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S1. Lemmas and Proofs

We present auxiliary lemmas, along with their proofs, that are useful in proving the main

theorems. The proofs for the main theorems then follow. Theorems 1, 2 and 3 are proved for

any distributions satisfying (A1), which include multivariate Gaussian and t distributions as

special cases. Theorem 4 holds for multivariate Gaussian distribution.

Bickel and Levina (2008) showed that for a thresholding parameter α = O((logCmax/n)1/2),

‖Σ̃l−Σl‖ = OP (ρn) with Σ̃l and Σl being the principle submatrices of Σ̃ and Σ correspond-

ing to Ĉl, respectively, l = 1, . . . , B and ρn = Ct(n
−1C

t/4
max) defined in (A11). Furthermore,

Bickel and Levina (2008) and Fan et al. (2011) showed that the precision component can be

estimated from the thresholded sample covariance matrix with an estimation error bound

‖(Σ̃l)
−1 − Σ−1l ‖ = OP (ρn) for any l = 1, . . . , B. This yields an overall precision estimation

error bound

‖Ω̂
u
−Ωu‖ 6 OP (ρn), (S5)

where Ωu is the principle submatrix of Ω with row and column indices restricted to U .

Lemma 1 (Bernstein’s inequality, van der Vaart and Wellner (1996)): Let Z1, . . . , Zn be

independent random variables with mean zero. Assume E|Zi|m 6 m!Mm−2vi/2, for every

m > 2, 1 6 i 6 n and some positive constants M and vi. Then for any x > 0,

P (|Z1 + · · ·+ Zn| > x) 6 2 exp{−x2/(2(v +Mx))}
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for v > v1 + · · ·+ vn.

Lemma 2: Suppose that condition (A5) holds and X is a multivariate random vector

with each of its components satisfying (A1). For any (j, j′) ∈ E, there are positive constants

C1 and C2, such that

P
(
|X′jXj′ |/n 6 Cn(ξ−1)/2

)
6 C1 exp(−C2n

1+ξ).

On the other hand, for any (j, j′) /∈ E, there are positive constants C̃1 and C̃2, such that

P
(
|X′jXj′ |/n > Cn(ξ−1)/2

)
6 C̃1 exp(−C̃2n

1+ξ).

Lemma 2 ensures that, under conditions (A1) and (A5), and with an appropriately chosen

α, if (j, j′) is an edge in Ω, the probability of (j, j′) not being an edge in Σ̃ is asymptotically

zero, and that for a non-edge pair (j, j′) in Ω, the probability that it is an edge in Σ̃ is

asymptotically zero.

Proof of Lemma 2.

When (j, j′) ∈ E , by condition (A5), |Σjj′ | > min(j,j′)∈E |Σjj′ | = c1n
(ξ−1)/2 for some c1 > 0.

Therefore, when |X′jXj′ |/n 6 Cn(ξ−1)/2 for some 0 < C < c1, Σjj′ −X′jXj′/n 6 Cn(ξ−1)/2 −

c1n
(ξ−1)/2 or Σjj′−X′jXj′/n > −Cn(ξ−1)/2+c1n

(ξ−1)/2. That is,
∣∣X′jXj′/n− Σjj′

∣∣ > C̃n(ξ−1)/2

for a positive constant C̃ = c1 − C. Therefore,

P
(∣∣X′jXj′

∣∣ /n 6 Cn(ξ−1)/2) 6 P
(∣∣X′jXj′/n− Σjj′

∣∣ > C̃n(ξ−1)/2
)
.
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For simplicity, assume that X has mean zero and a common marginal variance σ2. Then

P
(∣∣X′jXj′/n− Σjj′

∣∣ > C̃n−(1−ξ)/2
)

= P
(∣∣∣∑n

i=1
(XijXij′ − Σjj′)

∣∣∣ > C̃n(1+ξ)/2
)

= P
( ∣∣∣∑n

i=1

{
(Xij +Xij′)

2 − 2(σ2 + Σjj′)
}
−
∑n

i=1

{
(Xij −Xij′)

2 − 2(σ2 − Σjj′)
}∣∣∣

> 4C̃n(1+ξ)/2
)

6 P
( ∣∣∣∑n

i=1

{
(Xij +Xij′)

2 − 2(σ2 + Σjj′)
}∣∣∣+

∣∣∣∑n

i=1

{
(Xij −Xij′)

2 − 2(σ2 − Σjj′)
}∣∣∣

> 4C̃n(1+ξ)/2
)

6 P
(∣∣∣∑n

i=1

[
(Xij +Xij′)

2 − 2(σ2 + Σjj′)
]∣∣∣ > 2C̃n(1+ξ)/2

)
+

P
(∣∣∣∑n

i=1

[
(Xij −Xij′)

2 − 2(σ2 − Σjj′)
]∣∣∣ > 2C̃n(1+ξ)/2

)
.

Since (Xij+Xij′)
2−2(σ2+Σjj′) and (Xij−Xij′)

2−2(σ2−Σjj′) are both random variables with

mean zero and satisfy (A1), by Lemma 1, P (|
∑n

i=1[(Xij+Xij′)
2−2(σ2+Σjj′)]| > 2C̃n(1+ξ)/2)

and P (|
∑n

i=1[(Xij−Xij′)
2−2(σ2−Σjj′)]| > 2C̃n(1+ξ)/2) are bounded by C1 exp(−C2n

(1+ξ)/2)

for some positive C1 and C2. Thus,

P
(∣∣X′jXj′

∣∣ /n 6 Cn(ξ−1)/2) 6 C1 exp(−C2n
(1+ξ)/2).

When (j, j′) /∈ E , |Σjj′ | 6 max(j,j′)/∈E |Σjj′ | = o(n(ξ−1)/2) is given in (A5). Therefore,

when |X′jXj′ |/n > Cn(ξ−1)/2, we have either X′jXj′/n − Σjj′ < −Cn(ξ−1)/2 − o(n(ξ−1)/2)

or X′jXj′/n − Σjj′ > Cn(ξ−1)/2 + o(n(ξ−1)/2). That is,
∣∣X′jXj′/n− Σjj′

∣∣ > C̃n(ξ−1)/2 for a

positive constant C̃ = C + o(1). Therefore,

P
(∣∣X′jXj′

∣∣ /n > Cn(ξ−1)/2) 6 P
(∣∣X′jXj′/n− Σjj′

∣∣ > C̃n(ξ−1)/2
)
.

