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SUMMARY. While numerous methods have been proposed to test for spatial cluster detection, in particular
for discrete outcome data (e.g., disease incidence), few have been available for continuous data that are
subject to censoring. This article provides an extension of the spatial scan statistic (Kulldorff, 1997, Com-
munications in Statistics 26, 1481-1496) for censored outcome data and further proposes a simple spatial
cluster detection method by utilizing cumulative martingale residuals within the framework of the Cox’s
proportional hazards models. Simulations have indicated good performance of the proposed methods, with
the practical applicability illustrated by an ongoing epidemiology study, which investigates the relationship
of environmental exposures with asthma, allergic rhinitis/hayfever, and eczema.
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1. Introduction

The Home Allergens and Asthma study is an ongoing prospec-
tive cohort study investigating environmental and socioe-
conomic risk factors leading to early childhood respiratory
diseases, such as asthma and allergic rhinitis (Celedon et al.,
1999). Longitudinal and cross-sectional studies have linked
measures of lower SES, home allergen levels (e.g., cockroach),
mold in the home, and other individual or family-based mea-
sures of exposures to increased incidence or prevalence of
wheeze, asthma, and allergic rhinitis (Finkelstein et al., 1999;
Brugge et al., 2003). Fewer studies focus on the larger area, or
neighborhood, in which the individual is situated as a source
of environmental exposures that may influence the risk of al-
lergic diseases.

An individual’s immune development depends on a
complex interaction of factors related to inheritance and
environmental exposures that may come from the larger
neighborhood/community as well as the individual home.
While exposures may have differing effects according to the
window within which they occur, it is likely that an indi-
viduals immune development is influenced by his/her entire
exposure history up to date. Due to this complexity, it is
of substantial interest to detect spatial /neighborhood regions
that have significantly higher hazard rates of disease, pointing
to potential hazardous environmental sources (e.g., poor hous-
ing, bus depots, neighborhood waste sites, sources of rodent
infestations, neighborhood violence). Indeed, spatial cluster
detection has been found as a much useful tool to fulfill these
tasks. Further, the main endpoints in the Home Allergens and
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Asthma study, for example, times to asthma and other respi-
ratory outcomes, are subject to censoring due to drop out and
limited time of follow-up. Hence, the data analysis calls for
spatial cluster detection methods that can handle censored
outcomes.

We present in this article two general statistical approaches
to quantifying spatial cluster detection for censored outcomes.
The first approach, presented in Section 2, extends the spa-
tial scan statistic developed by Kulldorff (1997) for count and
binary data and the second method, in Section 3, consid-
ers cumulative martingale residuals in the spirit of Lin, Wei,
and Ying (1993). We conclude with a general discussion in
Section 7.

2. Spatial Scan Statistic for Censored Outcomes

In general, the spatial scan statistic quantifies the spatial re-
gion into areas of potential clusters versus the rest of the study
region and conducts a likelihood ratio test, which usually re-
quires a full specification of the model. To allow for more
flexibility, we consider using a score statistic from Cox’s pro-
portional hazards model instead of a likelihood ratio statistic
to avoid specifying the baseline hazard function. We will still
denote this as a spatial scan statistic because we are formu-
lating the areas to test for disease clusters, and utilizing the
permutation test to derive p-values, in the same fashion as
the spatial scan statistic.

To proceed, we first form consecutive circular regions
around a fine grid of points, which cover areas of 10-50%
of the data. Then for each kth defined circular region, Ry,
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an indicator covariate, Zj;, is assigned to be 1 if the ith (i =
1,..., n) individual’s geographic location (s;, r;) is within the
potential cluster area [(s;, r;) € Ry] and 0 if outside the area.
Suppose each of the study participants has a p x 1 vector of
covariates, Xj, a ¢; to indicate 1 if they have the outcome and
0 otherwise, and T; for time to event or censoring. Consider
a Cox’s proportional hazards model

)\(t|Rk,Z)ﬂ,X,) = Au(t) exp[,@Rka,- +,6Xl], (1)
where A\y(.) is an unspecified baseline hazard function and 8
is a 1 X p vector of unknown regression parameters. Hence
testing if area R has a higher hazard rate of disease than R}
(the complement of Ry) is equal to testing

HO : BRk =0

HA : BRk > 0.
It is thus natural to form a score test statistic (a.k.a. log-
rank statistic) because it is relatively simple, and standard, for

the Cox’s proportional hazards model to formulate the score
test under the null. The corresponding log-rank test statistic
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Large positive values of LR, signify that a region, say R;, has
higher hazard rates compared to the rest of the study area.
For testing the existence of any spatial clusters we construct
the following test statistic, LR = sup, LRy.

