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Abstract
Gaussian distributions have been commonly assumed when clustering func-
tional data. When the normality condition fails, biased results will follow. Addi-
tional challenges occur as the number of the clusters is often unknown a priori.
This paper focuses on clustering non-Gaussian functional data without the prior
information of the number of clusters. We introduce a semiparametric mixed
normal transformation model to accommodate non-Gaussian functional data,
and propose a penalized approach to simultaneously estimate the parameters,
transformation function, and the number of clusters. The estimators are shown
to be consistent and asymptotically normal. The practical utility of themethods is
confirmed via simulations as well as an application of the analysis of Alzheimer’s
disease study. The proposedmethod yieldsmuch less classification error than the
existing methods. Data used in preparation of this paper were obtained from the
Alzheimer’s Disease Neuroimaging Initiative database.
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1 INTRODUCTION

New technologies allow data to be recorded with high fre-
quency from many research fields, resulting in large vol-
umes of functional data, such as growth curves of infants,
patients’ blood pressure measured at various time points,
daily temperature, and precipitation for consecutive days
at national weather stations, term-structured yield curves,
and shape representations of body parts. See Ramsay
and Silverman (2005), Li and Hsing (2010), Jacques and
Preda (2014), Wang et al. (2016), and Yao et al. (2005) for
more details. In this paper, we consider clustering func-
tional data, aiming to identify homogeneous groups of
data without using any prior knowledge on the group
labels.
As functional data are infinite dimensional, most clus-

tering algorithms project the functional data into a finite-
dimensional space, followed by applying a clustering
method. For example, Abraham et al. (2003), Tarpey

and Kinateder (2003), and Suyundykov et al. (2010) con-
ducted functional principal component analysis or B-
spline expansions, and then detected clusters based on
the principal component scores or the coefficients of the
B-spline basis, using hierarchical or k-means clustering.
Numerous model-based methods have also been devel-
oped. For example, Biernacki et al. (2000), James and Sugar
(2003), and Bouveyron et al. (2015) considered the Gaus-
sian mixture model, Liu et al. (2003) combined Bayesian
clustering and Markov chain Monte Carlo strategies to
group functional data, Fröhwirth-Schnatter and Kauf-
mann (2008) built a clustering algorithm based on time
series models, Liu and Yang (2009) developed a coher-
ent framework for simultaneously aligning and clustering
functional data, Bouveyron and Jacques (2011) extended
a high-dimensional data clustering algorithm to cluster
Gaussian functional data, other Gaussian-model based
clustering methods included Jacques and Preda (2013,
2014) and Rivera-García et al. (2019).
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Distance-based clustering methods have sparked much
interest. Related works included the 𝐿2 distance-based
functional principal component scores (FPCs) developed
by Chiou and Li (2007), Peng et al. (2008), as well as
the weighted 𝐿2 distance designed by Floriello and Vitelli
(2017), Ferraty and Vieu (2006), Tarpey and Kinateder
(2003) and Tokushige et al. (2007)measured dissimilarities
between curves using the 𝐿2 distance of their derivatives.
Delaigle et al. (2019) proposed a modified k-means algo-
rithm for functional data with a given number of clusters.
Most of the aforementioned methods assume, either

explicitly or implicitly, the functional data to be Gaus-
sian. When the normality assumption fails, the methods
may produce biased results. Particularly, multiple cluster
solutions can be falsely identified for homogeneous non-
Gaussian functional data (Bauer and Curran, 2003). In
practice, non-Gaussian functional data have been com-
monly observed. For example, the Alzheimer’s disease
neuroimaging initiative (ADNI) data, whichmotivated our
study, are non-Gaussian (see Figures 7-9 in the Support-
ing Information). The classification error resulted from
the existing Gaussian-based clustering method is 43.1%,
while the classification error obtained by applying our
proposed method without the Gaussian assumption is
merely 2.08%.
In the paper, we propose a semiparametric mixed

normal transformation (SMINT) model to group non-
Gaussian functional data when the number of clusters is
unspecified a priori. In the literature, only a few works
have been focused on the selection of the number of clus-
ters, and most of them used the Bayesian information cri-
terion (BIC; Schwarz, 1978). However, the BIC method is
computationally burdensome, and the large sample model
selection results, such as model selection consistency and
oracle property, are elusive. We hence propose a penal-
ized approach that selects the number of clusters and
estimates all of the parameters and functions simultane-
ously for non-Gaussian functional data. Our method is
interpretable and flexible by allowing unspecified distri-
butions and unknown numbers of clusters. Moreover, our
method is computationally feasible. We estimate the mean
function and eigenfunctions based on one-dimensional
B-splines, instead of directly estimating covariance func-
tions, which is a two-dimensional nonparametric problem
(Yao et al., 2005).
The remainder of the paper is organized as follows.

In Section 2, we introduce the SMINT model. In Sec-
tion 3, we propose a combination of penalized likelihood
and estimating equations methods to select the number of
clusters and estimate the regression parameters and trans-
formation function for each cluster simultaneously. We
further propose a BIC-type procedure to select tuning
parameters. Section 4 focuses on the theoretical properties,

including 𝑛1∕2-consistency and asymptotic normality, and
Section 5 reports simulation results and an analysis of the
ADNI data. We provide concluding remarks in Section 6
and defer all the proofs to the Supporting Information. The
R code for the proposedmethod is available in the Support-
ing Information.

2 SEMIPARAMETRICMIXED
NORMAL TRANSFORMATIONMODEL

In classical functional principal component analysis
(James et al., 2000; Yao et al., 2005; Jacques and Preda,
2014), the stochastic process 𝑋(𝑡) can be written as 𝑋(𝑡) =
𝜇(𝑡) +

∑∞

𝑘=1 𝜉𝑘𝜙𝑘(𝑡), where 𝜇(𝑡) = 𝐸{𝑋(𝑡)} is the mean
function; 𝜙𝑘(𝑡) is the 𝑘th orthonormal basis function; and
𝜉𝑘 is the normal functional principal component scores,
which satisfy the following conditions:

(C0) 𝜙𝑘(𝑡) is the 𝑘th orthonormal eigenfunction of the
covariance operator Σ(𝑠, 𝑡) = Cov{𝑋(𝑠), 𝑋(𝑡)}, which
satisfies ∫ 𝜙𝑘(𝑡)𝜙𝑗(𝑡)𝑑𝑡 = 1 if 𝑗 = 𝑘, and 0 other-
wise, and the 𝜉𝑘 is the normal functional principal
component scores with 𝐸(𝜉𝑘) = 0, var(𝜉𝑘) = 𝜆𝑘, and
cov(𝜉𝑗, 𝜉𝑘) = 0 if 𝑗 ≠ 𝑘, with the constraint of 𝜆1 ≥
𝜆2 ≥⋯ > 0 and

∑∞

𝑘=1 𝜆𝑘 < ∞.

As
∑∞

𝑘=1 𝜆𝑘 < ∞ so the 𝜆𝑘 usually decreases rapidly to
0, the number of included eigenfunctions, 𝐾, is usually
small or moderate. Hence, we can embed 𝑋(𝑡) in a suffi-
ciently flexible but suitable function space with measure-
ment errors, and assume the following model

𝑋(𝑡) = 𝜇(𝑡) +

𝐾∑
𝑘=1

𝜉𝑘𝜙𝑘(𝑡) + 𝜀𝑡, (2.1)

where 𝜀𝑡 are errors and independent of 𝜉𝑘. Model (2.1) with
a fixed 𝐾 and a Gaussian distribution for 𝜀𝑡 are commonly
adopted for longitudinal and functional data analysis (see,
eg, James et al., 2000; Yao et al., 2005; Hall et al., 2008). The
fixed𝐾may lead to biased estimation and classification,we
allow 𝐾 → ∞ as 𝑛 → ∞ in the paper.
We propose a model to accommodate non-Gaussian

functional data by using an unknown transformation func-
tion. Without loss of generality, let  = [0, 1]. We assume
that the random functions 𝑌𝑖(⋅), 𝑖 = 1, … , 𝑛 are indepen-
dent copies of a stochastic process 𝑌(⋅) on  . For non-
Gaussian random variables, Box-Cox power transforma-
tions have been routinely used in practice, and nonpara-
metric transformations were proposed for added flexibil-
ity (Zhou et al., 2008). Our idea is to suppose the exis-
tence of a nonparametric functional operator, denoted by
𝐻(⋅) ∶ ℜ → ℜ, onto 𝑌𝑖(𝑡) = 𝑌𝑖(𝑡), such that the following
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model holds:

