.77 194829.51 183706.37 0.047
A 1.5 106106.94 99346.15 88722.57 83510.99 0.00 2.27 19482951 182852.60 0.049
B —0.5 10610694 117293.27 8385045 92311.97 —4020.16  —3833.28 197997.72 *217271.80 *0.058
B 0 106106.94 106707.01 83850.45 85398.66 —4020.16 —3490.04 197997.72 *199085.75 0.051
B % 106106.94 101342.71 83850.45 81753.09 —4020.16 —3229.76 197997.72 189555.32 0.049
B 1 106106.94 100261.70 83850.45 80985.96 —4020.16 —3142.66 197997.72 187532.98 0.049
B 1.5 106106.94 99807.30 83850.45 80649.82 —4020.16 —3047.64 197997.72 186552.39 *0.052
c —0.5 10610694 116056.24 7929540 84620.24 —6035.64 —5099.81 197473.63 *210876.09 *0.055
c’ 0 106106.94 105572.08 7929540 78400.39 —6035.64 —4630.90 197473.63 193234.25 0.048
c’ % 106106.94 100178.76 7929540 75138.00 —6035.64 —4302.56 197473.63 183921.87 0.046
c’ 1 106106.94 99090.96 7929540 74470.54 —6035.64 —4199.62 197473.63 181960.74 0.046
c’ 1.5 106106.94 98646.02 7929540 74214.18 —6035.64 —4094.68 197473.63 181049.56 0.049
D —0.5 10610694 115548.66 7497159 81107.54 2294.32 2271.85 176489.89 *192112.50 *0.057
D 0 106106.94  104872.37 7497159  75820.32 2294.32 2148.49 176489.89 176395.71 0.050
D % 106106.94 99400.99 7497159  72923.02 2294.32 2060.12 176489.89 168203.77 0.048
D 1 106106.94 98300.76 7497159  72306.86 2294.32 2034.16  176489.89 166539.31 0.050
D 1.5 106106.94 97854.16  74971.59  72044.77 2294.32 2011.33 176489.89 165876.27 *0.052
4 —0.5 106106.94 115740.28 70747.13 75885.14 15621.44 17152.32 145611.20 *157320.78 *0.055
4 0 106106.94 105114.37 70747.13 71094.62 15621.44 16123.83 145611.20 143961.33 0.048
E' % 106106.94 99710.57 70747.13  68383.44 15621.44 15273.05 145611.20 137547.92 0.047
E’ 1 106106.94 98636.63 70747.13 67789.30 15621.44 14953.01 145611.20 136519.90 0.047
E' 1.5 106106.94 98219.30 70747.13 67513.89 15621.44 1455746  145611.20 136618.26 0.049

exact significance level associated with the Z-test obtained by simulation when the nominal significance level is given by
a = 0.05,

1
0= ZI(|ZA(T)| > Z0.975),
r=1

where 1() is an indicator function and zy 975 >~ 1.96 the quantile of order 0.975 for the standard normal distribution.

It can be seen as expected, that in Scenario 3 the covariance is positive in all the cases, while in Scenario 1 the covariance
is negative. It is clear that the precision for Var (11, — B12..) as well as for &, gets better as « increases. While for large
data sets (« = 1) there is no best choice regarding A, for small data sets (« = 1/300) the choice in favor of A = 1 is clear
because estimators 11,5 — B12., are more efficient, in fact Var(811,1 — B12.1) < Var(Bi11.. — B12..) < Var(Bi11.0 — B12.0), and
the exact significance levels or estimated type I error is less than for A = 0 in all the cases (@, < &g). Since perhaps type II
error could be better for MLEs, the power functions for both estimators have been studied. In particular, for k = 1/300 it
was observed the same behavior as appears in Fig. 2: in equidistant differences regarding 8 = 811 — B12, when /35’1 is fixed,
if error II is better for MLEs when § > 0 (8 < 0) then error Il is better for MCSEs when 8 < 0 (8 > 0). Hence, in overall
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Table 4