The rest of the proof is similar to the first part and is therefore omitted. �

The following Lemma 3 ensures selection consistency for the MI features. Let S1(k, k′) =

{1 6 m 6 p : µkm − µk′m 6= 0} for any 1 6 k < k′ 6 K.

Lemma 3: For any pair of classes k and k′, 1 6 k < k′ 6 K, if j belongs to S1(k, k′),

then for a thresholding parameter τ = O((r log p)s), 0 < s < 1/2, and a sufficiently large n,
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there exist positive constants C1 and C2, such that

P
(
|X(k)

·j −X
(k′)

·j | 6 τ
)
< C1 exp(−C2n

1−ς/2r log p)→ 0

for ς given in (A3). On the other hand, if j /∈ S1(k, k′), then for sufficiently large n, there

exist positive constants C̃1 and C̃2, such that

P
(
|X(k)

·j −X
(k′)

·j | > τ
)
< C̃1 exp(−C̃2n

1−ς/2r log p)→ 0.

Proof of Lemma 3. For the first statement, notice that if j ∈ S1(k, k′), then |µkj − µk′j| >

τ ∗ =
√
r log p, where r is given in (A3). Then when choosing the thresholding parameter

τ = O((r log p)s), 0 < s < 1/2, |X(k)

·j − X
(k′)

·j | 6 τ and |µkj − µk′j| > τ ∗ together give that

|X(k)

·j − X
(k′)

·j − (µkj − µk′j)| > c, where c = τ ∗ − τ = O(
√
r log p), which means that for

some positive constant M0 and sufficiently large n and p, c > M0

√
r log p. Therefore, when

j ∈ S1(k, k′),

P
(
|X(k)

·j −X
(k′)

·j | 6 τ
)
6 P

(
|X(k)

·j −X
(k′)

·j − (µkj − µk′j)| > c
)

6 P
(
|X(k)

·j −X
(k′)

·j − (µkj − µk′j)| > M0

√
r log p

)
6 P

(
|X(k)

·j − µkj|+ |X
(k′)

·j − µk′j| > M0

√
r log p

)
6 P

(
|X(k)

·j − µkj| > M0

√
r log p/2

)
+ P

(
|X(k′)

·j − µk′j| > M0

√
r log p/2

)
. (S6)

Then with the constants c1 given in (A8), C given in (A1) and ς given in (A3), we have that

P
(
|X(k)

·j − µkj| > M0

√
r log p/2

)
= P

(
1

nk

∣∣∣∑
i:Yi=k

(Xij − µkj)
∣∣∣ > M0

√
r log p/2

)
= P

(∣∣∣∑
i:Yi=k

(Xij − µkj)
∣∣∣ > M0nk

√
r log p/2

)
6 P

(∣∣∣∑
i:Yi=k

(Xij − µkj)
∣∣∣ > M0c1n

√
r log p

2

)
6 2 exp

(
−M2

0 c
2
1n

2r log p

8(nC2 + CM0c1n
√
r log p

)
= 2 exp

(
−M2

0 c
2
1n

2r log p

8(nC2 + CM0c1
√
rn1+ς/2

)
6 2 exp

(
−C2n

1−ς/2r log p
)
, (S7)

where C2 = M2
0 c

2
1/8(C2 +CM0c1

√
r) is a constant and the third to last step is from Lemma
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1. With the same argument, the second term in (S6) also satisfies

P
(
|X(k′)

·j − µkj| > M0

√
r log p/2

)
6 2 exp

(
−C2n

1−ς/2r log p
)
. (S8)

Putting together (S7) and (S8) concludes the first statement. The second statement follows

by a similar argument. �

Lemma 4 (Hoeffding’s inequality for dependent random variables, van de Geer (2002)):

Consider a probability triplet (Ω,F , P ) and let ∅ = F0 ⊂ F1 ⊂ · · · ⊂ F be an increasing

sequence of σ-algebras. Let Xi be an Fi-measurable random variables satisfying E(Xi|Fi) = 0

a.s. Consider the martingale Sn =
∑n

i=1Xi, n > 1. Let Ki > 0 be Fi−1 random variables

i = 1, . . . , n. Define B2
0 = 0 and for n > 1,

B2
n =

∑n

i=1
K2
i

(
1 + E

(
Ψ

(
|Xi|
Ki

)
|Fi−1

))
with Ψ(x) = exp(x2)− 1. Then for all a > 0 and b > 0, and for some n,

P (Sn > a and B2
n 6 b2) 6 exp

(
− a2

8b2

)
.

Let δkk′ = µk − µk′ , µ̂k = n−1k
∑

i:Yi=k
Xi and δ̂kk′ = µ̂k − µ̂k′ , 1 6 k < k′ 6 K. Also let

Σs, Ωs, µs
k, δ

s

kk′ , µ̂
s

k, δ̂
s

kk′ and Ω̂
s

denote the restricted true covariance matrix, true precision

matrix, true mean vector, true mean difference vector, estimated mean vector, estimated

mean difference vector and estimated precision matrix on Ŝ0, respectively, by keeping values

of entries indexed by Ŝ0 and setting the other entries to zeros. Similarly, let Σ0, Ω0, µ0
k, δ

0
kk′ ,

µ̂0
k, δ̂

0

kk′ and Ω̂
0

denote the corresponding matrices/vectors restricted to S0.

When X follows multivariate Gaussian distribution, we have the following two lemmas.