As detailed by Kulldorff (1997), to determine the signif-
icance level of such a test statistic a permutation test can
be formulated by fixing the locations (s, r) and randomly
assigning all outcomes (8, t), along with their given covari-
ates, X, to the fixed locations. Therefore, the only compo-
nent of an individuals information that is being permuted
is location. This process is to be repeated a large number
of times, N, and the test statistic, LR, is calculated at each
simulation, LR,. An empirical p-value is calculated by com-
puting the frequency when the simulated data has a more ex-
treme test statistic than the observed test statistic, p-value =
SN I[LR < LR,]/N.

Finally, we note numerous ways of choosing shapes of po-
tential clusters for testing purposes, such as a square, circle,
ellipse, or an annealing algorithm that allows for any shape
(Kulldorff, 1997; Duczmal and Assungdo, 2004; Tango and
Takahashi, 2005; Kulldorff et al., 2006). In this article we
used circular and square regions for computational readiness
and did not find any significant loss of power for the scenarios
considered.

3. Using Cumulative Martingale Residuals
to Detect Clusters

The spatial scan statistic is a powerful tool, but the demand-
ing computational burden may restrict its applicability, es-
pecially for data with large sample sizes. We consider a sim-
ple cluster detection method by using cumulative martingale
residuals, which was originally proposed by Lin et al. (1993)
for model diagnostics. Indeed, as opposed to Lin et al. (1993),
we study patterns of residuals from a different perspective:
instead of viewing the patterns dependent on covariates, we
study whether such patterns vary by geographic locations.
Presented patterns across regions may indicate excessive, or
exiguous, numbers of cases within those areas.

3.1 Cumulative Geographic Martingale Residuals for Failure
Time Data

Assume for each subject i(i =1, ..., n) the observed data con-
sists of the time to event or censoring, T;, the noncensoring
indicator §;, which has value 1 if the event is observed and
0 otherwise, a p x 1 vector of covariates, Xj, along with the
location vector (s;, ;). Our goal is to detect patterns in “resid-
uals,” after controlling for covariates, X;, which may depend
on spatial locations.

Under the null hypothesis that an individuals failure time
is independent of their location, (s;, r;), conditional on a given
set of covariates, X;, we assume that the failure time follows
a proportional hazards model,

At Xs) = Ao(t) exp[BXy], 3)
where \o(.) is an unspecified baseline hazard function, and 8
is a 1 X p vector of unknown regression parameters. Then the
partial likelihood score function for 3, conditioned on the at
risk population at time T3, )" | Vi(T}), where V(t) = I(T} >
t) is the at-risk process at time ¢, is,

UB) =Y &[Xi— X(8,T))],

i=1

(4)

where,

Do VimXiexp(BX)] D [Vi(6)Xiexp(8X)]
X(5>t) = l:ln == SO, 1)
> [Vilt) exp(BXy)]

=1

Define the maximum partial likelihood estimator, B, as the
solution to U(B3) = 0.

Next define the counting process, N;(t) = 6;I(T; < t) (i =
1,...,n), which is the cumulative sum of events over time t.
Thus each counting process, N;(t), has the intensity function
Vi (t)\o(t)exp(BX;), given the assumed proportional hazards
model (3). The martingale residuals are defined as,

NE(E) = No(t) — / Vi(u) exp(BX) dio(u) (i = 1,....n), (5)
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where

t > AN (u)
=1

= | ot

These martingale residuals are similar to any other “residual”
in which it is the observed outcome, N;(t), minus the expected
outcome, assuming model (3) is correctly specified.