Scenario A: maximum likelihood estimators (A = 0).
K Bk 0121 512M 0122 512“ 01,12 G1,12.1 VUT(EH.A - //3\121) \75;(,’311.1 - //3\121) a,
1 0.020 1188.50 1196.88 1468.14 1475.38 —152.70 —153.71 2962.03 *2979.67 0.049
1 0.005 1233.49 1245.97 1653.48 1644.16 —166.41 —159.88 3219.78 3209.89 0.050
1 0.000 124891 1237.81 1720.50 1707.01 —171.20 —156.44 3311.81 3257.70 0.049
1 —0.005 1264.55 1276.82 1790.33 1801.21 —176.11 —185.35 3407.10 *3448.73 *0.052
1(])0 0.020 118849.86 120545.66 146813.66 146902.40 —15269.95 —16186.46 296203.41 *299820.97 *0.052
180 0.005 123349.03 123414.45 165348.33 167479.53 —16640.50 —16374.79  321978.37 *323643.55 *0.052
1(1)0 0.000 124891.15 124618.15 172050.41 173875.81 —17119.82 —17946.96 331181.19 *334387.88 0.050
1:7) —0.005 126455.01 125135.69 17903349 181356.96 —17610.72 —15914.04 340709.94 338320.73 0.047
3%0 0.020 356549.59 359581.84 440440.97 451288.03 —45809.84 —53204.15 888610.23 *917278.18 *0.052
ﬁ 0.005 370047.09 373291.90 496045.00 50333251 —49921.51 —-51558.77 965935.10 *979741.96 0.050
3;0 0.000 374673.44 375119.77 516151.22 532280.30 —51359.46 —50448.54 993543.56 *1008297.13 *0.051
3%0 —0.005 379365.02 380562.71 537100.47 562780.79 —52832.16 —58143.46 1022129.82 *1059630.42 *0.054

Table 5

Scenario A: minimum chi-square estimators (A = 1).
K Bk ol 61 o}, 512“ o1.12 G1,12.1 VUT(EH.A - Elz,x) VET(EH.A - ElZ,A) a,,
1 0.020 1188.50 1196.61 1468.14 1474.56 —152.70 —153.88 2962.03 *2978.92 0.049
1 0.005 1233.49 1245.63 1653.48 1642.03 —166.41 —158.86 3219.78 3205.38 0.049
1 0.000 124891 1237.43 1720.50 1704.17 —171.20 —156.10 3311.81 3253.80 0.049
1 —0.005 1264.55 1276.42 1790.33 1797.77 —-176.11 —185.22 3407.10 *3444.64 *0.051
1%0 0.020 118849.86 118678.59 146813.66 131711.15 —15269.95 —14717.95 296203.41 279825.64 *0.051
1%0 0.005 123349.03 121351.67 165348.33 14815530 —16640.50 —14873.11 321978.37 299253.18 0.049
ﬁ 0.000 124891.15 122229.69 172050.41 152728.68 —17119.82 —16259.50 331181.19 307477.36 0.048
1%0 —0.005 126455.01 122628.20 179033.49 158913.98 —17610.72 —14215.39 340709.94 309972.96 0.045
ﬁ 0.020 356549.59 342888.09 440440.97 34035435 —45809.84 —42220.99 888610.23 767684.41 0.050
3%0 0.005 370047.09 354377.57 496045.00 369058.29 —49921.51 —41173.07 965935.10 805782.01 0.045
ﬁ 0.000 374673.44 356408.32 516151.22 388239.25 —51359.46 —38265.08 993543.56 821177.73 0.045
3%0 —0.005 379365.02 360799.63 537100.47 403732.21 —52832.16 —47176.61 1022129.82 858885.06 0.045