𝐻(𝑌𝑖(𝑡)) = 𝜇(𝑡) +

𝐾∑
𝑘=1

𝜉𝑖𝑘𝜙𝑘(𝑡) + 𝜀𝑖(𝑡), (2.2)

where 𝜇(𝑡) = 𝐸[𝐻{𝑌𝑖(𝑡)}] is themean function of the trans-
formed response, with 𝜉𝑖𝑘s and 𝜙𝑘s satisfying the con-
ditions in (C0), and measurement errors 𝜀𝑖(𝑡) are inde-
pendently and identically distributed as 𝑁(0, 𝜎2) and
independent of 𝜉𝑖𝑘. For more flexibility, we do not put any
parametric assumptions on 𝐻(⋅), except that it is mono-
tonic function, and allow 𝐾 → ∞ as 𝑛 → ∞ (Hall and
Hosseini-Nasab, 2006; Lin et al., 2018). We term (2.2) an
SMINTmodel, which includesmodel (2.1) as a special case
with𝐻(𝑥) = 𝑥.
We cluster functional data based on SMINT, which is

to identify different subprocesses underlying observations.
To proceed, we introduce a cluster membership indicator
by 𝑔 ∈ {1, … , 𝐶}, with amarginal probability mass 𝜋𝑔 satis-
fying

∑𝐶

𝑔=1 𝜋𝑔 = 1. We add 𝑔 to the subscript of the afore-
mentioned𝑌𝑖(𝑡) andmodify (2.2) in order tomodel the sub-
process 𝑌𝑔𝑖(⋅) by

𝐻(𝑌git) = 𝜇𝑔(𝑡) +

𝐾𝑔∑
𝑘=1

𝜉gik𝜙𝑔𝑘(𝑡) + 𝜀git, (2.3)

where 𝑌git = 𝑌𝑔𝑖(𝑡), each item is as defined in (2.1),
with an added subscript 𝑔 for the 𝑔th subpopulation.
The scale and location normalization is needed for 𝐻 to
make the model identifiable. We specify two conditions:
𝑁−1

∑𝑛

𝑖=1

∑𝑛𝑖
𝑗=1 𝐻(𝑌𝑖𝑗) = 0 and 𝑁

−1∑𝑛

𝑖=1

∑𝑛𝑖
𝑗=1 𝐻

2(𝑌𝑖𝑗) =

1, where 𝑁 =
∑𝑛

𝑖=1 𝑛𝑖 , 𝑛𝑖 is the number of observation
times for curve 𝑖 and 𝑌𝑖𝑗 = 𝑌𝑖(𝑡𝑖𝑗).
Even for Gaussian functional data, most existing meth-

ods have assumed the same eigenfunctions 𝜙𝑔𝑘 across
groups (Bouveyron and Jacques, 2011; Serban and Jiang,
2012). The assumption was made for computational fea-
sibility because the cluster-specified covariance function
is not available with unknown clusters. But, with this
assumption, a large number of eigenfunctions are needed
for estimation accuracy. In contrast, our model allows
cluster-specific eigenfunctions, as a result, the functional
curve in each group can be represented by fewer eigenfunc-
tions, resulting in more concise, informative, and inter-
pretable clusters.

3 ESTIMATION

Let Y𝑖 = (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖,𝑛𝑖 )
′ represent the measure-

ments on individual 𝑖 over 𝑛𝑖 evaluation points, denoted
by t𝑖 = (𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖,𝑛𝑖 )

′. Without loss of generality,

we assume the 𝑡𝑖𝑗 ’s are scaled within [0,1]. Let 𝑓(⋅)
denote the density function of the random vector,
H(Y𝑖) = {𝐻(𝑌𝑖1), 𝐻(𝑌𝑖2), … ,𝐻(𝑌𝑖,𝑛𝑖 )}

′. Under (2.3), 𝑓(⋅)
has the following form:

𝑓{H(Y𝑖)} =
𝐶∑
𝑔=1

𝜋𝑔𝑓𝑔{H(Y𝑖)},
𝐶∑
𝑔=1

𝜋𝑔 = 1, (3.4)

where 𝑓𝑔{H(Y𝑖)} = (2𝜋)−𝑛𝑖∕2|𝚫𝑔(t𝑖)|−1∕2 exp[−1

2
{H(Y𝑖) −

𝝁𝑔𝑖}
′𝚫𝑔(t𝑖)−1{H(Y𝑖) − 𝝁𝑔𝑖}] is the density function

of H(Y𝑖) if individual 𝑖 belongs to the 𝑔th clus-
ter, 𝝁𝑔𝑖 = 𝜇𝑔(t𝑖)=̇{𝜇𝑔(𝑡𝑖1), … , 𝜇𝑔(𝑡𝑖,𝑛𝑖 )}

′, 𝚫𝑔(t𝑖) =
𝚽𝑔(t𝑖)𝚲𝑔𝚽𝑔(t𝑖)′ + 𝜎2𝑔I𝑛𝑖 , 𝚽𝑔(t𝑖) = {𝝓𝑔(𝑡𝑖1), … , 𝝓𝑔(𝑡𝑖,𝑛𝑖 )}

′,
𝝓𝑔(𝑡) = {𝜙𝑔1(𝑡), … , 𝜙𝑔,𝐾𝑔 (𝑡)}

′, 𝚲𝑔 = diag(𝜆𝑔1, … , 𝜆𝑔,𝐾𝑔 )
and I𝑛𝑖 is the 𝑛𝑖 × 𝑛𝑖 identity matrix. Then the
covariance function of the transformed response
is Σ𝑔(𝑠, 𝑡) = 𝝓𝑔(𝑡)

′𝚲𝑔𝝓𝑔(𝑠) + 𝜎
2
𝑔𝐼(𝑠 = 𝑡) for the

𝑔th cluster. Let 𝛀 = (𝚲′, 𝝈2
′
, 𝝅′, 𝝁′, 𝝓′)′ with 𝚲 =

(𝜆𝑔𝑘, 𝑔 = 1,… , 𝐶, 𝑘 = 1,… , 𝐾𝑔)
′, 𝝈2 = (𝜎21, … , 𝜎

2
𝐶
)′, 𝝅 =

(𝜋1, … , 𝜋𝐶)
′, 𝝁 = (𝜇𝑔, 𝑔 = 1,… , 𝐶)

′ and 𝝓 = (𝜙𝑔𝑘, 𝑔 =

1,… , 𝐶, 𝑘 = 1,… , 𝐾𝑔)
′.

Our goal is to simultaneously estimate the number of
clusters 𝐶, the transformation function𝐻, the mean func-
tion 𝜇𝑔, and the covariance function Σ𝑔(𝑠, 𝑡) of each clus-
ter via estimating 𝛀, which includes finite-dimensional
parameters and infinite-dimensional functions. Different
from the existing method that directly estimating Σ𝑔(𝑠, 𝑡)
by two-dimensional nonparametric technique (Yao et al.,
2005; Cai and Yuan, 2010), we estimate it via its eigenfunc-
tions using univariate splines, hence effectively increase
the convergence rate of the estimator of Σ𝑔(𝑠, 𝑡) from 𝑛−1∕3

to 𝑛−2∕5.
We start with modeling 𝜇𝑔(⋅) and 𝜙𝑔𝑘(⋅). Denote by

 = {𝑔(⋅) ∶ |𝑔(𝑞1)(𝑡1) − 𝑔(𝑞1)(𝑡2)| ≤ 𝑐0|𝑡1 − 𝑡2|𝑞2 ,
for any 0 ≤ 𝑡1, 𝑡2 ≤ 1}, (3.5)

where 𝑞1 is a nonnegative integer, 𝑞2 ∈ (0, 1], 𝑟 = 𝑞1 +
𝑞2 ≥ 2, and 𝑐0 is a generic constant. The smoothness
assumption (3.5) is often used in nonparametric estima-
tion. With the assumption of 𝜇𝑔(⋅), 𝜙𝑔𝑘(⋅) ∈ , we approx-
imate 𝜇𝑔(⋅) and 𝜙𝑔𝑘(⋅) by

𝜇𝑛𝑔(𝑡) =

𝑞𝑛∑
𝑗=1

𝛼𝑔𝑗𝑏𝑗(𝑡) = 𝜶
′
𝑔B𝑛(𝑡), (3.6)

𝜙𝑛𝑔𝑘(𝑡) =

𝑞𝑛∑
𝑗=1

𝛽𝑔𝑘𝑗𝑏𝑗(𝑡) = 𝜷
′
𝑔𝑘
B𝑛(𝑡), (3.7)

respectively, where B𝑛(⋅) = {𝑏1(⋅), … , 𝑏𝑞𝑛 (⋅)}
′ is an orthog-

onal set of spline basis functions of order 𝑟 + 1 with knots
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0 = 𝜁0 < 𝜁1 < ⋯ < 𝜁𝑀𝑛
< 𝜁𝑀𝑛+1 = 1, satisfying max(𝜁𝑗 −

𝜁𝑗−1 ∶ 𝑗 = 1,… ,𝑀𝑛) = 𝑂(𝑛
−𝑣), where 𝑞𝑛 = 𝑀𝑛 + 𝑟 + 1,

and𝑀𝑛 is the integer part of 𝑛𝑣 with 0 < 𝑣 < 0.5. Substitut-
ing (3.6) and (3.7) into (3.4), we obtain the log-likelihood,