Lemma 5: For any pair of classes (k, k′), 1 6 k < k′ 6 K, conditioning on the event

{S0 ⊆ Ŝ0}, we have that

(δ̂
s

kk′)
′Ωsδ̂

s

kk′ = (δ0
kk′)

′Ω0δ0
kk′ +OP

√∆p(k, k′)
|S0|(nk + nk′)

nknk′

+

OP

(
|S0|(nk + nk′)

nknk′

)
+OP (1). (S9)
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Proof of Lemma 5. Notice that

(δ̂
s

kk′)
′Ωsδ̂

s

kk′ = (δ̂
s

kk′)
′Ω0δ̂

s

kk′ + (δ̂
s

kk′)
′(Ωs −Ω0)δ̂

s

kk′

= (δ0
kk′)

′Ω0δ0
kk′ + 2(δ0

kk′)
′Ω0(δ̂

s

kk′ − δ0
kk′) + (δ̂

s

kk′ − δ0
kk′)

′Ω0(δ̂
s

kk′ − δ0
kk′) +

(δ̂
s

kk′)
′(Ωs −Ω0)δ̂

s

kk′ . (S10)

The third term (δ̂
s

kk′−δ0
kk′)

′Ω0(δ̂
s

kk′−δ0
kk′) on the right hand side of (S10) can be expressed

as

(δ̂
s

kk′ − δ0
kk′)

′Ω0(δ̂
s

kk′ − δ0
kk′)

= (δ̂
0

kk′ − δ0
kk′)

′Ω0(δ̂
0

kk′ − δ0
kk′) + 2(δ̂

s

kk′ − δ̂
0

kk′)
′Ω0(δ̂

0

kk′ − δ0
kk′)

+(δ̂
s

kk′ − δ̂
0

kk′)
′Ω0(δ̂

s

kk′ − δ̂
0

kk′). (S11)

For the term (δ̂
0

kk′ − δ0
kk′)

′Ω0(δ̂
0

kk′ − δ0
kk′) in (S11), assume the singular value decomposition

of Σ0 = DΛS0D
′, where D is an orthogonal matrix and ΛS0 = diag(λ1, . . . , λ|S0|) are the

eigenvalues of Σ0. Since
√

nknk′
nk+nk′

(δ̂
0

kk′ − δ0
kk′) ∼ N(0,Σ0) and Σ0Ω0 = I|S0| with I|S0| being

the identity matrix of dimension |S0|, then

ε ≡
√

nknk′

nk + nk′
Λ
− 1

2
S0

D′(δ̂
0

kk′ − δ0
kk′) ∼ N(0, I|S0|). (S12)

Moreover,

nknk′

nk + nk′
(δ̂

0

kk′ − δ0
kk′)

′Ω0(δ̂
0

kk′ − δ0
kk′) = ε′ε. (S13)

When n→∞ and p→∞, |S0| > p1−β goes to infinity. By the law of large numbers,

nknk′

|S0|(nk + nk′)
(δ̂

0

kk′ − δ0
kk′)

′Ω0(δ̂
0

kk′ − δ0
kk′)

P−→ E(ε2) = 1 as n→∞, p→∞,

where ε2 is a χ2 distributed random variable with degree of freedom 1. This gives that

(δ̂
0

kk′ − δ0
kk′)

′Ω0(δ̂
0

kk′ − δ0
kk′) = OP

(
|S0|(nk + nk′)

nknk′

)
. (S14)

For the term (δ̂
s

kk′− δ̂
0

kk′)
′Ω0(δ̂

s

kk′− δ̂
0

kk′) in (S11), recall that δ̂
s

kk′ and δ̂
0

kk′ are δ̂kk′ restricted

on Ŝ0 and S0, respectively, and Ω0 is the true precision matrix restricted to S0. It follows

that when S0 ⊆ Ŝ0, (δ̂
s

kk′ − δ̂
0

kk′)
′Ω0(δ̂

s

kk′ − δ̂
0

kk′) = 0, as entries of (δ̂
s

kk′ − δ̂
0

kk′) equal 0 on S0
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while entries of Ω0 equal 0 on Sc0. For the same reason, we also have that conditioning on

the event {S0 ⊆ Ŝ0}, (δ̂
s

kk′ − δ̂
0

kk′)
′Ω0(δ̂

0

kk′ − δ0
kk′) = 0. Plugging these two zero terms and

(S14) into (S11), we have that conditioning on the event {S0 ⊆ Ŝ0},

(δ̂
s

kk′ − δ0
kk′)

′Ω0(δ̂
s

kk′ − δ0
kk′) = OP

(
|S0|(nk + nk′)

nknk′

)
. (S15)

For the second term (δ0
kk′)

′Ω0(δ̂
s

kk′ − δ0
kk′) on the right hand sides of (S10), when condi-

tioning on the event {S0 ⊆ Ŝ0}, we have

(δ0
kk′)

′Ω0(δ̂
s

kk′ − δ0
kk′) 6

√
(δ0

kk′)
′Ω0δ0

kk′

√
(δ̂

s

kk′ − δ0
kk′)

′Ω0(δ̂
s

kk′ − δ0
kk′)

=
√

∆2
p(k, k

′)

√
OP

(
|S0|(nk + nk′)

nknk′

)

= OP

(√
∆2
p(k, k

′)

(
|S0|(nk + nk′)

nknk′

))
. (S16)

For the last term (δ̂
s

kk′)
′(Ωs−Ω0)δ̂

s

kk′ on the right hand side of (S10), notice that (Ωs−Ω0)

only has nonzero values on the set Ŝ0 ∩ Sc0. Therefore,

(δ̂
s

kk′)
′(Ωs −Ω0)δ̂

s

kk′ 6 2κ−11

∑
j∈Ŝ0∩Sc0

|δ̂j|2 6 2κ−11 |Ŝ0|max
j∈Sc0
|δ̂j|2. (S17)

According to the mLDA procedure, |Ŝ0| 6 |U| 6 K2n and when j ∈ Sc0, E(δ̂j) = 0 and

var(δ̂j) = σ2
j (1/nk + 1/nk′) with σ2

j being the marginal variance of feature j. Therefore,

|δ̂j|2 = OP (n−1) for any j. As a result,

(δ̂
s

kk′)
′(Ωs −Ω0)δ̂

s

kk′ = OP (κ−11 K2) = OP (1). (S18)

Putting (S15), (S16) and (S18) into (S10), we have that conditioning on the event {S0 ⊆

Ŝ0},

(δ̂
s

kk′)
′Ωsδ̂

s

kk′ = (δ0
kk′)

′Ω0δ0
kk′ +OP

√∆2
p(k, k

′)
|S0|(nk + nk′)

nknk′


+OP

(
|S0|(nk + nk′)

nknk′

)
+OP (1).