Table 6

Scenario B: maximum likelihood estimators (A = 0).
K Bk 0121 5121,1 0122 5122,1 01,12 O1,12.1 Vﬂr(ﬁlm - Blz,x) "/217(73\11@ - ElZ.A) @,
1 0.020 234.90 234.40 1468.14 1461.71 12.72 6.74 1677.59 *1682.63 0.050
1 0.005 251.10 252.79 1653.48 1648.47 13.91 10.97 1876.77 *1879.32 *0.052
1 0.000 256.77 255.02 1720.50 1713.16 14.35 7.81 1948.56 *1952.57 0.050
1 —0.005 262.57 261.96 1790.33 1792.15 14.83 17.78 2023.24 2018.56 0.049
ﬁ 0.020 23489.78  23328.11 146813.66  147774.27 1272.17 18193 167759.10 *170738.52 *0.053
1%0 0.005 25109.90 24424.06 165348.33 14727399 1390.58 154690 187677.08 168604.26 0.049
130 0.000 25676.71 25666.21  172050.41 17199521 143545 822.83  194856.21 *196015.76 *0.052
1(1)0 —0.005 26257.50 2617250 179033.49 179024.69 1483.35 708.28  202324.30 *203780.65 *0.051
3%0 0.020 70469.35  71112.09 440440.97 44243357 3816.51 2392.77 503277.31 *508760.12 *0.052
3%0 0.005 75329.71 7473759 496045.00 51014759 4171.74 3181.74 563031.24 *578521.71 *0.053
3(])0 0.000 77030.13 76849.11 516151.22 521168.35 4306.36 2781.06 584568.62 *592455.34 0.050
3%0 —0.005 7877249  79582.80 537100.47 54546320 4450.04 5288.71 606972.89 *614468.57 0.050

terms we recommend using MCSE rather than MLEs for small data sets. This is the case of the study illustrated for instance

in [13] where there are a lot of cases such that the value of 7, = §=1 Zf": 1 diii/ (1) is quite low (moreover, several cases
such that 7, < 12/19 appear without giving any estimation “due to instability of small numbers”).

We have applied our proposed methodology to compare with real data the APC in the age-adjusted mortality rates of WC,
WS and W (described at the beginning of this section) for different periods of time, 1969-1983, 1977-1991 and 1990-1999
respectively, with both estimators and for Thyroid cancer (rare cancer). The third one differs from the rest in the sense that
it considers a shorter period of time for its study. The rates are expressed per 100000 individuals at risk. In Fig. 3 the fitted
models are plotted and from them it seems at first sight that there is a decreasing trend for Thyroid cancer in WC and SW,

and null or decreasing trend in W. The specific values for estimates and test-statistics Z, for A = 0, 1, are summarized in
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Table 7

Scenario B: minimum chi-square estimators (. = 1).
K Bk 0121 &IZM 0122 512“ 01,12 01,12,1 Var(gn.x - 7512,)\) @(Ell,k - EIZ,A) a;,
1 0.020 234.90 234.36 1468.14 1459.11 12.72 6.73 1677.59 *1680.02 0.050
1 0.005 251.10 252.87 1653.48 1646.88 13.91 10.79 1876.77 *1878.16 *0.052
1 0.000 256.77 255.00 1720.50 1710.41 14.35 7.53 1948.56 *1950.35 0.050
1 —0.005 262.57 261.91 1790.33 1790.65 14.83 17.89 2023.24 2016.78 0.049
1(])0 0.020 23489.78 2303944 146813.66 132848.97 1272.17 204.75  167759.10 155478.91 *0.056
180 0.005 25109.90 24424.06 16534833 14727399 1390.58 1546.90 187677.08 168604.26 0.049
1(1)0 0.000 25676.71 25227.72 172050.41 152123.09 1435.45 950.07 194856.21 175450.67 0.049
1%0 —0.005 26257.50 25713.71 179033.49 157016.58  1483.35 608.74  202324.30 181512.81 0.050
3%0 0.020 70469.35  68417.63 440440.97 333558.97 3816.51 2545.19 503277.31 396886.23 *0.055
ﬁ 0.005 75329.71 71630.87 496045.00 375196.57 4171.74 2568.93 563031.24 441689.58 0.049
3(])0 0.000 77030.13 7343563 516151.22 380384.11 4306.36 1980.50 584568.62 449858.76 0.046
3%0 —0.005 7877249 7595238 537100.47 394349.52 4450.04 3665.47 606972.89 462970.97 0.046