𝐿𝑛(𝛀𝑛;𝐻) =

𝑛∑
𝑖=1

log

{
𝐶∑
𝑔=1

𝜋𝑔𝑓𝑔𝑖(𝛀𝑛;𝐻)

}
, (3.8)

subject to 𝑁−1
∑𝑛

𝑖=1

∑𝑛𝑖
𝑗=1 𝐻(𝑌𝑖𝑗) = 0 and 𝑁−1

∑𝑛

𝑖=1∑𝑛𝑖
𝑗=1 𝐻

2(𝑌𝑖𝑗) = 1,

𝐶∑
𝑔=1

𝜋𝑔 = 1, ∫
𝑡

B𝑛(𝑡)B𝑛(𝑡)′𝑑𝑡 = I𝑞𝑛 , 𝜷𝑔𝜷
′
𝑔 = I𝐾𝑔 ,

for 𝑔 = 1,… , 𝐶, (3.9)

and the first nonzero element of each row of 𝜷𝑔 to be posi-
tive, where 𝜷𝑔 = (𝜷𝑔1, … , 𝜷𝑔,𝐾𝑔 )

′,

𝑓𝑔𝑖(𝛀𝑛;𝐻) =
(2𝜋)−𝑛𝑖∕2|𝚫𝑔𝑖(𝛀𝑛)|1∕2

× exp

[
−
1

2

{
H(Y𝑖) − B𝑛𝑖𝜶𝑔

}′
𝚫𝑔𝑖(𝛀𝑛)

−1
{
H(Y𝑖) − B𝑛𝑖𝜶𝑔

}]
,

B𝑛𝑖 = {B𝑛(𝑡𝑖1), … ,B𝑛(𝑡𝑖,𝑛𝑖 )}
′, 𝚫𝑔𝑖(𝛀𝑛) = B𝑛𝑖𝜷′𝑔𝚲𝑔𝜷𝑔B

′
𝑛𝑖 +

𝜎2𝑔I𝑛𝑖 , and 𝛀𝑛 = {𝜆𝑔𝑘, 𝜎
2
𝑔, 𝜋𝑔, 𝜶𝑔, 𝜷𝑔𝑘, 𝑘 = 1,… , 𝐾𝑔, 𝑔 =

1,… , 𝐶}. (3.9) is orthogonality constraints on the eigen-
functions. To adhere to the orthonormal constraints
on the B-spline, we denote by A = ∫

𝑡
B̃𝑛(𝑡)B̃𝑛(𝑡)′𝑑𝑡,

where B̃𝑛(𝑡) is the cubic B-spline basis functions (Schu-
maker, 2007). As A is a symmetric matrix, we have

∫
𝑡
{A−

1

2 B̃𝑛(𝑡)}{A
−
1

2 B̃𝑛(𝑡)}′𝑑𝑡 = I𝑞𝑛 , and B𝑛(𝑡) = A−
1

2 B̃𝑛(𝑡)
satisfies the orthonormal constraints. Throughout the
paper, 𝑛 in the subscript represents the correspond-
ing parameters and functions when using splines to
approximate 𝜇𝑔(⋅) and 𝜙𝑔𝑘(⋅).
As 𝐶 is not given a priori and to make the model inclu-

sive, we often start with a relative large 𝐶, which, how-
ever, may lead to many nuisance parameters and cause
large variation of estimates. This necessitates developing a
more formal procedure for estimating 𝐶. To proceed, we
first note that if 𝜋𝑔 is found to be 0, the 𝑔th cluster is
not necessary and can be deleted from the model. Hence,
the selection of the clusters corresponds to the selection
of nonzero elements of {𝜋𝑔, 𝑔 = 1,… , 𝐶}. However, we
may not directly penalize on {𝜋𝑔, 𝑔 = 1,… , 𝐶} to achieve
model selection. To see that, we consider the complete data
for individual 𝑖 as D𝑖 = {Y𝑖 , 𝜹𝑖}, where 𝜹𝑖 = (𝛿𝑖1, … , 𝛿𝑖𝐶)′
with 𝛿𝑖𝑔 = 1 if Y𝑖 arises from the 𝑔th cluster, other-
wise 𝛿𝑖𝑔 = 0. The expected complete-data log-likelihood

function is

𝑛∑
𝑖=1

𝐶∑
𝑔=1

(
𝑏𝑖𝑔

[
log(𝜋𝑔) + log{𝑓𝑔𝑖(𝛀𝑛;𝐻)}

])
(3.10)

where 𝑏𝑖𝑔 = 𝐸{𝛿𝑖𝑔|Y𝑖}. As (3.10) contains log(𝜋𝑔) with an
unbounded derivative when 𝜋𝑔 is close zero, setting 𝐿𝑝
penalties directly on 𝜋𝑔 will not return an exact zero solu-
tion for 𝜋𝑔. Instead, we propose to penalize on log{𝜋𝑔} in
order to achieve the sparsity for (𝜋𝑔, 1 ≤ 𝑔 ≤ 𝐶)′. However,
large 𝜋𝑔 might be overly shrunk to 0 as we penalize on
log{𝜋𝑔}. Therefore, following Huang et al. (2017), we pro-
pose the following penalized likelihood,

𝑄𝑛(𝛀𝑛;𝐻) = 𝐿𝑛(𝛀𝑛;𝐻) − 𝑛𝜆

𝐶∑
𝑔=1

log

{
𝜖 + 𝜋𝑔

𝜖

}
, (3.11)

where 𝜖 is a very small positive number, say 10−6 or
𝑜{𝑛−1∕2(log 𝑛)−1} (Huang et al., 2017). Then it is natural to
define the penalized log-likelihood estimator

(𝛀̂𝑛, 𝐻̂𝑛) = argmax
𝛀𝑛,𝐻

𝑄𝑛(𝛀𝑛;𝐻), (3.12)

based on which we show that there is a nonzero probabil-
ity of estimating some𝜋𝑔’s to be exactly zero and achieving
automatic cluster selection. Our procedure naturally inte-
grates the steps of cluster selection and parameter estima-
tion, which makes computation feasible.
The penalized likelihood function 𝑄𝑛(𝛀𝑛;𝐻) involves

the infinite-dimensional function 𝐻(⋅) and mixture dis-
tribution, so a direct maximization is not feasible. We
resort to a two-stage approach. Particularly, we estimate
𝛀𝑛 bymaximizing the penalized pseudo-likelihood, which
is implemented by a penalized expectation maximization
(EM) algorithm based on 𝑄𝑛(𝛀𝑛;𝐻) with 𝐻 replaced by
its estimated value with (3.20) described in Section 3.2. We
repeat the procedure until convergence.

3.1 Penalized expectation maximization
algorithm

As the penalized likelihood function involves both finite-
and infinite-dimensional parameters, we resort to a two-
stage iterative algorithm. We estimate the parameter 𝛀𝑛
by a penalized EM algorithm, then we use a series
of estimating equations to estimate the transformation
function𝐻.
We first consider the penalized maximum likelihood

estimator for 𝛀𝑛 given 𝐻, and propose a penalized EM
algorithm (Dempster et al., 1977), which was originally
designed for handlingmissing data. In our setting, we treat
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𝜹𝑖 as the missing data and view the complete data for indi-
vidual 𝑖 asD𝑖 = {Y𝑖 , 𝜹𝑖}. Thus, the penalized complete-data
log-likelihood function is

𝑐(𝛀𝑛;𝐻) = log𝑐(𝛀𝑛;𝐻) − 𝑛𝜆
𝐶∑
𝑔=1

log

{
𝜖 + 𝜋𝑔

𝜖

}
,

(3.13)

where log𝑐(𝛀𝑛;𝐻) ∝ ∑𝑛

𝑖=1

∑𝐶

𝑔=1(𝛿𝑖𝑔[log(𝜋𝑔) + log{𝑓𝑔𝑖
(𝛀𝑛;𝐻)}]).
In the maximization step, we maximize the conditional

expectation of 𝑐(𝛀𝑛;𝐻) given the observed data. Differ-
entiating 𝐸{𝑐(𝛀𝑛;𝐻)|Y𝑖 , 𝑖 = 1, … , 𝑛} with respect to 𝛀𝑛
and setting the derivatives to zero lead to

𝑛∑
𝑖=1

𝐸(𝛿𝑖𝑔|Y𝑖)
𝜋𝑔

−

𝑛∑
𝑖=1

𝐸(𝛿𝑖1|Y𝑖)
1 −

∑𝐶

𝑗=2 𝜋𝑗

+
𝑛𝜆

𝜖 + 1 −
∑𝐶

𝑗=2 𝜋𝑗

−
𝑛𝜆

𝜖 + 𝜋𝑔
= 0, 𝑔 ≥ 2, (3.14)