We consider a two-dimensional moving block process over
location (x1, Z2), Wiee (21, 2 | b), which depends on geographic
locations for a fixed block size b as follows,

1 n
VVloc(xla‘Z?'b) = ﬁzl(l‘l 7b< S; le +b,
i=1

To—b<r; < a9+ b)Ml(T) (6)

where 7 is the prespecified length of the study period. A spa-
tial cluster would occur in areas with a higher intensity of an
outcome, which implies a larger value of Wi,.(z1, 22 |0).

Next consider a pseudo moving block process in
(z1,22), Wioe(x1, 22| b), as

‘;Vloc(xh T2 ‘ b)

1 n
= EZU(J?] *b<8j §x1+b,x27b<r]- S$2+b)
j=1
—g(léaTj7$17I27 b) — n(x1, 22, b /Z'])Ifl(B)
x{X; = X(B,T;)16;Z;, (7)
where

n(z1,z2,b|B)

n

|:/ Vi(t) exp(BX1)I (1 — b < s; < 21 + b,
0

=1

mn—b< Tl§I2+b)
x {X) — X(B,t)}dAo(t)] ,

9(B,t,z1,22,b)
n

Z Vi (t) exp(BXk) (1 —b < sk <1+ b,xa —b< 1 <m2+ )
k=1

SO(B,1) ’
(8)

and Z;(j = 1,...,n) are independent mean 0 and variance 1
random variables that are also independent of (73, 6;, Xj, s;,
r;). It follows that the asymptotic conditional distribution of
the pseudo process I/T/loc(:rl, Zo | b) given the observed data (T,
6iy Xy, 84y 1) (@ =1,...,n) is equivalent to the limit distri-
bution of Wy,.(z1, T2 |b) assuming that geographic location,
(siy ), is independent of time to censoring or failure, T;,
after adjusting for covariates, X; with the proportional haz-
ards model (3) being correctly specified. This result can be
obtained by using the independence between the martingale

residuals and geographic location under the null hypothesis.
Details of the proof are outlined in a web-based Appendix 1
at http://wuw.tibs.org/biometrics, which is along the line
of Lin et al. (1993).

This asymptotic result immediately allows us to ap-
proximate the null distribution of W.(x;, z3|b) with
a large number, say, N, realizations of Wiy (z1,22]0),
(WL]OC(:Q, xo|b), ..., VAVNJOC(ml, Z | b)), by repeatedly simulat-
ing independent samples of (Z1, ..., Z,), while fixing the data
(T3, 64, Xy, 84, 73) (1 =1,...,n) at their observed values. How-
ever, for the particular purpose of spatial cluster detection, it
is important to allow the data to depict the best cluster size.
Therefore, we consider a finite vector of length L of varying
cluster sizes, denoted by b = (b,...,b;), where each b, de-
notes half of the edge length of the potential square cluster.
Accordingly, we define a cluster detection test statistic to test
existence of any spatial clusters,

Sloc = sup |:Sup ‘/Vloc(mlaxQ | bl)a ..., SUp I/Vloc(gslny ‘ bL):| .
x1,T9 x1,T2

Continuous mapping theorem will show that Sy, has the same

limiting distribution as the following stochastic process, con-

ditional on the observed data,

T1,T2 x1,T2

Sloc = sup |:Sup moc(wlan | bl)a -.., SUp moc(‘rlny ‘ bL):| .

Hence, the empirical p-values can be computed as p-value =
Z;\Izl I[Sie < Sj0c]/N, where S 1 is the Si,. evaluated at the

jth realization of VAVJ-,]OC, In practice, to obtain the observed
test statistic, Sy, and simulated test statistics, Sj,lom it is
necessary to create a finite grid of values over x;, zo, and b to
approximate the continuous stochastic processes.

This hypothesis test can be inverted to form confidence
bands around Wy,.(z1, ®2|b) to find the values of (1, o,
b) that have significantly higher hazard rate then expected
assuming the null hypothesis and the proportional hazards
model (3). Explicitly, {(z1,22,b): Wiee(z1,22|b) > 5'(‘951\7)},
where S'(,%N) is the 95th percentile of all S'j,loc. Therefore, mul-
tiple clusters can be easily detecting utilizing this proposed
test statistic.