Table 8

Scenario C: maximum likelihood estimators (. = 0).
K Bik 0121 &121.)» 0122 512“ 01,12 &1.12,A VUT(EH.A - //3\121) %(Elm - //3\121) a;,
1 0.020 505.19 502.38 4753.38 4766.57 505.19 515.35 4248.20 4238.26 0.050
1 0.005 532.12 529.53 5006.55 4962.78 532.12 527.77 4474.43 4436.77 0.049
1 0.000 541.45 543.59 5094.21 5129.48 541.45 549.19 4552.76 *4574.69 0.050
1 —0.005 550.96 550.15 5183.56 5202.96 550.96 563.62 4632.60 4625.87 0.051
1(])0 0.020 50518.62 50823.72  475338.31 480772.05 50518.62  52893.29  424819.68 *425809.19 0.050
1%0 0.005 53212.46 53963.47 500654.98 500398.48 53212.46  53825.39  447442.52 446711.16 0.049
ﬁ 0.000 54145.29 53655.97 509420.86 511073.61 54145.29 55232.68 455275.57 454264.23 0.050
1(])0 —0.005 55096.19 55610.24 518356.01 521012.61 55096.19 56166.72  463259.82 *464289.42 0.050
ﬁ 0.020 151555.86 149118.50 1426014.92 1461021.71 151555.86 152950.11 1274459.05 *1304240.00 0.051
3%0 0.005 159637.38 161042.69 1501964.94 1529631.00 159637.38 160328.08 1342327.55 *1370017.53 0.049
ﬁ 0.000 162435.88 162828.12 1528262.58 1534795.18 162435.88 165625.27 1365826.70 *1366372.76 0.047
3;0 —0.005 165288.56 165289.23 1555068.02 1599312.35 165288.56 168363.58 1389779.46 *1427874.42 0.050

Table 9

Scenario C: minimum chi-square estimators (A = 1).
K Bk 0121 &12M 0122 5122@ 01,12 G112, VaT(Eﬂ.x - BIZ,A) @(Ell,x - E]z.x) o,
1 0.020 505.19 502.28 4753.38 4756.74 505.19 514.11 4248.20 4230.79 *0.051
1 0.005 532.12 529.39 5006.55 4956.27 532.12 527.17 447443 4431.32 0.049
1 0.000 541.45 543.50 5094.21 5120.89 541.45 549.07 4552.76 *4566.24 0.050
1 —0.005 550.96 550.04 5183.56 5194.95 550.96 563.79 4632.60 4617.41 *0.051
ﬁ 0.020 50518.62  49937.40 475338.31 41794193 50518.62 47230.21  424819.68 373418.90 0.050
1%0 0.005 5321246 5309220 500654.98 434030.70 53212.46  48517.38  447442.52 390088.14 0.048
117) 0.000 5414529  52785.97 509420.86 441697.10 54145.29  49680.01  455275.57 395123.06 0.046
ﬁ —0.005 55096.19  54621.08 518356.01 449926.19 55096.19 50651.05  463259.82 403245.16 0.047
ﬁ 0.020 151555.86 141857.76 1426014.92 1037025.40 151555.86 119830.05 1274459.05 939223.06 0.048
3%0 0.005 159637.38 153101.35 1501964.94 1075673.38 159637.38 123845.16 1342327.55 981084.41 0.046
ﬁ 0.000 162435.88 154380.49 1528262.58 1074400.76 162435.88 128138.62 1365826.70 972504.01 0.043
- _0.005 16528856 5714631 1555068.02 1110194.55 165288.56 13111459 1389779.46 1005111.67 0.044

300

Table 10. Apart from the appropriate test-statistic, we have included naive test-statistics Z; , for A = 0, 1 that are obtained by
applying the methodology for non-overlapping regions. For Thyroid cancer there is no evidence for rejecting the hypothesis
of equal APCs for WS and W but it is not clear WC and WS. Looking at the confidence intervals for each region, observe that
for WC and WS the test-statistic has more power to discriminate differences than for WS and W, because the variability is
less (the period of time considered for W is shorter). The hypothesis of equal APCs is rejected with 0.05 significance level for
WC and WS when using the naive test, and cannot be rejected when using the proper test-statistic for overlapping regions
(anyway, its p-value is close to 0.05). When dealing with common cancer types the same value of APC differences on the
sample would probably lead to reject the null hypothesis.
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with MLEs

Table 10

Fig. 2. Power function in terms of 8 = B1; — B12 when ﬁ% = 0, for Scenario A and k = 1/300.