𝜷𝑔𝑘 =

{
𝑛∑
𝑖=1

𝐸(𝛿𝑖𝑔|Y𝑖)B′𝑛𝑖𝚫𝑔𝑖(𝛀𝑛)−1B𝑛𝑖
}−1

×

𝑛∑
𝑖=1

𝐸(𝛿𝑖𝑔|Y𝑖)B′𝑛𝑖𝚫𝑔𝑖(𝛀𝑛)−1{H(Y𝑖) − B𝑛𝑖𝜶𝑔
}⊗2

𝚫𝑔𝑖(𝛀𝑛)
−1B𝑛𝑖𝜷𝑔𝑘, (3.15)

𝜆𝑔𝑘 =
−
∑𝑛

𝑖=1 𝐸(𝛿𝑖𝑔|Y𝑖)𝜷′𝑔𝑘B′𝑛𝑖𝚫𝑔𝑖(𝛀𝑛)−1R𝑔𝑖,−𝑘(𝛀𝑛)𝚫𝑔𝑖(𝛀𝑛)−1B𝑛𝑖𝜷𝑔𝑘∑𝑛

𝑖=1 𝐸(𝛿𝑖𝑔|Y𝑖)𝜷′𝑔𝑘B′𝑛𝑖𝚫𝑔𝑖(𝛀𝑛)−1B𝑛𝑖𝜷𝑔𝑘𝜷′𝑔𝑘B′𝑛𝑖𝚫𝑔𝑖(𝛀𝑛)−1B𝑛𝑖𝜷𝑔𝑘 , (3.16)

𝜎2𝑔 =
−
∑𝑛

𝑖=1 𝐸(𝛿𝑖𝑔|Y𝑖)tr(𝚫𝑔𝑖(𝛀𝑛)−2[B𝑛𝑖∑𝐾𝑔
𝑘=1

𝜆𝑔𝑘𝜷𝑔𝑘𝜷
′
𝑔𝑘
B′𝑛𝑖 −

{
H(Y𝑖) − B𝑛𝑖𝜶𝑔

}⊗2])
∑𝑛

𝑖=1 𝐸(𝛿𝑖𝑔|Y𝑖)tr{𝚫𝑔𝑖(𝛀𝑛)−2} , (3.17)

𝜶𝑔 =

{
𝑛∑
𝑖=1

𝐸(𝛿𝑖𝑔|Y𝑖)G𝑔𝑖(𝛀𝑛)}−1 𝑛∑
𝑖=1

𝐸(𝛿𝑖𝑔|Y𝑖)B′𝑛𝑖𝚫𝑔𝑖(𝛀𝑛)−1H(Y𝑖), (3.18)

for 𝑘 = 1,… , 𝐾𝑔 and 𝑔 = 1,… , 𝐶, where G𝑔𝑖(𝛀𝑛) =
B′𝑛𝑖𝚫𝑔𝑖(𝛀𝑛)−1B𝑛𝑖 , R𝑔𝑖,−𝑘(𝛀𝑛) = B𝑛𝑖

∑𝐾𝑔
𝑟=1,𝑟≠𝑘 𝜆𝑔𝑟𝜷𝑔𝑟𝜷′𝑔𝑟

B′𝑛𝑖 + 𝜎
2
𝑔I𝑛𝑖 − {H(Y𝑖) − B𝑛𝑖𝜶𝑔}⊗2. Given a small 𝜖 such

that 1

𝜋𝑗+𝜖
≈

1

𝜋𝑗
for all 𝑗, we obtain an approximate solution

for (3.14),

𝜋̃𝑔 = max

{
0,

1

1 − 𝐶𝜆

[
1

𝑛

𝑛∑
𝑖=1

𝐸(𝛿𝑖𝑔|Y𝑖) − 𝜆]}. (3.19)

Some 𝜋̃𝑔 may be shrunk to zero, in which case, we only

need to renormalize 𝜋̃𝑔 by enforcing
∑𝐶

𝑔=1 𝜋̃𝑔 = 1 after the
EM algorithm converges. Denote the estimate of 𝛀𝑛 from
the 𝑟th step by 𝛀̃𝑛. We update 𝜋

(𝑟−1)
𝑔 from step 𝑟 − 1 by

𝜋
(𝑟)
𝑔 = 𝜋𝑔∕

∑𝐶

𝑗=1 𝜋𝑗 and further perform a QR decompo-
sition on 𝜷𝑔 = (𝜷𝑔1, … , 𝜷𝑔,𝐾𝑔 )

′ obtained from (3.15) to get

𝜷𝑔 = 𝐐𝐑 and update 𝜷(𝑟−1)𝑔 from step 𝑟 − 1 by 𝜷(𝑟)𝑔 = 𝐐′.
It is easy to see that 𝜷(𝑟)𝑔 𝜷

(𝑟)′
𝑔 is an identity matrix. We esti-

mate 𝛀𝑛 by repeatedly using equations (3.15)-(3.19) until
convergence. At each step, 𝛀𝑛 on the right side of the
equations is replaced by its most updated value. When
computing the conditional mean 𝛿𝑖𝑔 given Y𝑖 , 𝐸(𝛿𝑖𝑔|Y𝑖) =
𝑓𝑔{H(Y𝑖 )}𝜋𝑔∑𝐶
𝑗=1 𝑓𝑗{H(Y𝑖 )}𝜋𝑗

, we also replace all the unknown param-

eters and functions with their estimates from the previ-
ous step.

3.2 Estimation of the transformation
function

For any given 𝑦 = 𝑌𝑖𝑗 , 𝑗 = 1,… , 𝑛𝑖 and 𝑖 = 1, … , 𝑛, we
have
𝑃𝑟(𝑌𝑖𝑗 ≤ 𝑦) = 𝑃𝑟{𝐻(𝑌𝑖𝑗) ≤ 𝐻(𝑦)}

=

𝐶∑
𝑔=1

𝜋𝑔𝑃𝑟{𝐻(𝑌𝑖𝑗) ≤ 𝐻(𝑦)|𝛿𝑖𝑔 = 1}
=

𝐶∑
𝑔=1

𝜋𝑔Φ

⎧⎪⎨⎪⎩
𝐻(𝑦) − B𝑛(𝑡𝑖𝑗)′𝜶𝑔√

B𝑛(𝑡𝑖𝑗)′𝜷′𝑔𝚲𝑔𝜷𝑔B𝑛(𝑡𝑖𝑗) + 𝜎2𝑔

⎫⎪⎬⎪⎭,
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where Φ(⋅) is the cumulative distribution of the standard
normal variable. For each 𝑦 in the support of 𝑌𝑖𝑗 , we esti-
mate 𝐻(𝑦) by solving

𝑛∑
𝑖=1

𝑛𝑖∑
𝑗=1

[
𝐼
(
𝑌𝑖𝑗 ≤ 𝑦) − 𝐶∑

𝑔=1

𝜋𝑔Φ

×

⎧⎪⎨⎪⎩
𝐻(𝑦) − B𝑛(𝑡𝑖𝑗)′𝜶𝑔√

B𝑛(𝑡𝑖𝑗)′𝜷′𝑔𝚲𝑔𝜷𝑔B𝑛(𝑡𝑖𝑗) + 𝜎2𝑔

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ = 0. (3.20)

For each 𝑦, the estimating equation implicitly defines a
value of 𝜃 ≡ 𝐻(𝑦). Clearly ∑𝑛

𝑖=1

∑𝑛𝑖
𝑗=1 𝐼{𝑌𝑖𝑗 ≤ 𝑦} is a non-

decreasing function of 𝑦. Therefore, the second term in the
estimating equation (3.20) is a nondecreasing function of
𝑦. As Φ is an increasing function of its argument, we must
have 𝜃 nondecreasing in 𝑦. By the same reasoning, we can
see that 𝜃 is piecewise constant, with nonzero jumps at the
data values of 𝑦.

Remark 1. The computational cost for 𝐻(⋅) is very lim-
ited. Coupled with the closed-form estimator for Ω𝑛 at
each step, the implementation and computation of the
proposed method are simple. Unlike a traditional non-
parametric approach to estimate the transformation func-
tion (Horowitz, 1996), our approach does not involve
nonparametric smoothing and thus does not suffer from
smoothing-related problems, for example, selection of a
smoothing parameter.

Denote the resulting estimate for 𝐻(𝑌𝑖𝑗) from the
𝑟th step by 𝐻𝑛𝑟(𝑌𝑖𝑗). Then we update 𝐻(𝑟−1)(𝑌𝑖𝑗) by
𝐻(𝑟)(𝑌𝑖𝑗) = {𝐻𝑛𝑟(𝑌𝑖𝑗) − 𝐻𝑛𝑟}∕sd{𝐻𝑛𝑟} for identification,
where 𝐻̄𝑛𝑟 and sd{𝐻𝑛𝑟} is the empirical mean and standard
deviation of𝐻𝑛𝑟(𝑌𝑖𝑗) over 𝑖, 𝑗.