�
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Lemma 6: For an X from a class k and any pair of classes (k, k′), 1 6 k < k′ 6 K, let

µ̂s

kk′ = (µ̂s

k + µ̂s

k′)/2. Then conditioning on the event {S0 ⊆ Ŝ0}, we also have

(µs

k − µ̂s

kk′)
′Ωsδ̂

s

kk′ =
1

2
(δ0

kk′)
′Ω0δ0

kk′ +OP

(√
∆2
p(k, k

′)|S0|/nk′
)

+OP

(
|S0|(nk + nk′)

nknk′

)
+OP (1).

Proof of Lemma 6. Direct calculation shows that

(µs

k − µ̂s

kk′)
′Ωsδ̂

s

kk′ =
1

2
(δs

kk′)
′Ωsδs

kk′ − (δs

kk′)
′Ωs(µ̂s

k′ − µs

k′)

−1

2
(µ̂s

k − µs

k)
′Ωs(µ̂s

k − µs

k) +
1

2
(µ̂s

k′ − µs

k′)
′Ωs(µ̂s

k′ − µs

k′)

=
1

2
(δs

kk′)
′Ωsδs

kk′ − A1 −
1

2
A2 +

1

2
A3, (S19)

where A1 ≡ (δs

kk′)
′Ωs(µ̂s

k′−µs

k′), A2 ≡ (µ̂s

k−µs
k)
′Ωs(µ̂s

k−µs
k) and A3 ≡ (µ̂s

k′−µs

k′)
′Ωs(µ̂s

k′−

µs

k′). For A2, notice that

(µ̂s

k − µs

k)
′Ωs(µ̂s

k − µs

k)

= (µ̂s

k − µs

k)
′(Ωs −Ω0)(µ̂s

k − µs

k) + (µ̂s

k − µs

k)
′Ω0(µ̂s

k − µs

k).

By the same argument as in (S17), we have that

(µ̂s

k − µs

k)
′(Ωs −Ω0)(µ̂s

k − µs

k) 6 κ−11

∑
j∈Ŝ0∩Sc0

|δ̂j|2 = OP (1)

and (µ̂s

k − µs
k)
′Ω0(µ̂s

k − µs
k) = (µ̂0

k − µ0
k)
′Ω0(µ̂0

k − µ0
k). Since

√
nk(µ̂

0
k − µ0

k) ∼ N(0,Σ0),

similar to (S12), define ε̃ =
√
nkΛ

−1/2
S0

D′(µ̂0
k − µ0

k). Then ε̃ ∼ N(0, I|S0|) and
√
nk(µ̂

0
k −

µ0
k)
′Ω0(µ̂0

k − µ0
k) = ε̃′ε̃. By the law of large numbers, (nk/|S0|)(µ̂0

k − µ0
k)
′Ω0(µ̂0

k − µ0
k)

P→ 1.

Therefore (µ̂0
k − µ0

k)
′Ω0(µ̂0

k − µ0
k) = OP (|S0|/nk) and

A2 = OP

(
|S0|
nk

)
+OP (1). (S20)

Following the same argument, we have

A3 = OP

(
|S0|
nk′

)
+OP (1). (S21)

For A1, note that (δs

kk′)
′Ωs(µ̂s

k′−µs

k′) = (δs

kk′)
′Ω0(µ̂s

k′−µs

k′)+(δs

kk′)
′(Ωs−Ω0)(µ̂s

k′−µs

k′). For

the second term above, following the same argument as before, when S0 ⊆ Ŝ0, (δs

kk′)
′(Ωs −
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Ω0)(µ̂s

k′ − µs

k′) = 0 as δs

kk′ only takes non-zero values for entries indexed within S0, while

(Ωs − Ω0) is zero valued for entries indexed within S0. Therefore, (δs

kk′)
′Ωs(µ̂s

k′ − µs

k′) =

(δs

kk′)
′Ω0(µ̂s

k′ − µs

k′) = (δ0
kk′)

′Ω0(µ̂0
k′ − µ0

k′). Thus

A1 6
√

(δ0
kk′)

′Ω0δ0
kk′

√
(µ̂0

k′ − µ0
k′)
′Ω0(µ̂0

k′ − µ0
k′)

=
√

∆2
p(k, k

′)Op

(√
|S0|/nk′

)
. (S22)

Plugging (S22), (S20) and (S21) into (S19), we have

(µ̂s

k − µ̂s

kk′)
′Ωsδ̂

s

kk′ =
1

2
(δ0

kk′)
′Ω0δ0

kk′ +OP

(√
∆2
p(k, k

′)|S0|/nk′
)

+OP

(
|S0|(nk + nk′)

nknk′

)
+OP (1).

�

S2. Proofs of the main theorems

Proof of Theorem 1. First we show that

P
(
C[j] ⊆ Ĉ[j]

)
> 1− C1 exp(−C2n

1+ξ + 2nξ)→ 1 (S23)

for some positive constants C1 and C2. We write

P
(
C[j] ⊆ Ĉ[j]

)
= P

(
∩j∗∈C[j]

{j∗ ∈ Ĉ[j]}
)

= 1− P
(
∪j∗∈C[j]

{j∗ /∈ Ĉ[j]}
)

> 1−
∑

j∗∈C[j]

P
(
j∗ /∈ Ĉ[j]

)
. (S24)

Notice that given that j∗ ∈ C[j], there must exist a path consisting of a sequence of pairs

{(jm−1, jm)}Qm=1 with j0 = j and jQ = j∗ such that (jm−1, jm) ∈ E for m = 1, . . . , Q 6 |C[j]|.