T T T T T T T T T T T T T T T T
-0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

p

Thyroid cancer mortality trends comparison among WC, SW and W during 1969-1983, 1977-1991 and 1990-1999 respectively: maximum likelihood
estimators and minimum chi-square estimators.

Region k A Elk,k Bors Ghe T Iﬁk,,\ Clapc,, 1. (95%)
WC 1 0 —0.0267 —0.3680 2.923 x 107° —77.292 x 107° —2.639 (—3.665, —1.601)

1 1 —0.0268 —0.3241 2.785 x 1073 —73.429 x 1073 —2.646 (—3.648, —1.635)
SwW 2 0 —0.0107 —0.5404 3.044 x 107° —32.915 x 107° —1.064 (—2.128,0.011)

2 1 —0.0106 —0.4943 2.888 x 107° —3.1074 x 107° —1.053 (—2.089, —0.005)
W 3 0 0.0003 —0.7939 13.064 x 10~° 0.031 (—2.184,2.297)

3 1 —0.0012 —0.7084 12.421 x 107° —0.117 (—2.275,2.088)

Z-test statistics for WC vs. SW: Zy5 o = —1.85, Zj59 = —2.08; Z31 = —1.92,Z151 = —2.16.
Z-test statistics for SW vs. W: Zy3 0 = —0.85, Zy30 = —0.87; Z331 = —0.75,Z,31 = —0.76.
r 1 —  MCSE
— — — MLE
[m]
o
[m]
- O
= o
041 WC SW R W .
mi
]
1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

t

Fig. 3. MCSE and MLE for Thyroid cancer mortality trends in WC, SW and W.
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5. Concluding remarks

In this work, we have dealt with an important problem of comparing the changing trends of cancer mortality/incidence
rates between two overlapping regions. Our new proposal allows us to correctly account for the correlation induced by the
overlapping regions when drawing statistical inference. The better finite sample performance of the minimum chi-square
estimators, in comparison with the maximum likelihood estimators, suggests the practical utility of the proposed methods
especially when comparing the APCs of rare cancers. Not only do our results verify the claim of Berkson [ 1] that the efficiency
of the maximum likelihood estimator is questionable for the finite sample size situations, they also encompass the Poisson
models, for which the power divergence based theoretical results (in particular for the minimum chi-square estimators) have
remained elusive. In this paper, we have mainly focused on comparing two regions. Extending the methods to accommodate
more than two regions simultaneously is certainly worthy of future investigations.
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Appendix

M,
Proof of Theorem 4. Let Ay, be the set with all possible M;-dimensional probability vectors and M = (0,1)x - KX

(0, 1). The way in which N increases is so that Diag™!(ny) my(B,) does not change, hence mg(f,) and n; increase at the
same time (s = 1, ..., My). This means that as N increases, parameter 8, does not suffer any change and neither does the
normalized mean vector of deaths, m;(f) = lemk(ﬂk). Note that m}(B,) € Ay, C CYk.Let V C R/*! be a neighborhood

of B and a function

(A) (F(}\) ](j\-)]) CMk SN R]-H
so that
od; (Nm;, m,(B,)
R . gy = ORI B)
00k
with ﬂk = (,Bom, ey ,BOk], ,31k)T = (9k1, ey Qk], 9k7]+1)T € V and mﬁ = (m’{, .. m;\*,,k)T S AMk C CM". More thoroughly,

considering Xy = (Xsi)s=1,..myi=1,...j+1 and d; (D, m(B) = S, my(B) i ( _ (ﬂ)) where

A —x—Aax—1)

, AA+1 0,
=1 G+ GHD#
lim .. AG A1) =0,

it holds

My * * *
oo (25) 2 ()
B0 = 2 mBa (905 G5 )~ nan® (e

It can be seen that replacing mj; by m;ﬁ(ﬂg), B, by ﬂg. it holds Fi(’\) (m;(ﬂg), ﬁg) = 0,foralli = 1,..., M. We shall now
establish that Jacobian matrix

A)
oFy, (my, B (aFf“(m;:,ﬂk>>
ij=1,....Mg+J+1

3B, 30

.....