3.2 Standardized Martingale Residuals (SMR)

To reduce potential dependence between the martingale resid-
uals and covariates, X;, we also consider a standardized ver-
sion of test statistic:

VI/lOC(x17 T2 ‘ b)

_ Li[(&?l—b<81 S.’I?l:Fb,fCQ—b<7’i §$2+b)MZ(T)7
Vi Var(M;(7))

where Var(M;(-)) is an estimate of the variance for the ith
martingale residual defined as,

VELr(Mi(t))
ty]1- M .
- /0 n Z: exp(BX;) exp(BX;) ; Vie(s) dAo(s)
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(Commenges and Rondeau, 2000). Then define another mov-
ing block process, Wi.(z1, 22 | b), as

Vi/loc(xly T2 | b)

o 1 zn: I($1*b<8jS$1+b,$2*b<7”j§$2+b)
VR Var(, (7))

_g(B,Tj,CUl,CL’27b) - n(xl’$27b|6)171(5)

< {X; — X(B,T)}| 6,2;, 9)
where
W(117127b|3)
-y /W(t)exp<'éxl)[($17b<sz§I1+b,Aw2*b<’f'z§$2+b)
= 0 Var(M, (1))

x {X1 - X(B,t)} dAo(t) | ,

g(ﬁvth‘lvzﬂvb)

Iz —b<sp <z +bxs—b<r<z5+b)
Var(Mk(T))
SO(B,t) '

Z Vi (t) exp(BX)

_ k=l

Var(M;(7))

:/OTE[(l,

and Z;(j = 1,...,n) are mean 0 and variance 1 random vari-
ables that are also independent of (7}, 8;, Xj, s;, r;). It follows
that the asymptotic conditional distribution of Wioc(xl, Zo | b)
given the observed data (73, 6;, Xi, si, 1) (1 = 1,...,n) is
equivalent to the limit distribution of W (x1, x2 |b) assum-
ing that geographic location, (s;, r;), is independent of time to
censoring or failure, T;, after adjusting for covariates, X; with
the proportional hazards model (3) being correctly specified.
The proof follows similarly to the unstandardized martingale
residuals (UMR). In practice, we would substitute the consis-
tent estimate of Var(M; (7)), Var(M,(7)). Both the standard-
ized (SMR) and unstandardized (UMR) test statistics will be
applied to the Home Allergens dataset in Section 6 and power
calculations will be performed in Section 5.

Vi(t) exp(BX,;)

S0(B,1) ) Vien(ax,) | dagio

4. Similarities between the Spatial Scan Statistic
and Cumulative Residual Test

We further note that the proposed spatial scan statistic and
cumulative geographic martingale residuals are connected un-
der the proportional hazards model. Explicitly, the similarity
occurs when the spatial scan statistic is defined by utilizing
square regions instead of circles as potential clusters. There-
fore, the indicator variable Z; = I(zy, — b < s; < 1 + b,
Zor — b < r; < o + b), where (x5, xax) is the centerpoint of
the potential cluster area k with edge length 2b. In this case,
Wiee(+, +) is proportional to

Z ZkleBX1

n
~ {LTy>T5}

Zyos M (00) = P L —
Z kiMi(o0) Z kg Z A
=1 {7:6;=1}

{LTy>T;}

which is the numerator of the log-rank statistic (2).

Key differences, however, do exist between these two test
statistics. The spatial scan statistic is advantageous as it al-
lows for a variety of shapes of potential clusters. However, it
is computationally burdensome, requires a strong assumption
of the Cox’s proportional hazards model being correctly spec-
ified to have exchangeability to validate the permutation test,
and is limited in its ability to define more than one significant
clusters. In contrast, the cumulative geographic residual test
statistics can be easily inverted to define multiple clusters.
These multiple clusters can actually overlap, which allows for
the proper shape of the cluster to be formed. Therefore, even
though the initial cluster is restricted to be a square or rect-
angle (in order to define a valid two-dimensional process), by
overlapping significant clusters the proper cluster shape can
still be detected.