If j∗ /∈ Ĉ[j], there must exist a pair of nodes in the sequence, say (jm∗−1, jm∗), 1 6 m∗ 6 Q,

such that |X′jm∗−1
Xjm∗ |/n 6 α. Otherwise, given the training data, the path {(jm−1, jm)}Qm=1

would also connect j and j∗ in Σ̃, which contradicts the fact that j∗ /∈ Ĉ[j]. Then by Lemma
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2, with α = Cn(ξ−1)/2 for some positive constant C, for j∗ ∈ C[j], we have

P
(
j∗ /∈ Ĉ[j]

)
6 P

(
∃ m∗ ∈ {1, · · · , Q}, |X′jm∗−1

Xjm∗ |/n 6 Cn(ξ−1)/2 given (jm∗−1, jm∗) ∈ E
)

6
∑|C[j]|

m∗=1
P
(
|X′jm∗−1

Xjm∗ |/n 6 Cn(ξ−1)/2 given (jm∗−1, jm∗) ∈ E
)

6 C1 exp(nξ) exp(−C2n
1+ξ)

for some constants C1 > 0 and C2 > 0. The second to last step is by (A3), which assumes

that log |C[j]| = O(nξ) for all j = 1, . . . , p. From (S24),

P
(
C[j] ⊆ Ĉ[j]

)
> 1−

∑
j∗∈C[j]

C1 exp(nξ) exp(−C2n
1+ξ)

> 1− C1 exp(2nξ) exp(−C2n
1+ξ) = 1− C1 exp(−C2n

1+ξ + 2nξ)→ 1.

Next we show that

P
(
Ĉ[j] ⊆ C[j]

)
> 1− C1 exp(−C2n

1+ξ + 3nς)→ 1 (S25)

for some ξ < ς < 1 such that p = exp(Cnς) for some constant C > 0. Since Ĉ[j] ⊆ C[j] is

equivalent to Cc[j] ⊆ Ĉc[j],

P
(
Ĉ[j] ⊆ C[j]

)
= P

(
∩j∗∈Cc

[j]
{j∗ ∈ Ĉc[j]}

)
= 1− P

(
∪j∗∈Cc

[j]
{j∗ ∈ Ĉ[j]}

)
> 1−

∑
j∗∈Cc

[j]

P
(
j∗ ∈ Ĉ[j]

)
. (S26)

Suppose that j∗ ∈ Cc[j]. If j∗ ∈ Ĉ[j], then there must exist a pair of nodes (j1, j2) such that

|X′j1Xj2|/n > Cn(ξ−1)/2 but (j1, j2) /∈ E . Otherwise, for any path that connects j∗ and j in Σ̃,

we have |X′j1Xj2|/n > Cn(ξ−1)/2 for any adjacent pair j1 and j2 in the path. If (j1, j2) ∈ E for

all such pairs j1 and j2, the path will also connect j∗ and j in Ω, which contradicts j∗ ∈ Cc[j].

Therefore,

P
(
j∗ ∈ Ĉ[j] given that j∗ ∈ Cc[j]

)
6 P

(∪(j1,j2)/∈E |X′j1Xj2|/n > Cn(ξ−1)/2)
6
∑

(j1,j2)/∈E
P
(
|X′j1Xj2 |/n > Cn(ξ−1)/2) 6 p2P

(
|X′j1Xj2|/n > Cn(ξ−1)/2, (j1, j2) /∈ E

)
6 C̃1 exp(2nς) exp(−C̃2n

1+ξ).
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Therefore, (S26) implies that

P
(
Ĉ[j] ⊆ C[j]

)
> 1− pC̃1 exp(2nς) exp(−C̃2n

1+ξ)

= 1− C̃1 exp(3nς) exp(−C̃2n
1+ξ) = 1− C̃1 exp(−C̃2n

1+ξ + 3nς)→ 1.

�

Proof of Theorem 2. By Lemma 3, we have P (Ŝ1(k, k′) = S1(k, k′)) → 1 as n → ∞ for

any 1 6 k < k′ 6 K. Therefore P (Ŝ1 = S1)→ 1 as n→∞.

Let ε = n−%̃/2, where 0 < %̃ < % with % given in (A9). We show that if

P (|S0 ∩ Ŝ0| > (1− ε)|S0|)→ 1 as n→∞, (S27)

then Theorem 2 follows as ε→ 0 when n→∞.

Let S0(k, k′) = {1 6 j 6 p :
∑p

j′=1 Ωjj′(µkj′ − µk′j′) 6= 0} for a given pair of classes

k and k′, 1 6 k < k′ 6 K. Then S0 = ∪16k<k′6KS0(k, k′). Let Ŝ(k, k′) = {j ∈ U :

|
∑

j′∈Ĉ[j]
Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )| > νn}, and let

Ŝ = ∪16k<k′6KŜ(k, k′)

= {j ∈ U : |
∑

j′∈Ĉ[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )| > νn for some 1 6 k < k′ 6 K}.

Since

Ŝ = {j ∈ U : |
∑

j′∈Ĉ[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )| > νn for some 1 6 k < k′ 6 K}

= {j ∈ U ∩ Ŝ1 : |
∑

j′∈Ĉ[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )| > νn for some 1 6 k < k′ 6 K} ∪

{j ∈ U ∩ Ŝc1 : |
∑

j′∈Ĉ[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )| > νn for some 1 6 k < k′ 6 K}

⊆ Ŝ1 ∪ Ŝ2 = Ŝ0,

to show (S27), it suffices to show that

P (|S0 ∩ Ŝ| > (1− ε)|S0|)→ 1 as n→∞. (S28)

If for any pair (k, k′), 1 6 k < k′ 6 K, |Ŝ(k, k′) ∩ S0(k, k′)| > (1 − ε)|S0(k, k′)|, then we
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have

|Ŝ ∩ S0| =
∣∣∣(∪16k<k′6KŜ(k, k′)) ∩ (∪16k<k′6KS0(k, k′))

∣∣∣
>

∣∣∣∪16k<k′6K(Ŝ(k, k′) ∩ S0(k, k′))
∣∣∣ > (1− ε)

∣∣∪16k<k′6KS0(k, k′)
∣∣

= (1− ε) |S0| .