is nonsingular when (m;, B,) = (m;’j(ﬂg), ﬂg). Fori,j=1,...,]+1

R (myp, B 9 0dy (Nmy, my(BY)
36y 89j 96k

M Nkm;‘ Nkm;1k ’ N"m:
<Z M (B)Xsi <¢’A (ms By ) ms(B) ¢ (ms(ﬂk) )))

My NkT’Tf’< Nkﬂ’l>k Nkm* My Nkﬂ’l>|<
My (B ) XsiXsj (¢ ( > > - s ¢/ ( s )) + N<m?xsixs ¢N < : ) ,
; AT \my®))  my(B) " \my(B) ; ’ ' s(ﬂ) *\my(B)
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and because ¢, (1) = ¢; (1) = 0,and ¢} (1) = 1forall 2,

JF™ m;, S
o8 o o) — Ny B

ki (m B =(m? (B0).BY) =

Hence,
A)
Fy’ (mg, B))
( + = Ni X, Diag(mj; () X
k

(mi; B =(mj; (BY).BY)
Applying the Implicit Function Theorem there exist:

1189

e aneighborhood Uy of (m}(By), BY) in CMk x R/*! such that dFY (m;, B,)/d By is nonsingular for every (m}, B,) € Uy;

e an open set Ay C CVk that contains m (8));
e and a unique, continuously differentiable function B,(f) : Ay — R/*1such that ﬁ,(:\) (m; (ﬁk)) = ﬂk and
(amf, B) € Uy : F (mi, B) = 0) = ((m}, B, (m})) : m] € Ay).
Since

min d; (me(B), m(B,” m) = min d (m(Bfo). mi(B)

myeA

it holds

B (arg min d; (my(8). my(By (mk»)) = arg min d; (my(B,). mi(By)

mj ey
that is
B (m:(BY)) = arg min &, (N (8. m(8,)) .

. . ~(h
Furthermore, from the properties of power divergence measures and because ﬁ,({ )(mf B) = ﬂg, we have

0 =d; (m(BY), m(B (m(BD))) < & (mc(BY), mi(BY)  Ymu(By) # m(B).

By applying the chain rule for obtaining derivatives on Fk(’\) (m}, ,B,(f) (m; (ﬂk))) = 0 with respect to m;; € A, we have

| R mi. B 9By (m)

>(A) aﬂk k

om
Bx=By " (m}) Bi= ,B,((A)(m;f) k

3’:@) (my, By)
omy;

=0,

so that for m; = m(BY)

i * -1 *
9By, (my) _ (R miBD.6)\  oF M ani, B)
dm m (80) 9By om

mk

(m}; B)=(m} (89).8Y)
. . . ~(r
The last expression is part of the Taylor expansion of ﬂ,ﬁ )(m,";) around mj; (/32)

<x> ~(1) 3/3,< (m,’:)

B (mf) = B (mi(BY) + o (mj; —mi(BY) + o (|| (m; —mi(B))]) -
k

mj;=m};(B)

Taking derivatives on Fi(k) (my;, By) with respect to m;

OE™M (m?, By 9 0d, (Numy, m(B,))
amy om’ 06k

J
(Box (¢ <ij>_ Nm} ¢,<Nm;‘ ))
] s=1 W * ms(ﬂk) ms(ﬁk) * ms(ﬂk) ’

N ¢,<Nkm;>
B ]</5k> P\ o )
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that is
A
OF” (my, By
T as = —NkX]z,
om’
J (Bi-m)=(BY.m (BD)
and hence
) (A) (g
oFy, (my, By) oF,™ (m*, ) T
B — = —— = =N X, ,
om; on 20 om’
(mg, B=(m (BY), BY) J (m*.)=m*(B9).00) / j_1, Bj=1,.. .M
and
(A) ~(\) . _
By (my) = B, (mi(BY) + (X Diag(mj (B)Xi) ]X,f(mZ—mZ(ﬂg))JrO(H(mZ—mZ(ﬂg))H)- (25)

It is well known that for Poisson sampling N" converges almost surely (a.s.) to m;; (ﬁk) as Ny increases, which means that