5. Simulation Study

We conducted simulations, calculating the power and type I
error for both the spatial scan statistic and cumulative ge-
ographic residual for censored outcomes. For computational
efficiency for all simulations we allowed a finite range, for the
radii for the spatial scan statistic and half of edge length, b,
for the cumulative geographic residual, of 0.5 to 2 sequenced
by 0.5.

We first conducted power calculations by considering an
8 X 8 unit-less area. A simulated data set was derived by
dividing the area into 16 equally sized squares of size 2 x 2 as
depicted in Figure 7. The study population size was 500 and
each participant was randomly assigned to 1 of the 16 grids.
Given the grid, the z and y coordinates for each participant
were randomly assigned with a uniform distribution over the
grid area.

To create a single cluster in consecutive grid areas 6 and 10
we first generated random variables C; and F;(i = 1,...,n)
from the exponential distributions with constant hazards A
and Az, respectively. If participant 4, is assigned to grid 6 or
10, then A; = 1/4 otherwise Ay = 1/2. We set A\; = 1/3
for all 4. Given F; and Cj, define 6; = I(F; < C;) and T; =
min(C;, F;) to complete the randomly generated failure time
data set with a higher likelihood of failures within grids 6 and
10 and therefore a corresponding cluster.

We created 500 of the defined simulated data sets and on
each data set both the spatial scan statistic and cumulative
geographic residual test were performed. For the spatial scan
statistic we used both circular and square regions for shapes
of potential clusters. A power calculation was conducted for
each test statistic by calculating the percentage of times that
it found significant clusters (0.05 significance level) that over-
lapped either, or both, grid areas 6 and 10. The power results
were 0.526 for the spatial scan statistic (0.494 using a square
region) and 0.530 for the cumulative geographic residual test.
Therefore, both test statistics perform equally well for a single

Q2
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13 14 15 16

Table 1
Type I error rate of cumulative geographic martingale residual
test and spatial scan statistic for different sample sizes and
percentage of failure events

Number of observations

Spatial scan

100 300 500

Cumulative residual

100 300 500

0.051 0.058 0.049 0.055 0.049 0.062
0.042 0.048 0.041 0.047 0.038 0.052
0.041 0.043 0.049 0.055 0.052 0.062

Censoring  80%
Proportion 60%
40%

X

Figure 1.
data sets.

Grid system of study area for power simulation

cluster situation when the population is distributed uniformly
over the study area.

The second test situation studied having two clusters in
the same 8 x 8 unit-less grid. The first cluster was located in
consecutive grid areas 6 and 10, while the second cluster was
located in grid area 16. The location of each of the participants
was assigned according to the same scheme as described in the
first test situation. Also, using the notation from the first test
situation, generate C; and F;(i = 1,...,n) from the following
exponential distribution, if participant i is assigned to be in
grids 6 or 10 then A\ = 1, if assigned to be in grid 16 As =
1/2, and A\; = 1/3 otherwise. We again hold A\, = 1/3 for all
i. Therefore, given F; and C;, define §; = I(F; < C;) and T; =
min(C;, F;) to complete the randomly generated failure time
data set with the highest likelihood of failures within grids 6
and 10 (cluster 1), second highest in grid 16 (cluster 2), and
lower likelihood everywhere else.

We calculated an overall power calculation for each test.
A test was deemed significant if a cluster was detected that
overlapped at least 1 of the 2 cluster regions. The spatial scan
statistic had an overall power of 0.936 (0.922 using a square
region), which is slightly higher than the cumulative resid-
ual test with a power of 0.922. However, when analyzing the
results of which cluster each test found, almost every clus-
ter detected overlapped the larger, cluster 1, with a power of
0.934 for the spatial scan statistic (0.918 using a square re-
gion) and 0.002 (0.006 using square region) of the time found
a cluster that overlapped cluster two. The cumulative resid-
ual found cluster 1 with a power of 0.922, but simultaneously
found cluster 2 with a power of 0.688. So even though the
spatial scan statistic has higher power to detect cluster 1,
the cumulative residual test was able to also detect cluster 2
68.8% of the time. Many data analyses wish to find multiple
clusters, which suggests cumulative geographic residual may
be the preferred method without too much loss of power.