3.3 Selection of hyper-parameters

The method requires to tune three parameters: the trunca-
tion parameter 𝐾𝑔, the penalty parameter 𝜆, and the num-
ber of interior knots 𝑀𝑛. For standard LASSO and SCAD
penalty functions, Wang et al. (2007) showed that the BIC
yields model selection consistency, we hence propose to
select 𝐾𝑔,𝑀𝑛, and 𝜆 and by maximizing

𝐵𝐼𝐶(𝐾𝑔,𝑀𝑛, 𝜆) = 𝐿𝑛(𝛀𝑛;𝐻) −
1

2
𝐷𝐹(𝛀𝑛) log

(
𝑛∑
𝑖=1

𝑛𝑖

)
,

(3.21)

where 𝐿𝑛(𝛀𝑛;𝐻) is as defined in (3.8) and 𝐷𝐹(𝛀𝑛) is the
number of parameters 𝛀𝑛. As reported in Figure S.4(a)-

(d) in the Supporting Information, we have examined the
performance of criterion (3.21) in selecting 𝐾𝑔,𝑀𝑛, and 𝜆,
which show that the optimal𝐾𝑔,𝑀𝑛, and 𝜆 are nearly inde-
pendent, suggesting 𝐾𝑔,𝑀𝑛, and 𝜆 can be separately cho-
sen. Furthermore, we can see the proposed method is not
sensitive to the choice of 𝑀𝑛 and hence a rough selection
for𝑀𝑛 is enough. For smooth and eithermonotonic or uni-
modal functions, 2 − 6 knots seem quite adequate and that
is what we recommend. The simulations and data analysis
suggested the BIC criterion (3.21) performs well.

4 LARGE SAMPLE PROPERTIES

Let 𝛀̂𝑛 = {𝜆𝑔𝑘, 𝜎
2
𝑔, 𝜋𝑔, 𝜶𝑔, 𝜷𝑔𝑘, 𝑘 = 1,… , 𝐾𝑔, 𝑔 = 1,… , 𝐶}

and 𝐻̂𝑛 be the estimator of 𝛀 and 𝐻 derived above.
The mean function 𝜇𝑔(𝑡) and covariance functions
Σ𝑔(𝑠, 𝑡) can be estimated by 𝜇𝑔(𝑡) = 𝜶

′
𝑔B𝑛(𝑡) and

Σ̂𝑔(𝑠, 𝑡) =
∑𝐾𝑔
𝑘=1

𝜙𝑔𝑘(𝑡)𝜆𝑔𝑘𝜙𝑔𝑘(𝑠) + 𝜎
2
𝑔𝐼(𝑠 = 𝑡), respectively,

where 𝜙𝑔𝑘(𝑡) = 𝜷′𝑔𝑘B𝑛(𝑡). In this section, we focus on the
theoretical properties, including 𝑛1∕2-consistency and
asymptotic normality.
Denote the Euclidean norm and the 𝐿2 norm by ‖ ⋅ ‖

and ‖ ⋅ ‖2, respectively, and the parametric space 𝛀∗ =

{𝛀 = (𝚲′, 𝝈2
′
, 𝝅′, 𝝁′, 𝝓′)′ ∈𝑅

∑𝐶
𝑔=1 𝐾𝑔

+ ⊗ 𝑅𝐶+ ⊗ [0, 1]
𝐶⊗𝐶 ⊗

∑𝐶
𝑔=1 𝐾𝑔 } with 𝑅+ = (0,∞). Denote 𝚯 = (𝝅′, 𝝁′, 𝚺′)′ with

𝚺 = (Σ1, … , Σ𝐶)
′, 𝝁 and 𝚺 are the mean and covariance

functions of interest, and 𝝅 is the probabilities. We define
the norm between 𝚯1 and 𝚯2 by

𝑑(𝚯1,𝚯2)

=

(‖𝝅1 − 𝝅2‖2 + 𝐶∑
𝑔=1

‖𝜇𝑔,1 − 𝜇𝑔,2‖22 + 𝐶∑
𝑔=1

‖Σ𝑔,1 − Σ𝑔,2‖22
)1∕2

.

Throughout the paper, 0 in the subscript represents the
true values of corresponding parameters and functions.
Without loss of generality, we assume that 𝜋1,0 ≥ 𝜋2,0 ≥
⋯ ≥ 𝜋𝐶0,0 > 0, ∑𝐶0

𝑔=1 𝜋𝑔,0 = 1, and 𝜋𝐶0+1,0 = ⋯ = 𝜋𝐶,0 =

0. We set the following conditions.

(C1) max1≤𝑗≤𝑀𝑛
(𝜁𝑗 − 𝜁𝑗−1) = 𝑂(𝑛

−𝑣) with 0 < 𝑣 < 1∕2.
Moreover, max1≤𝑗≤𝑀𝑛

(𝜁𝑗 − 𝜁𝑗−1)∕min1≤𝑗≤𝑀𝑛
(𝜁𝑗 −

𝜁𝑗−1) is bounded.
(C2) 𝛀0 is an interior point of 𝛀∗ and 𝜇𝑔0 ∈ , 𝜙𝑔𝑘0 ∈ 

for 1 ≤ 𝑔 ≤ 𝐶, 1 ≤ 𝑘 ≤ 𝐾𝑔.
(C3) There exists [𝑦1, 𝑦2] so that

1∑𝑛
𝑖=1 𝑛𝑖

∑𝑛

𝑖=1

∑𝑛𝑖
𝑗=1 𝐼(𝑌𝑖𝑗 ∉

[𝑦1, 𝑦2]) = 𝑜𝑝(𝑛
−1∕2).

(C4) The transformation function𝐻(𝑦) is strictly increas-
ing and its first derivative is continuous over 𝑦 ∈
[𝑦1, 𝑦2].
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(C5) 𝐾𝑔 = 𝑂(𝑛𝑒) for 1 ≤ 𝑔 ≤ 𝐶, with 0 ≤ 𝑒 < min(1 −
𝜐, 2𝑟𝜐).

(C6)
∑𝐾𝑔
𝑘=1

𝜆𝑔𝑘0 < ∞ for 1 ≤ 𝑔 ≤ 𝐶.
(C7) The matrix 𝐸{𝑆(𝜽0)𝑆(𝜽0)′} is finite and positive defi-

nite, where 𝜽0 is the true value of 𝜽 = (𝝈2
′
, 𝝅′)′, and

𝑆(𝜽0) is defined in the proof of Theorem 3.

Condition (C1) is common in the spline smoothing
(Chen et al., 2017), and Condition (C2) is often assumed in
semiparametric analyses (Chen and Tong, 2010; Ma et al.,
2015). Condition (C3) is needed to avoid the tail prob-
lem (Lin et al., 2012). Condition (C4) is a regular assump-
tion for the transformation function (Horowitz, 1996; Zhou
et al., 2008). In practice, 𝐾𝑔 is small and Condition (C5)
is easy to be satisfied. Condition (C6) is needed to avoid
unbounded covariance (Hall et al., 2007). Condition (C7) is
to ensure the existence of the asymptotic covariancematrix
(Ma et al., 2015; Chen et al., 2017). We state below Theo-
rems 1-3, which indicate the proposed estimates are con-
sistent and asymptotically normal, forming the basis for
statistical inference. We defer the proofs to the Supporting
Information .

Theorem 1. Under Conditions (C1)-(C6), 𝜆
√
𝑛 → 0,

𝜆
√
𝑛 log(𝑛) → ∞, and 𝜖 = 𝑜{

1√
𝑛log(𝑛)

}, we have 𝐶 → 𝐶0

with probability tending to 1.

Theorem2. WithConditions (C1)-(C6), 𝜆
√
𝑛 → 0, and 𝜖 =

𝑜{
1√

𝑛log(𝑛)
}, we have

𝐻̂𝑛(𝑦) → 𝐻0(𝑦) uniformly over 𝑦 ∈ [𝑦1, 𝑦2] and

𝑑(𝚯̂𝑛, 𝚯0) = 𝑂𝑝{𝑛
−min(

1−𝜐−𝑒

2
,𝑟𝜐−

𝑒

2
)
},

as 𝑛 → ∞, 𝑟 is defined in (3.5), and 𝑣 ∈ (0, 0.5] is given to
determine the number of knots for the spline basis 𝐵𝑛(⋅).

As 𝑒 increases, the number of eigenfunctions increases
and the parameter space becomes larger, causing the
error 𝑑(𝚯̂𝑛, 𝚯0) to increase. When 𝑒 = 0, correspond-
ing to a fixed number of eigenfunctions, 𝑑(𝚯̂𝑛, 𝚯0) =

𝑂𝑝{𝑛
−min(

1−𝜐

2
,𝑟𝜐)
}. In this case, taking 𝑣 = 1∕(2𝑟 + 1), we

have 𝑑(𝚯̂𝑛, 𝚯0) = 𝑂𝑝{𝑛−𝑟∕(2𝑟+1)}, which is the optimal rate
for the estimation of univariate nonparametric functions
(Stone, 1980).