’NLZ € Ay a.s. for Ny, large enough and thus according to the Implicit Function Theorem ( ﬁk (D")) € U a.s. for Ny large

enough. We can conclude from (24)

~o) [ Dy Dy .
— | =arg min d N—m = arg min d, (Dy, m ,
By <N ) g A ( N 1 (Bi) ) gﬂk€@k » (D, me(By))

k BreOk

A

which means that ﬂk 5 = ﬂ,(c (D ), and hence from (25)

Dy, — my(BY)

Bir — BS = (X! Diag(m,(82)Xi) "' X[ (D, — m(B2) + o ( N,

) |

Taking into account that ,’3\1,(,,\ — ,B?k = eJTJrl(/f}k’A — ,32), where e]TJrl = (0,...,0,1), we are going to show that
e (X} Diag(my.(B))Xi) ™! = o2 t! (BY). For that purpose we consider the design matrix partitioned according to X; =

(U,v),whereU =1I; ® 1, v = 1] ® t;, so that for
-1
T - A An _ (B B
(Xk Dlag(mk(ﬂk )Xk) <A21 Azz) = <B21 BZ2> )
Ay = U Diag(my(B}))U =Diag({Ny}_,).

I I T
Ay, = U"Diag(my(B))v = (Z M (B teis - Y mkﬁ(ﬁ,?)tki> =Aj,,
i=1 i=1
Ik

Ay, = v Diag(my(B))v = Z > mg (B

j=1 i=1

we can use formula

By = A1_1 +Aj 1‘1123221‘\211“1_11

By = B12 = B22/"211("11 (26)
1

By = (A — AnAjAp)

It follows that

e, (X! Diag(my(B))X0) ™" = (B1 Bs) = (—BrnAyiAy,  Buy)
By (—AnAy 1),

where

I
AxA7, (Z Miai(BY) i - - - ka,,(ﬂk)tk) Diag({N;'1}_)
i=1

Ik Ik
<Nk_11 Z Mai (B tis - - - » Nk;l Z mkﬁ(ﬂ;?)ﬁd) = ([t (BY), ..., tg(BD)
i1 i=1
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and

I

=~

J Iy -1
migi (B — Y (Z mkﬁw,?)) ?zJ-(ﬂﬁ))

Bzz—(

Y
j=1 i=1 j=1 i=1
J I Iy J I _ -1
= (Z migi (Bt — Z <Z mkji(ﬁ;?)) G(BY) + Z <Z mkji(ﬁ]?)tkj) tkj(ﬁﬁ))
j=1 i=1 j=1 \i=1 j=1 \i=1
I

M\

1
My (BR) (L —ﬁj(ﬁi)f) ,

-

because Y, (I, mi(89)) BB = Y- (s mu (Bt ) T (BD-

1 i=1

Proof of Theorem 5. Reformulating Theorem 4 we obtain
D, .
v/ N Cgm,,\ — BY) = @/ N (D — mi(B})) + 0 (”\/Nk (N_k - m;&ﬂﬁ)) H) ,

with a = o2t (B9)X]. We would like to calculate the asymptotic distribution as a linear function of

Dy
Ny (N_] - k(lgk ) _> N (0, Dlag(mk(ﬂk)))

Since

D
Var (a,f\/lvk (D — mk(ﬂ;:))) = a;Var (Nk\/ﬁk (N_t - mlt(ﬂi))) &
= NZajDiag(m} (B)))ay = Nyo?,,

it holds

al /Ny (D mk<ﬂ,<) —> N (0, Nyo2). (27)

Taking into account that o (H«/Nk (Nk m; (,B,)) H) = 0(0p (1)) = op(1), according to the Slutsky’s Theorem, the
asymptotic distribution of /Ny (,31k » — B k) must coincide with the asymptotic distribution of (27).

Proof of Theorem 7. From Theorem 4 subtracting Ez, » — BY to ’,311, 5w — BY, we get

Bui = BY) = Bra — B = ZT BYX] (@ = m(P (BD) — OF - m?(B}))

D, —m1(ﬂ?) ) ( )
_— —0 .