We also performed calculations to check the type I error
rate for the cumulative geographic residual test and spatial

scan statistic. These simulations were conducted by gener-
ating 1000 test studies where location was randomly as-
signed uniformly over a 10 by 10 grid and corresponding
failure time outcomes were randomly assigned to each grid
location. Type I error was calculated as the proportion of
the 1000 simulations that found at least one cluster signifi-
cant at the 0.05 significance level. The results are described
in Table 1. The type I error is being held at the a-level
of 0.05 over all sample sizes and percentage of failures for
both test statistics. Therefore, the tests are performing as
expected.

The final simulation we ran compared the standardized
(SMR) and unstandardized (UMR) cumulative geographic
residual test to see if using the SMR increased power. We cre-
ated a binary covariate X; under two scenarios: one in which
X; is related to outcome, (T}, 68;), but not location (indepen-
dent predictor) and a scenario in which X; is dependent on
outcome, (73, 6;), and location (interaction). For the first sce-
nario, where X; is an independent predictor, we conducted
the same simulations as discussed without covariates for both
single and multiple clusters, but altered all failure time con-
stant hazards, Ag, by multiplying it by exp(0.4 x X;) where X;
is a randomly generated Bernoulli covariate with mean 0.30.
For the single cluster the SMR method had a power of 0.463,
which was not substantially higher then the UMR method
with a power of 0.457. The multiple cluster’s overall power
results for finding at least one of the two clusters were 0.911
for the SMR and 0.917 for the UMR results. Therefore, the
standardized test statistic and the unstandardized test statis-
tic had relatively equivalent power for cluster detection for
the independent predictor scenario.

For scenario two, in which X is an interaction, we randomly
assigned all subjects to 1 of the 16 grids depicted in Figure 7.
If subject i is assigned to grids 6 or 10, then X; is randomly
generated from a Bernoulli with mean 0.5, otherwise Xj is ran-
domly generated from a Bernoulli with mean 0.2. To obtain
the censored outcomes, we followed the same simulation set
up as discussed for independent predictor, where we multiply
the failure time constant hazards by exp(0.4 x X;). For the
single cluster, the SMR method had a power of 0.664, which
was almost equivalent to the UMR method with a power of
0.672. The multiple cluster’s overall power results for finding
at least one of the two clusters were 0.917 for the UMR and
0.911 for the SMR results.

Therefore, for both scenarios, the standardized and unstan-
dardized are almost identical, but the standardized method
had slightly higher power for the independent predictor,
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Median Income
<$50,000
|77 $50,000 to $100,000

I > $100,000

Figure 2.
area.

scenario one, and slightly lower power for scenario two. How-
ever, these differences were not larger then what would be
expected from Monte Carlo simulation error and, therefore,
this indicates that the standardized method does not signifi-
cantly improve cluster detection power.

6. Home Allergens and Asthma Study Analysis

We now apply the proposed methods to the Home Allergens
and Asthma prospective cohort study. The study was de-
signed to investigate potential environmental exposures and
their relationship to childhood asthma and other respiratory
outcomes. A total of 499 study participants were enrolled in
the study after being born at Brigham and Women’s hospital
in Boston, Massachusetts, United States between September
1994 and June 1996. Details of the study design have been
previously published by Celedon et al. (1999). Of those 499
study participants, only 478 were used for this analysis due
to the inability to geocode the missing participants’ birth ad-
dresses. The investigators for this analysis were interested in
areas with significant clusters of disease in the first 4 years
of life for: time to asthma or censoring, time to allergic rhini-
tis/hayfever or censoring, and time to eczema or censoring.
There has been relatively little time to event data docu-
menting potential risk factors for any of our outcomes and,
therefore, we will make all a priori hypotheses based on in-
cidence outcome results. Previous results from a study on
the mothers who had been screened for the Home Allergens
and Asthma study displayed higher IgE, an indicator of aller-
gic response, in southern urban Boston, Chelsea, and Revere,
all lower socioeconomic areas, and lower IgE in the western
suburbs (Litonjua et al., 2005). Figure 7 displays the towns
and median family income at the U.S. 2000 Census tract
level for the study area. Boston, Chelsea, and Revere are dis-
played as having relatively low median family income com-
pared to the rest of the study population. Further, elevated

Indicated areas of low, medium, and high median family income by U.S. census tract in the study population

levels of IgE have been associated with a higher prevalence
of asthma, eczema, and hayfever in this population (Litonjua
et al., 2005).