Theorem 3. Assume that Conditions (C1)-(C7) hold with
𝑟 ≥ 2, 1

4𝑟
< 𝑣 <

1

2
, 𝜆

√
𝑛 → 0, and 𝜖 = 𝑜{ 1√

𝑛log(𝑛)
}. As 𝑛 →

∞, the estimator 𝜽 for finite parameters 𝜽 satisfies√
𝑛(𝜽 − 𝜽0) → 𝑁{0, I−1(𝜽0)},

where I(𝜽0) = 𝐸{𝑆(𝜽0)𝑆(𝜽0)′} is defined in the Supporting
Information .

5 SIMULATIONS

With unspecified transformation functions, we expect our
method to be robust and flexible. To investigate the trade-
off between the added robustness and the efficiency, we
compare the proposed method with the model-based and
distance-based clustering methods. The former includes
the method with a correctly specified transformation
function (CT), the method without transformation (WoT),
and the FunFEMmethod (Bouveyron et al., 2015). We take
the DHPmethod recently proposed byDelaigle et al. (2019)
as a representation of distance-based clustering methods.
We also examine the sensitivity of the proposed method
to the initial value of the number of groups and the per-
formance of criterion (3.21) in selecting 𝐾𝑔,𝑀𝑛, and 𝜆. As
our method requires the measurement error of the trans-
formed responses to be normally distributed, we further
investigate the sensitivity of the proposed method to the
normality assumption.We assess the performance in terms
of bias, standard deviation (sd), and root mean squared
error (RMSE), defined by bias = [ 1

𝑛grid

∑𝑛grid
𝑖=1

{𝐸𝑓(𝑡𝑖) −

𝑓(𝑡𝑖)}
2]1∕2, sd = [ 1

𝑛grid

∑𝑛grid
𝑖=1

𝐸{𝑓(𝑡𝑖) − 𝐸𝑓(𝑡𝑖)}
2]1∕2, and

RMSE = [bias2 + sd2]1∕2 for any estimation 𝑓(⋅) of 𝑓(⋅),
with 𝑡𝑖 (𝑖 = 1, … , 𝑛grid) being the grid evaluation points
and 𝐸𝑓(𝑡𝑖) being approximated by its sample mean,
based on 300 replications and 𝑛grid = 300. To evaluate
the classification accuracy, we use the measurements
of purity function (PF) and adjusted Rand index (ARI),
commonly used in the classification literature (Delaigle
et al., 2019). In the following simulations, we use the cubic
B-spline, choose the number of interior knots𝑀𝑛 via BIC
in (3.21), and place the knots at the 𝑀𝑛 quantiles of the
observation times.

5.1 Performance of estimation

To investigate the efficiency and robustness, we compare
the proposedmethodwith theCTandWoT in terms of bias,
sd, and RMSE.
Simulation 1. We generate 𝑛 = 400 samples from a

three-component population with mixing probabilities
𝝅 = (1∕3, 1∕3, 1∕3)′. The data in the 𝑔th cluster are
generated from 𝐻(𝑌git) = 𝜇𝑔(𝑡) +

∑2

𝑘=1 𝜉gik𝜙𝑔𝑘(𝑡) + 𝜀git,

𝑔 = 1, 2, 3, where 𝜇1(𝑡) = 𝑡 + sin(𝜋𝑡), 𝜇2(𝑡) = exp(𝑡),
𝜇3(𝑡) = 2𝑡

2 + 2; 𝜙11(𝑡) =
√
2 cos(𝜋𝑡), 𝜙12(𝑡) =

√
2 sin(𝜋𝑡),

𝜙21(𝑡) =
√
2 cos(2𝜋𝑡), 𝜙22(𝑡) =

√
2 cos(𝜋𝑡), 𝜙31(𝑡) =
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TABLE 1 Results for Case 1 of Simulation 1

Proposed (C = 7) CT (C = 3) CT (C = 7) WoT (C = 3)
bias (sd) RMSE bias (sd) RMSE bias (sd) RMSE bias (sd) RMSE

𝜋1 0.003 (0.034) 0.034 0.000 (0.032) 0.032 0.001 (0.034) 0.034 0.017 (0.095) 0.096
𝜋2 0.009 (0.039) 0.039 0.002 (0.034) 0.034 0.003 (0.039) 0.039 0.031 (0.112) 0.116
𝜋3 0.004 (0.038) 0.038 0.001 (0.031) 0.031 0.001 (0.037) 0.037 0.048 (0.113) 0.123
𝜎21 0.001 (0.009) 0.009 0.001 (0.005) 0.005 0.001 (0.006) 0.006 0.044 (0.044) 0.062
𝜎22 0.001 (0.014) 0.014 0.001 (0.012) 0.012 0.000 (0.014) 0.014 0.010 (0.054) 0.055
𝜎23 0.006 (0.030) 0.031 0.001 (0.011) 0.011 0.002 (0.013) 0.013 0.070 (0.052) 0.087
𝜆11 0.030 (0.145) 0.148 0.008 (0.121) 0.121 0.009 (0.125) 0.125 0.526 (0.648) 0.835
𝜆12 0.011 (0.036) 0.038 0.003 (0.033) 0.033 0.006 (0.034) 0.034 0.059 (0.427) 0.431
𝜆21 0.037 (0.140) 0.145 0.022 (0.137) 0.139 0.023 (0.137) 0.138 0.301 (0.609) 0.680
𝜆22 0.001 (0.011) 0.011 0.000 (0.010) 0.010 0.000 (0.011) 0.011 0.146 (0.354) 0.382
𝜆31 0.038 (0.149) 0.154 0.030 (0.114) 0.118 0.038 (0.139) 0.144 0.143 (0.485) 0.506
𝜆32 0.017 (0.056) 0.058 0.013 (0.050) 0.052 0.015 (0.054) 0.056 0.164 (0.350) 0.386
𝜇1(⋅) 0.020 (0.130) 0.132 0.007 (0.103) 0.103 0.014 (0.112) 0.113 0.729 (0.448) 0.856
𝜇2(⋅) 0.033 (0.180) 0.183 0.013 (0.143) 0.144 0.019 (0.166) 0.167 0.753 (0.506) 0.907
𝜇3(⋅) 0.049 (0.184) 0.191 0.013 (0.140) 0.141 0.040 (0.163) 0.167 1.300 (0.518) 1.399
𝜙11(⋅) 0.020 (0.070) 0.073 0.004 (0.065) 0.065 0.005 (0.067) 0.067 0.534 (0.569) 0.780
𝜙12(⋅) 0.013 (0.083) 0.084 0.006 (0.080) 0.080 0.007 (0.081) 0.081 0.421 (0.620) 0.750
𝜙21(⋅) 0.037 (0.109) 0.115 0.022 (0.086) 0.089 0.026 (0.092) 0.096 1.262 (0.723) 1.455
𝜙22(⋅) 0.014 (0.115) 0.116 0.007 (0.099) 0.099 0.009 (0.100) 0.100 1.147 (0.888) 1.451
𝜙31(⋅) 0.035 (0.106) 0.112 0.033 (0.098) 0.103 0.035 (0.100) 0.106 1.154 (0.551) 1.279
𝜙32(⋅) 0.023 (0.107) 0.110 0.013 (0.052) 0.054 0.017 (0.082) 0.084 1.135 (0.777) 1.376
Σ1(⋅, ⋅) 0.061 (0.267) 0.274 0.013 (0.146) 0.146 0.014 (0.149) 0.150 0.748 (0.784) 1.083
Σ2(⋅, ⋅) 0.072 (0.271) 0.280 0.061 (0.236) 0.244 0.063 (0.269) 0.276 1.130 (0.837) 1.406
Σ3(⋅, ⋅) 0.073 (0.293) 0.302 0.063 (0.260) 0.267 0.066 (0.268) 0.276 1.088 (1.087) 1.538
♯cluster 0.070 (0.354) 0.361 – – 0.056 (0.212) 0.219 – -

aNote. “−” not available.

√
2 cos(2𝜋𝑡), 𝜙32(𝑡) =

√
2 sin(𝜋𝑡), 𝜉gik ∼ 𝑁(0, 𝜆𝑔𝑘) with

𝜆11 = 1, 𝜆12 = 0.25, 𝜆21 = 1.1, 𝜆22 = 0.2, 𝜆31 = 0.9, 𝜆32 =
0.15, and 𝜀git ∼ 𝑁(0, 𝜎2𝑔)with 𝜎21 = 0.1, 𝜎

2
2 = 0.15, 𝜎

2
3 = 0.2.