Therefore,

P
(
|Ŝ ∩ S0| > (1− ε)|S0|

)
> P

(
|Ŝ(k, k′) ∩ S0(k, k′)| > (1− ε)|S0(k, k′)| for all 1 6 k < k′ 6 K

)
= 1− P

(
|Ŝ(k, k′) ∩ S0(k, k′)| < (1− ε)|S0(k, k′)| for some 1 6 k < k′ 6 K

)
> 1−

∑
16k<k′6K

P
(
|Ŝ(k, k′) ∩ S0(k, k′)| < (1− ε)|S0(k, k′)|

)
. (S29)

As a result, to prove (S28), it suffices to show that for any pair k and k′, when n→∞,

P
(
|Ŝ(k, k′) ∩ S0(k, k′)| < (1− ε)|S0(k, k′)|

)
→ 0.

For a j ∈ U , denote

Tj(k, k
′) = 1

(∣∣∑
j′∈Ĉ[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )
∣∣ > νn

)
.

In the following, we write Tj = Tj(k, k
′) for short when no confusion arises. It is easy to see

that

P
(
|Ŝ(k, k′) ∩ S0(k, k′)| < (1− ε)|S0(k, k′)|

)
= P

(∑
j∈S0(k,k′)

Tj < (1− ε)|S0(k, k′)|
)
. (S30)

To evaluate the probability on the right hand side of (S30), we first evaluate E(Tj) for

j ∈ S0(k, k′). Notice that

E(Tj) = P
(∣∣∑

j′∈Ĉ[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )
∣∣ > νn

)
> P

(∣∣∑
j′∈C[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )
∣∣ > νn

)
P
(
Ĉ[j] = C[j]

)
. (S31)
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If for all j′ ∈ C[j] ∩ S1(k, k′), |X
(k)

·j′ −X
(k′)

·j′ | > τ , then for a νn < (κ−22 −Op(ρ
2
n))1/2τ ,

∣∣∑
j′∈C[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )
∣∣

=
{

(X
(k)

·C[j]
−X

(k′)

·C[j]
)′(Ω̂jC[j]

)′Ω̂jC[j]
(X

(k)

·C[j]
−X

(k′)

·C[j]
)
}1/2

> (κ−22 −Op(ρ
2
n))1/2

{
(X

(k)

·C[j]
−X

(k′)

·C[j]
)′(X

(k)

·C[j]
−X

(k′)

·C[j]
)
}1/2

> (κ−22 −Op(ρ
2
n))1/2τ

∣∣C[j]∣∣ > νn,

where κ2 is from (A6), Ω̂jC[j]
is a subvector of the jth row of Ω̂ with column entries indexed by

C[j] and X
(k)

·C[j]
is the subvector of the mean vector of class k, X

(k)
, with entries indexed by C[j].

The second last step comes from the fact that ‖(Ω̂jC[j]
)′Ω̂jC[j]

‖ > ‖(Ωu
jC[j]

)′Ωu
jC[j]
‖−Op(ρ

2
n) >

λ2min(Ω)−Op(ρ
2
n) by (A6) and (S5). Therefore,

P
(∣∣∑

j′∈C[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )
∣∣ > νn

)
> P

(
|X(k)

·j′ −X
(k′)

·j′ | > τ for all j′ ∈ C[j] ∩ S1(k, k′)
)

= 1− P
(
|X(k)

·j′ −X
(k′)

·j′ | 6 τ for some j′ ∈ C[j] ∩ S1(k, k′)
)

> 1− C1 exp(−C2n
1−ς/2r log p)|S0(k, k′)| > 1− o(p−1). (S32)

The second last step is from the first statement in Lemma 3. From (S23) and (S25), we also

have that

P
(
Ĉ[j] = C[j]

)
> 1− C1 exp(−C2n

1+ξ + max(2nξ, 3nς)) = 1− o(p−1). (S33)

Plug (S32) and (S33) into (S31), we have that for sufficiently large n, E(Tj) > 1− o(p−1).

Next, we evaluate P
(∑

j∈S0(k,k′)
Tj < (1− ε)|S0(k, k′)|

)
. For notational simplicity, suppose

that the features in S0(k, k′) are indexed as 1, . . . , |S0(k, k′)|. For the pair k and k′, denote

Vj = Vj(k, k
′) = −(Tj−E[Tj])/

√
|S0(k, k′)|, 1 6 j 6 |S0(k, k′)|. Then, |Vj| 6 1/

√
|S0(k, k′)|.

Let Fj be the sigma field generated by random variables {V1, . . . , Vj}, 1 6 j 6 |S0(k, k′)|.

Then, ∅ = F0 ⊂ F1 ⊂ · · · ⊂ F|S0(k,k′)| and E(Vj|Fj−1) = 0. Let Kj = ε0/
√
|S0(k, k′)|

for some constant ε0 > 1. Then Kj(> 0) is a constant and is Fj−1 measurable. Moreover,
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Ψ̃(|Vj|/Kj) 6 e− 1. Thus,

B2
|S0(k,k′)| =

∑|S0(k,k′)|

j=1
K2
j

(
1 + E

(
Ψ̃(|Vj|/Kj)

) ∣∣Fi−1)
6

ε20
|S0(k, k′)|

∑|S0(k,k′)|

j=1
(1 + e− 1) 6 eε20.