Because asthma in children is documented to be more
prevalent in minority and disadvantaged populations (Gergen,
Mullaly, and Evans, 1988; Schwartz et al., 1990; Litonjua
et al., 1999), we expect to find a disease cluster in south-
ern urban Boston, Chelsea, and Revere. However, pre-
vious studies have documented atopic disorders (eczema
and hayfever) as being conditions of the relatively affluent
(Gergen, Turkeltaub, and Kovar, 1987; Chen et al., 2002).
This finding, for hayfever, may be the result of underreport-
ing, or underdiagnosis, of hayfever in the disadvantaged pop-
ulation, because of various barriers to care (Strunk, Ford, and
Taggart, 2002). Also, one may presume that due to these
barriers to care that the time to diagnosis may also be on
average longer even in the children who eventually got di-
agnosed. Therefore, the a priori hypothesis for the location
of a hayfever/allergic rhinitis spatial cluster would be in the
Western, more affluent suburbs.

There has been no documentation of underreporting of
eczema in children, and given the results that elevated lev-
els of IgE are related to eczema in the mother population, it
may indicate that the cluster would occur in the southern ur-
ban Boston, Chelsea, and Revere areas. However, the a priori
hypothesis assumed that it would follow a similar pattern as
the hayfever/allergic rhinitis outcome. To test these a priori
hypothesis we have conducted three spatial cluster detection
analyses on the outcomes: (1) time to asthma or censoring, (2)
time to allergic rhinitis/hayfever or censoring, and (3) time
to eczema or censoring.

First displayed in Figures 7 and 7 are the results from the
analysis for the outcome time to doctor diagnosed asthma
or censoring. Two analyses were conducted, one without
adjusting for covariates and one with adjusting for the

Q3
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Doctor Diagnosed Asthma

Unadjusted

Adjusted

Cumulative Residuals

Spatial Scan Statistic

Outcome
0 Censored og
e Event

Figure 3.

L]
I P-value: 0.290 Radius = 12 KM
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Nondashed lines correspond to the maximum cluster location and dashed lines correspond to the entire area with significant
(0.05 level) clusters, which potentially include multiple square areas.

following marginally significant predictors: parental smok-
ing [Adjusted hazard ratio = 2.017 (p-value = 0.024)], in-
come > $50,000 [Adjusted hazard ratio = 0.714 (p-value =
0.099)], and log-transformed endotoxin [Adjusted hazard ra-
tio = 1.263 (p-value = 0.074)]. For all analyses of the data,
areas of potential clusters were confined to be between 1000
and 15,000 m in radius for the spatial scan statistic and be-
tween 2000 and 30,000 m in edge length for the cumulative
geographic residual. Figure 7 displays that the maximum clus-
ter, for both statistics, is located in the eastern portion of the
study area including southern urban Boston, Chelsea, and Re-
vere, but also some of the nearby surrounding towns. Note
that these maximum clusters stay close to the same loca-
tion even after adjusting for covariates, which include income.
However, the only significant cluster, at the 0.05 level, was
found using the cumulative residual method without adjusting
for other covariates. This may indicate that the predictors are
sufficiently accounting for the spatial cluster assuming correct
model specification. The location of the cluster is as expected
given the a priori hypothesis that the cluster would be similar
in location to elevated IgE levels in the mothers.

Two other analyses were conducted to study the following
allergic outcomes: time to hayfever/allergic rhinitis or censor-
ing and time to eczema or censoring. There were no marginally
significant predictors for either outcome so the only analyses
conducted did not adjust for covariates.

Figure 7 displays the results from these analysis using both
the cumulative geographic residual and spatial scan statistic.