The errors 𝜀git for 𝑔 = 1, 2, 3 and 𝑖 = 1, …𝑛 are indepen-
dently and identically distributed over time 𝑡. For each
subject, the number of observations is randomly drawn
from a discrete uniform distribution on {8, 9, 10, 11, 12}

and the observation times are sampled from 𝑈(0, 1).
We take 𝐻(𝑦) = 3log(𝑦) and 10(

√
𝑦 − 1) for Cases 1 and

2, respectively.
Based on 300 repetitions, Table 1 and Table 6 (in the Sup-

porting Information ) summarize the results obtained by
using the proposed method with 𝐶 = 7, the CT method
with 𝐶 = 3, 7, and the WoT method with 𝐶 = 3 for Cases
1 and 2. We take 𝐾𝑔 = 2, 𝑀𝑛 = 2, and 𝜆 = 0.05 for all of
the three methods. We implement the CT and the WoT
estimators by using the proposed algorithmwith the trans-
formation function𝐻 specified by the true transformation
function and the misspecified transformation 𝐻(𝑦) = 𝑦,
respectively. The CT method with 𝐶 = 3 is served as the

gold standard, the CT method with 𝐶 = 7 is used to inves-
tigate the effect of the selection of the number of clusters,
and the WoT method with 𝐶 = 3 is used to investigate the
effect of misspecification of the transformation function.
In Table 1 and Table 6, we also present ♯cluster, the esti-
mated number of clusters.
Tables 1 and 6 reveal the WoT method produces large

biases and variances, with biases often overwhelming vari-
ances, suggesting that the misspecification of the transfor-
mation function leads to severely biased and unstable esti-
mates. In contrast, the proposed method is unbiased with
a variance close to that of the CT estimator, suggesting that
our method is robust with little loss of efficiency. More-
over, the proposedmethod consistently selects the number
of clusters.
Figures 3 and 4 (both in the Supporting Informa-

tion) display the averaged estimates of the transforma-
tion functions, mean functions, and eigenfunctions, along
with their empirical 95% pointwise confidence intervals
based on the 300 simulated datasets. In all the cases, the
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average estimates of the functions match well with the
true functions, with confidence intervals of reasonable
width.
To investigate the sensitivity of the proposed procedure

to the initial number of clusters, we compare the results
with the initial values of 𝐶 = 7, 10, 15 for Case 1. Figure
5 in the Supporting Information illustrates the estimation
error Err(𝑓) = [ 1

𝑛grid

∑𝑛grid
𝑖=1

{𝑓(𝑡𝑖) − 𝑓(𝑡𝑖)}
2]1∕2 over 300 sim-

ulated datasets. Figure 5 shows that the proposed estimates
are nearly identical with different initial numbers of clus-
ters, supporting the conjecture of robustness. It further
hints that our method may be as efficient as the method
with a known number of clusters, which is the oracle prop-
erty.
Figures 6(a)-(d) in the Supporting Information report

the performance of criterion (3.21) in selecting𝐾𝑔,𝑀𝑛, and
𝜆 under Case 1 of Simulation 1. The candidates of 𝐾𝑔,𝑀𝑛,
and 𝜆 are {1, 2, 3, 4}, {1, 2, 3, 4, 5}, and {0.01, 0.03, 0.05,
0.07}, respectively. The largest BIC is achieved when 𝐾𝑔 =
2, which is the true value. These figures reveal that the opti-
mal 𝐾𝑔,𝑀𝑛, and 𝜆 are nearly independent, suggesting 𝐾𝑔,
𝑀𝑛, and 𝜆 can be separately chosen. Furthermore, we can
see the proposed method is not sensitive to the choice of
𝑀𝑛. Figure 6(e) in the Supporting Information, the barplot
of estimated number of clusters based on the strategy and
BIC criterion (3.21) for Case 1 of Simulation 1, shows that
the proposed method can correctly identify the number
of clusters.
Simulation 2. Tomatch the real data of the ADNI study

where the function data are a restricted density, we gen-
erate data similarly as Case 1 of Simulation 1, except that
𝝅 = (0.229, 0.277, 0.494)′, the transformation function, the
mean functions, the eigenfunctions, the eigenvalues, and
error variances are taken as the estimators from the real
data analysis of the ADNI study in Section 6. Table 7 in the
Supporting Information shows that the proposed method
is unbiased with a variance close to that of the CT estima-
tor, and has much less RMSE than the WoT method, and
can correctly select the number of clusters.
Simulation 3. To assess the sensitivity of our proposed

method to the assumption of Gaussian errors, we generate
data similarly as Case 1 of Simulation 1, except that we gen-
erate 𝜀git from a mixed distribution with each component
being the centralized and scaled gamma distribution 𝜎𝑔 ×
{Gamma(𝜏, 1) − 𝜏}∕

√
𝜏 with 𝜎21 = 0.1, 𝜎

2
2 = 0.15, 𝜎

2
3 = 0.2,

which approaches the normal distribution as 𝜏 increases.
We take 𝜏 = 1, 5, 10, 100. Table 8 (in the Supporting Infor-
mation ) presents the bias, sd, and RMSE for the parame-
ters and the nonparametric functions when 𝐶 = 7. When
𝜏 ≥ 10 and both skewness and excess kurtosis are less
than 1, the proposed estimators are nearly unbiased.When

both skewness and excess kurtosis approximate 1, the
proposed estimators are acceptable, although the esti-
mators are moderately biased. Taken altogether, these
results suggest the robustness toward the Gaussian error
assumption.

5.2 Performance of classification

To assess the classification accuracy, we compare the pro-
posed method with the FunFEM (Bouveyron et al., 2015)
and the DHP method proposed by Delaigle et al. (2019),
based on the PF andARI. The larger PF andARI, the better
the clustering. The DHPmethod requires a specification of
𝐶. For fair comparisons, we always take 𝐶 to be the true
number of clusters when required. We perform the DHP
method with the Haar basis (𝐷𝐻𝑃𝐻𝐴), the Daubechies
DB2 wavelet basis (𝐷𝐻𝑃𝐷𝐵), and the principal component
basis (𝐷𝐻𝑃𝑃𝐶). We consider two settings.
Simulation 4. The setting is the same as Setting

(a) in Delaigle et al. (2019). The data in the 𝑔th cluster
are generated from 𝑌git =

∑40

𝑘=1(𝜆
1∕2

𝑘
𝜉gik + 𝛾𝑘𝑔)𝜙𝑘(𝑡),

on a grid of 128 equispaced time points in [0,1], where
𝜆𝑘 = 𝑘

−2, 𝜙𝑘(𝑡) =
√
2 sin(𝑘𝜋𝑡), and 𝜉gik ∼ 𝑁(0, 1) for

𝑘 = 1,… , 40 and 𝑔 = 1, 2; (𝛾11, 𝛾21, 𝛾31, 𝛾41, 𝛾51, 𝛾61) =

(0, −0.3, 0.6, −0.3, 0.6, −0.3), (𝛾12, 𝛾22, 𝛾32, 𝛾42, 𝛾52, 𝛾62) =

(0, −0.45, 0.45, −0.09, 0.84, 0.6), and 𝛾𝑘𝑔 = 0 for 𝑔 = 1, 2
and 𝑘 > 6. We generate 100 replications, each with
sample size 𝑛 = 200, where half of the data come from
the first cluster and the remaining half come from the
second cluster.
Simulation 5. The setting is the same as Bouveyron

et al. (2015) except that we consider two clusters. A total
of 𝑛 = 100 curves with equal mixing proportions are gen-
erated from 𝑌git = 𝑈𝑖 + (1 − 𝑈𝑖)ℎ𝑔(𝑡) + 𝜀𝑖(𝑡) on a grid of
101 equispaced time points in [1,21] for 𝑔 = 1, 2, where 𝑈𝑖
is uniformly distributed on [0,1], 𝜀𝑖(𝑡) ∼ 𝑁(0, 0.5), ℎ1(𝑡) =
6 − |𝑡 − 7| and ℎ2(𝑡) = 6 − |𝑡 − 15|. We generate 100 repli-
cations.
We take (𝐶, 𝐾𝑔,𝑀𝑛, 𝜆) = (7, 6, 6, 0.08) and

(𝐶, 𝐾𝑔,𝑀𝑛, 𝜆) = (7, 2, 6, 0.15) for Simulations 4 and 5,
respectively, for the proposed method. Table 2 displays the
averages of PF and ARI using the proposed method, the
FunFEM, and the DHP methods for Simulations 1, 4, and
5. Table 2 presents that the proposed method yields larger
PF and ARI than the FunFEM and DHP methods when
the assumptions required by our method are satisfied,
and produces comparable or slightly better results than
FunFEM and DHP when the assumptions follow those
specified in Bouveyron et al. (2015) and Delaigle et al.
(2019), respectively.
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TABLE 2 The averages of PF and ARI for Simulations 1, 4, and
5

Proposed 𝑫𝑯𝑷𝑯𝑨 𝑫𝑯𝑷𝑫𝑩 𝑫𝑯𝑷𝑷𝑪 FunFEM
Case 1 of Simulation 1

PF 0.924 0.599 0.522 0.587 0.557
ARI 0.812 0.242 0.118 0.227 0.177

Case 2 of Simulation 1
PF 0.937 0.622 0.528 0.628 0.577
ARI 0.836 0.275 0.126 0.277 0.211