When n→∞ and p→∞,

P

(∑
j∈S0(k,k′)

Tj < (1− ε)|S0(k, k′)|
)

(S34)

= P

(∑
j∈S0(k,k′)

− (Tj − E(Tj)) > (E(Tj) + ε− 1)|S0(k, k′)|
)

= P

(
1√

|S0(k, k′)|

∑
j∈S0(k,k′)

− (Tj − E(Tj)) >
√
|S0(k, k′)|(ε+ E(Tj)− 1)

)

= P

(∑
j∈S0(k,k′)

Vj > Cn%/2(n−%̃/2 − o(p−1)) and B2
S0(k,k′) 6 eε20

)
6 exp

{
−Cn%

(
n−%̃/2 − o(p−1)

)2
8eε20

}
→ 0

for some C > 0. The second to last step is from the fact that |S0(k, k′)| = O(n%), ε = n−%̃/2,

1 − o(p−1) < E(Tj) 6 1, and B2
S0(k,k′)

6 eε20. The last step stems from Lemma 4 and

0 < %̃ < %. Notice that Tj, and therefore Vj (j ∈ S0), are dependent random variables, so we

need to apply Lemma 4 instead of the conventional Hoeffding’s inequality for independent

random variables. This gives that for any pair k and k′, 1 6 k < k′ 6 K, when n → ∞,

P
(
|Ŝ(k, k′) ∩ S0(k, k′)| < (1− ε)|S0(k, k′)|

)
→ 0. By (S29), the proof is completed. �

Proof of Theorem 3. It is clear from the definition of Ŝ that we have Ŝ2 ⊂ Ŝ. Therefore,

Ŝ ⊆ Ŝ0 ⊆ Ŝ ∪ Ŝ1. As a result,

P
(
|Ŝ0 ∩ Sc0| 6 ζ−1|Sc0|

)
6 P

(
|Ŝ ∩ Sc0| 6 ζ−1|Sc0|

)
(S35)
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and

P
(
|Ŝ0 ∩ Sc0| 6 ζ−1|Sc0|

)
> P

(
|(Ŝ ∪ Ŝ1) ∩ Sc0| 6 ζ−1|Sc0|

)
= 1− P

(
|(Ŝ ∩ Sc0) ∪ (Ŝ1 ∩ Sc0)| > ζ−1|Sc0|

)
> 1− P

(
|Ŝ ∩ Sc0| >

1

2
ζ−1|Sc0|

)
− P

(
|Ŝ1 ∩ Sc0| >

1

2
ζ−1|Sc0|

)
> P

(
|Ŝ ∩ Sc0| 6

1

2
ζ−1|Sc0|

)
− P

(
|Ŝ1 ∩ Sc0| >

1

2
ζ−1|Sc0|

)
. (S36)

From Lemma 3, P (Ŝ1 = S1) → 1 as n → ∞. Therefore, P
(
|Ŝ1 ∩ Sc0| > 1

2
ζ−1|Sc0|

)
→ 0 as

n → ∞. So from (S35) and (S36), in order to show that P
(
|Ŝ0 ∩ Sc0| 6 ζ−1|Sc0|

)
→ 1 as

n→∞, it suffices to show that

P
(
|Ŝ ∩ Sc0| 6 ζ−1|Sc0|

)
→ 1 as n→∞

for any ζ = o(n log p).

If for any pair (k, k′), 1 6 k < k′ 6 K, |Ŝ(k, k′) ∩ Sc0| 6 ζ−1|Sc0|, then we have

|Ŝ ∩ Sc0| =
∣∣∣(∪16k<k′6KŜ(k, k′)) ∩ Sc0

∣∣∣ =
∣∣∣∪16k<k′6K(Ŝ(k, k′) ∩ Sc0)

∣∣∣
6

∑
16k<k′6K

|S0(k, k′) ∩ Sc0| 6 K2ζ−1 |Sc0| .

Therefore,

P
(
|Ŝ ∩ Sc0| 6 K2ζ−1|Sc0|

)
> P

(
|Ŝ(k, k′) ∩ Sc0| 6 ζ−1|Sc0| for all 1 6 k < k′ 6 K

)
= 1− P

(
|Ŝ(k, k′) ∩ Sc0| > ζ−1|Sc0| for some 1 6 k < k′ 6 K

)
> 1−

∑
16k<k′6K

P
(
|Ŝ(k, k′) ∩ Sc0| > ζ−1|Sc0|

)
. (S37)

Therefore, to show Theorem 3, it suffices to show that for any pair k and k′, 1 6 k < k′ < K,

P
(
|Ŝ(k, k′) ∩ Sc0| > ζ−1|Sc0|

)
→ 0 as n→∞. (S38)



16 Biometrics, 000 0000

For a given pair k and k′, 1 6 k < k′ < K,

P
(
|Ŝ(k, k′) ∩ Sc0| > ζ−1|Sc0|

)
= P

(
1

|Sc0|
∑

j∈Sc0
1
(∣∣∑

j′∈Ĉ[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )
∣∣ > νn

)
> ζ−1

)
= P

(
1

|Sc0|
∑

j∈Sc0
Tj > ζ−1

)
.

First we evaluate E(Tj) for j ∈ Sc0.

E(Tj) = P

(∣∣∑
j′∈Ĉ[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )
∣∣ > νn

)
6 P

(∣∣∑
j′∈C[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )
∣∣ > νn

)
P
(
Ĉ[j] = C[j]

)
+ P

(
Ĉ[j] 6= C[j]

)
.(S39)

By (A11), for sufficiently large n, ρn 6 C for some positive constant C. When choosing

νn =
√
r(log p) exp(nξ),

P

(∣∣∑
j′∈C[j]

Ω̂u
jj′(X

(k)

·j′ −X
(k′)

·j′ )
∣∣ > νn

)
6 P

(
(1 +OP (ρn))

∣∣∑
j′∈C[j]

Ωjj′(X
(k)

·j′ −X
(k′)

·j′ )
∣∣ > νn

)
= P

(
(1 +OP (ρn))

∣∣∑
j′∈C[j]

Ωjj′(X
(k)

·j′ −X
(k′)

·j′ )−∑
j′∈C[j]

Ωjj′(µkj′ − µk′j′)
∣∣ > νn

)
(S40)

6
(1 + C)2var

(∑
j′∈C[j]

Ωjj′(X
(k)

·j′ −X
(k′)

·j′ )
)

ν2n
(S41)

6
(1 + C)2κ−11 κ2|C[j]| (1/nk + 1/nk′)

r(log p) exp(nξ)

= O((n log p)−1), (S42)

where (S40) is from the fact that E(
∑

j′∈C[j]
Ωjj′(X

(k)

·j′ −X
(k′)

·j′ )) =
∑

j′∈C[j]
Ωjj′(µkj′−µk′j′) = 0

given that j ∈ Sc0, (S41) is from Markov’s inequality and (S42) is from (A3) which states

that, |C[j]| 6 Cmax = O(exp(nξ)). Then from (S39),

E(Tj) = O((n log p)−1) + o(p−1) = O((n log p)−1).