The cumulative geographic residual found significant clusters
for time to allergic rhinitis/hayfever, while the spatial scan
statistic found only a marginally significant cluster for this
outcome. In general, the outcome hayfever/allergic rhinitis
had a significant cluster in the western suburbs of Boston,
while eczema did not have any significant clusters, the high-
est potential cluster was located in the southern study area
overlapping both the hayfever and asthma clusters. The areas
of disease clusters that differed most between the spatial scan
statistic and the cumulative geographic residual occurred for
the outcome hayfever/allergic rhinitis. The area that the spa-
tial scan statistic found as a cluster was much smaller than
the area for the cumulative geographic residual, but they do
overlap. This is a common trend of the cumulative geographic
residual test in which it tends to find areas of maximum clus-
ters that are larger than the spatial scan statistic.

Even though the spatial scan statistic and the cumulative
geographic residual tend to find slightly different clusters they
do overlap and their Kaplan—Meier curves, displayed only for
the outcome time to doctor diagnosed asthma (Figure 7),
indicate that both test statistics find areas that have very
different estimated survival curves of between versus within
cluster. Therefore, both test statistics perform well in finding
areas that have significantly higher hazard ratios.

Overall, there are significant geographic cluster for the
time-to-event outcomes asthma and allergic rhinitis/hayfever
observed. Asthma had observed clusters in the metropolitan
Boston area, including southern Boston, Chelsea, and Revere,
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while hayfever/allergic rhinitis have a cluster in the Western
suburbs. This indicates that asthma may be exacerbated by
urban predictors. The location of the hayfever/allergic rhinitis
outcomes may indicate underdiagnosis in the more disadvan-
taged population in southern Boston, Chelsea, and Revere,
but may also be more exacerbated by suburban exposures.
All conclusions are in reference to children under the age
of 4.

7. Discussion

In this article we have extended two techniques, the spatial
scan statistic and the cumulative geographic residual test, for
detecting spatial cluster with censored outcomes. By utilizing
the cumulative geographic residual methodology, we detected
a significant cluster of childhood doctor-diagnosed asthma in
the inner-city Boston area and hayfever/allergic rhinitis in
the western suburbs of Boston when not adjusting for other
covariates. The spatial scan statistic found only marginally
significant clusters for all outcomes. It would be of interest
to further investigate potential predictors that may be re-
lated to those neighborhoods in Boston, such as traffic expo-
sure in the urban area or existence of parks/greenery in the
suburbs.

We also performed power comparisons between the spa-
tial scan statistic and cumulative geographic residual. In all
examined scenarios, these two tests seem to be comparable
in terms of power. In addition, both tests statistics maintain
the nominal type I error under the null hypothesis. There-

fore, we conclude that both methods are valid for censored
outcomes.

It should be noted that there are other potential statistical
methods to determine the asymptotic distribution, under the
null hypothesis of no clustering, for both test statistics. Par-
ticularly, the exact asymptotic distribution has been derived
by Hashemi and Commenges (2002) and is a valid alternative.
However, for the cumulative residual test we chose to utilize
the multiplier central limit theorem framework to provide a
convenient means of simulating the asymptotic stochastic pro-
cess over space (Figure 7). Further, we chose to use the stan-
dard permutation approach that has been proposed for the
spatial scan statistic.

Nevertheless, we do think there exist ample research top-
ics in this relatively new area. These include extending the
proposed cumulative geographic martingale residual method
to utilize the linear transformation model for censored data
(Fine, Ying, and Wei, 1998), or a parametric failure time
model, instead of the Cox’s proportional hazards, to improve
power for spatial cluster detection. Further, these test statis-
tics could both be extended to the space—time setting to in-
corporate cluster detection over time in a similar fashion to
the extension of the spatial scan statistic with binary and
Poisson outcome data to the space-time setting (Kulldorff,
2001). With such prevalence of longitudinal and survival stud-
ies, from fields such as environmental health, cancer research,
community-based research, and neurodegenerative disease re-
search to just name a few, and with the rapid advancement
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of GIS technology, cluster detection methods for failure time
outcomes will become more useful over time.
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