Simulation 4
PF 0.934 0.850 0.857 0.915 0.548
ARI 0.793 0.661 0.552 0.808 0.009

Simulation 5
PF 0.927 0.824 0.860 0.827 0.896
ARI 0.664 0.424 0.532 0.433 0.638

6 ANALYSIS OF THE ADNI STUDY

Alzheimer’s disease is an irreversible and the most com-
mon form of dementia, and can result in the loss of think-
ing, memory, and language skills. It is of substantial inter-
est to unravel the complex brain changes involved in the
onset and progression of Alzheimer’s disease. The effort
helps develop effective therapies targeting specific progres-
sion mechanisms in order to stop or prevent the actual
underlying cause of the disease. In particular, the volume
of hippocampus, which is the brain region that is associ-
ated with memory loss and disorientation, has been found
to be associated with the cognitive function. We explore
using the volume of hippocampus to distinguish patients
with different levels of cognitive impairment. Specifically,
we propose to use the density function of the volumes of
hippocampus, obtained from various sampling locations,
as a basis for grouping patients with cognitive impairment
(AD), mild cognitive impairment (MCI, an early stage of
AD) and cognitively normal (CN). The dataset includes 768
participants enrolled in ADNI1 (Mueller et al., 2005), the
first phase of ADNI study, a large cohort study designed
to prevent and treat Alzheimer’s disease. Each patient’s
record consists of the density for each of the observed 501
equispaced sampling volumes, which are in the interval of
[−255,255]. Among the 768 patients, 172 subjects are diag-
nosed with AD, 378 MCI, and 218 CN.
To proceed, denote by 𝑌(𝑡) the density function of the

log of the Jacobian volume of the hippocampus (denoted
by 𝑡), which is to be used as the functional response in the
analysis. The density curves for all the subjects are plot-
ted in Figure 1. Figures 7-9 in the Supporting Information
for three groups, respectively, display the histogram for 𝑌-
values (𝑌 = density) given 𝑥-value (𝑥 = log Jacobian vol-
ume) at 16 points that are uniformly distributed over the

F IGURE 1 ADNI dataset (top left) and separate plots for each
group with mean function (Black thick line). This figure appears in
color in the electronic version of this article, and anymention of color
refers to that version

support of 𝑥. It is obvious that the values of density are
not normally distributed.We scale the log Jacobian volume
into [0,1] before analysis. The density functions are all non-
negative and each integrates to 1, we fit the transformed
density functions by the proposed estimation procedure.
We conduct unsupervised learning of the data based on
model (2.2), without using the known labeling of AD,MCI,
or CN. Then we compare the resulting estimators with
the known grouping information to examine the cluster-
ing performance.
We also compare the proposedmethodwith the untrans-

formed method, that is, WoT with 𝐻(𝑦) = 𝑦. We adopt
the cubic B-spline with interior knots chosen by (3.21).
To reduce the computational burden, we first select 𝑀𝑛,
𝜆, and a common 𝐾𝑔 for all clusters by the BIC criterion
(3.21), which are (𝑀𝑛, 𝜆, 𝐾𝑔) = (2, 0.003, 2) and (2,0.002,1)
for the proposed method and the WoT, respectively. With
the selected (𝑀𝑛, 𝜆, 𝐾𝑔), both methods identify the num-
ber of clusters as 3. Table 3 displays the resulting estimates,
their sd, and an ad hoc𝑃-values (based on bootstrap resam-
ples). The sd and 𝑃-values are estimated based on 200 boot-
strap resamples, where the number of 200 is determined
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TABLE 3 The resulting estimates for ADNI data

WoT Proposed
Estimate (sd) P-value Estimate (sd) P-value

𝜋1 0.321 (0.176) 0.068 0.229 (0.027) 0.000
𝜋2 0.329 (0.187) 0.079 0.277 (0.023) 0.000
𝜋3 0.351 (0.180) 0.051 0.494 (0.032) 0.000
𝜎21 2.031×10−5 (2.628×10−5) 0.440 0.306 (0.090) 0.001
𝜎22 1.888×10−5 (2.490×10−5) 0.448 0.302 (0.088) 0.001
𝜎23 2.475×10−5 (2.778×10−5) 0.373 0.018 (0.131) 0.891
𝜆11 – (–) – 0.163 (0.075) 0.030
𝜆31 – (–) – 0.308 (0.027) 0.000
𝜆32 – (–) – 0.160 (0.013) 0.000

aNote. “−” not available.

TABLE 4 The PF and ARI for ADNI data

Proposed 𝑫𝑯𝑷𝑯𝑨 𝑫𝑯𝑷𝑫𝑩 𝑫𝑯𝑷𝑷𝑪 FunFEM WoT
PF 0.962 0.516 0.451 0.509 0.451 0.569
ARI 0.899 0.042 0.459 0.025 0.034 0.097

by monitoring the stability of the sd. The 𝑃-value for test-
ing the parameters equalling 0 is obtained as the frequency
that the replicates fall in the region (estimator ± 1.96 ×
sd). As the estimates of 𝜆12, 𝜆21, 𝜆22 are not significant by
using the proposed method, we set 𝐾1 = 1, 𝐾2 = 0, 𝐾3 = 2
for our proposed method. Figure 2 displays the estimated
mean and transformation functions, eigenfunctions, and
their corresponding 95% point-wise confidence limits.
Table 3 reveals that the estimates in the WoT method

are all nonsignificant at the level of 0.05, which does not
seem reasonable. In contrast, the proposed method yields
mostly significant estimates, and Figure 2 shows that the
estimated transformation function appears deviating from
a linear function,which has a negative intercept causing𝜇1
and 𝜇3 to be negative. Figure 2 shows that the shapes of the
mean functions of different clusters are almost same, but
the mean function of cluster 2 is higher than those in the
remaining two clusters, and cluster 3 is second. The first
eigenfunctions of clusters 1 and 3 are nearly the same, but
clusters 1, 2, and 3 extracted one, zero and two principal
components, respectively. That is, the proposed method
can detect different clusters with the ADNI data. With

Table 5, we see that group 2 (CN) is cognitively normal and
𝐾2 = 0 implies that the variations over volumes and across
subjects are simply due to randomness. These findings are
consistent with what researchers expect of the three cog-
nitive groups displayed in Figure 1, which shows that the
pointwise variance of group 2 is smaller than that of groups
1 and 3 and themean functions of these 3 groups are almost
the same.
To check the clustering performance, we compare PF

and ARI among the 𝐷𝐻𝑃𝐻𝐴, 𝐷𝐻𝑃𝐷𝐵, 𝐷𝐻𝑃𝑃𝐶 , FunFEM,
and WoT (C = 3) methods in Table 4. Table 4 reports
that the proposed method has larger PF and ARI than
the DHP and FunFEM methods, suggesting that the pro-
posedmethod performs better than the DHP and FunFEM
methods in clustering. Furthermore, we estimate the class
label for each individual using the Bayes’ optimal alloca-
tion rule, 𝑔𝑖 = argmax𝑔

𝑓𝑔{H(Y𝑖 )}𝜋𝑔∑𝐶
𝑗=1 𝑓𝑗{H(Y𝑖 )}𝜋𝑗

, and classify 186,

219, and 363 subjects to clusters 1, 2, and 3, respectively,
by the proposed method, and 200, 159, and 409 to clusters
1, 2, and 3 by the WoT method. Figure 2 reveals that the
mean functions are unimodal for all three groups, with an

TABLE 5 The confusion matrix for the estimated clusters of the ADNI1 patients using the proposed method

Estimated
Cluster 1 (AD) Cluster 2 (CN) Cluster 3 (MCI) Total

Cluster 1 (AD) 172 0 0 172
True Cluster 2 (CN) 1 217 0 218

Cluster 3 (MCI) 13 2 363 378
All 186 219 363 768
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F IGURE 2 The estimated transformation function and mean functions (top), and eigenfunctions (bottom) for ADNI data (dotted—95%
confidence limit; solid—estimated function). This figure appears in color in the electronic version of this article, and anymention of color refers
to that version

obvious ordering. The mean function of cluster 2 is on top
of those for clusters 1 and 3. Cluster 3 comes second, and
cluster 1 is the last. As AD patients tend to have low hip-
pocampal volumes, indicating a high level of cognitive
impairment, we label clusters 1, 2, and 3 as AD, CN, and
MCI, respectively. Table 5 displays the comparisons of the
estimated and true clusters. The classification error by
applying the WoT method is 43.1%, whereas the classifi-
cation error by applying our proposed method without the
Gaussian assumption is merely 2.08%.

7 CONCLUSION

We have proposed an SMINT model to cluster non-
Gaussian functional data, and used functional princi-
pal components for dimension reduction. We have uti-
lized cubic B-spline approximation for eigenfunctions to
avoid computing cluster-specific covariance functions, and
allowed eigenfunctions to differ across clusters. We have
developed an computationally efficient algorithm to esti-
mate the unknown finite- and infinite-dimensional param-
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eters. The proposed method has some appealing features:
(a) the model is flexible as both the distribution of the
response and the number of clusters are unspecified, and
(b) the estimates are robust, efficient, consistent, and
asymptotically normal.
Although focused on univariate functional data, our

method can be extended to accommodate multivariate
functional data. It is also possible to extend our method
to accommodate external covariates. However, we envision
that the theory and implementation may be more compli-
cated, which warrants further study.
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