Ny
Observe that X/D\” = XTD@, k = 1,2, and under 8%, = g9 it holds X/ m\” (%) = X7m® (8°), k = 1, 2. In addition,
o () function is not affected by the negative sign and under ﬂ?l = ,3?2 it holds ﬂ? = ﬂg and thus we obtain (18).

D, —m, (ﬂ(z))

— ot (B)X] (05 —m" (8D) — @ —m () + ( N,

Proof of Theorem 8. We can consider the following decomposition

IN (B — Bras) = (Nah)WN 1—1(’3)+(N NN DZ+2(’3) JNY., (28)
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with
1 ||Dy —my(B° 1 ||D; — my(B°
YNY = o * 1 1(B%) tol L 2 2(BY) ’
NP Ny | U
rather than (18). Note that from Assumptions 3 and 6 mk(ﬂo) /N = N;m* (/30) is constant as N increases and hence

VNY =0 (‘ Dy %(ﬂo D +o0 (‘ DT"'T;(’;O) H) =0(0p (1)) +0(0p (1)) = 0p (1). We would like to calculate the asymptotic
distribution as a linear function of

D, — 0
\/ﬁ%"(m —= W (0. Diag (Nym*(8")) .

From (28) and by applying Slutsky’s theorem we can conclude that the asymptotic distribution of VN (,311, A — //3\1“) is
central Normal. In order to calculate the variance we shall follow (18) so that

\/ﬁ (,/gn,x — ,/512,)\) = \/NX] + \/ﬁxz + \/NX3 + \/NY,
with
VNX; = alVN (D" — m{" (87).
Vi, = al A (08 ).
NXs = (@ — &) VN (B — m® (8%).
VNY = o0p (1)
where a = o2t] (8°)X!, and X;, X, and X3 are independent random variables. Since
Var («/ka) = Var (ak\/_<D(1) (l)(ﬂ )))
= Na!Diagm\" (8°)a,, k=1,2,
Var (VX)) = var ((@] — &) VN (0% — m® ("))
= N (a; —a;) Diagm” (B")) (@ — &)
= N (@ Diag(m'® (8°))@ + &, Diag(m'® (°))a, — 2a; Diag(m'® (°))as)
= N (a]Diagm{” (6"))a; + a}Diag(my (B°)a; — 20}, 06 )
with

&1y = t1(B°)X] Diagm® ()Xt (%)

] L- -1

-y Z My (B%) (2 — B(B%)) (tai — T5(B°)
j=1 i=
] n®

= Z Z 211 mzﬂ(ﬁ )(tzz - tl](ﬁ ))(t21 - t21(13 ))
j=1

it holds
Var (VNG + X% + X)) = N(@]Diagm{" (8°) + m (B

+a2D1ag(m21)(/3 )+ m(2) (ﬁo))az — 201210122512)
= N(O'“ + 0'12 - 20110—12512),
that coincides with the asymptotic variance of /N (311,x - Eu,x)-

Proof of Corollary 9. Since

(1)
(B =10 (B + k]'(tk”(ﬁ) BB, k=12,
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formula (20) can be rewritten as

J h-I mD m
f2= ) ) my (B (= (B — @) B0~ B ) | e =B (8D - mzf' (& (8" =5 (B%)
j=1 i=1 1je
L ( IS ) 312 mélf 1 1)
= ZZmzﬁ(ﬂ (i =T (%) +ZZm2ﬂ B o @ (B — B (B @5 (B =5 (%)
j=1 i=1 j=1 i=1 e
2 ] h-l ’(<1)
=33 mP B0 (i — T (B%) — @ (B =1 (B%).
k=1 j=1 i=1 Kjo

The last summand is canceled because
=1 (l)

J
D2 >y (Bt =6 (M) P i (tk”(ﬂz) LHUR)
i=1

i=1
(1) -1

J
Z e (t,q)w) TP BN D mY (B (e — T (B%)
j=1 i=1

and Y1 = %‘)(ﬁ )ty — ?2(12) (8°)) = 0. Hence, it holds (22).

If region 2 is completely contained in region 1, £1; = 1/01,, and therefore
2 2 2 2 2 2 2 2 2
Var(fi1, — Braa) = 043 + 07y — 204307,512 = 043 + 077 — 2073,

and it follows (23).
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