Therefore, for any ζ = o(n log p), ζ−1 > E(Tj).

For the pair k and k′, denote Vj = Vj(k, k
′) = (Tj − E[Tj])/

√
|Sc0|, 1 6 j 6 |Sc0|. Then
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|Vj| 6 1/
√
|Sc0|. Let Kj = ε0/

√
|Sc0| for some constant ε0 > 1. Then Kj(> 0) is a constant

and Fj−1 measurable. Clearly Ψ̃(|Vj|/Kj) 6 e− 1. Thus, the following inequality holds.

B2
|Sc0 |

=
∑

j∈Sc0
K2
j

(
1 + E

(
Ψ̃(|Vj|/Kj)

) ∣∣Fi−1)
6

ε20
|Sc0|

∑
j∈Sc0

(1 + e− 1) 6 eε20.

As a result, when n→∞ and p→∞,

P

(
1

|Sc0|
∑

j∈Sc0
Tj > ζ−1

)
= P

(
1√
|Sc0|

∑
j∈Sc0

(Tj − E(Tj)) >
√
|Sc0|(ζ−1 − E(Tj))

)

= P

(∑
j∈Sc0

Vj > Cp1/2(1− p−β − p−γ)1/2(ζ−1 − E(Tj)) and B2
|Sc

0|
6 eε20

)
6 exp

{
−C2p(1− p−β − p−γ)(ζ−1 −O((n log p)−1))2

8eε20

}
→ 0

for some constant C > 0. We obtain |Sc0| = p(1−p−β−p−γ) from (A10). The last step comes

from the fact that when ζ = o(n log p), ζ−1 − O((n log p)−1) > 0. This arrives at (S38) and

completes the proof. �

Proof of Theorem 4. Given the training data D,

RmLDA(D) (S43)

=
1

K

∑K

k=1
P
(

arg max
16l6K

{(Xs

new − µ̂s

l/2)′Ω̂
s

µ̂s

l} = k′, k′ 6= k|Ynew = k;D
)

6
1

K

∑K

k=1

∑
k′ 6=k

P
(

(Xs

new − µ̂s

k′/2)′Ω̂
s

µ̂s

k′ > (Xs

new − µ̂s

k/2)′Ω̂
s

µ̂s

k|Ynew = k;D
)
.

Notice that for k′ 6= k, (Xs
new − µ̂s

k′/2)′Ω̂
s

µ̂s

k′ > (Xs
new − µ̂s

k/2)′Ω̂
s

µ̂s

k if and only if (Xs
new −

µ̂s

kk′)
′Ω̂

s

δ̂
s

kk′ < 0 with µ̂s

kk′ = (µ̂s

k + µ̂s

k′)/2 and δ̂
s

kk′ = µ̂s

k′ − µ̂s

k. Direct calculation gives that

E[(Xs
new − µ̂s

kk′)
′Ω̂

s

δ̂
s

kk′|Ynew = k;D] = (µs
k − µ̂s

kk′)
′Ω̂

s

δ̂
s

kk′ , var[(Xs
new − µ̂s

kk′)
′Ω̂

s

δ̂
s

kk′ |Ynew =

k;D] = (δ̂
s

kk′)
′Ω̂

s

ΣsΩ̂
s

δ̂
s

kk′ , and

P
(

(Xs

new − µ̂s

kk′)
′Ω̂

s

δ̂
s

kk′ < 0 |Ynew = k;D
)

= Φ

− (µs
k − µ̂s

kk′)
′Ω̂

s

δ̂
s

kk′√
(δ̂

s

kk′)
′Ω̂

s

ΣsΩ̂
s

δ̂
s

kk′

 . (S44)
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First consider the denominator in (S44). By (S5),

(δ̂
s

kk′)
′Ω̂

s

ΣsΩ̂
s

δ̂
s

kk′ = (δ̂
s

kk′)
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s

δ̂
s
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s
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′Ωsδ̂

s
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(δ̂
s
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s
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OP (1)
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Next we look at the numerator in (S44). By Lemma 6, when conditioning on the event

{S0 ⊆ Ŝ0},
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k − µ̂s

kk′)
′Ω̂
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Combining (S45) and (S46), we get
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Direct calculation gives that
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with an(k, k′) = max{|S0|1/2/(n1/2∆p(k, k
′)), |S0|/(n∆2

p(k, k
′)), 1/∆2

p(k, k
′)}. Since ∆p(k, k

′) >

∆p and an(k, k′) > an for any 1 6 k < k′ 6 K, we have that when conditioning on the event
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{S0 ⊆ Ŝ0},
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(δ̂
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2
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Equation (S48) together with (S43), (S44) and (S47) gives that

RmLDA(D) 6 KΦ
(
−(1 +OP (an))1/2(1 +OP (ρn))1/2∆p/2

)
+ oP (1), (S49)

where the term oP (1) stems from the fact that P
(
S0 * Ŝ0

)
is of order oP (1).

Furthermore, when ∆2
p min{n/|S0|, 1} → ∞, for any 1 6 k < k′ 6 K, we have that

|S0|1/2

n1/2∆p(k, k′)
6
|S0|1/2

n1/2∆p

→ 0 and
1

∆2
p(k, k

′)
6

1

∆2
p

→ 0 as n→∞.

Therefore

an = min
16k<k′6K

max

{
|S0|1/2

n1/2∆p(k, k′)
,
|S0|

n∆2
p(k, k

′)
,

1

∆2
p(k, k

′)

}
→ 0 as n→∞.

Also by (A11), ρn → 0 as n→∞. From (S49), we have that RmLDA(D)→ 0 as n→∞. �

S3. Additional numerical results

Figure S1 shows the correlation graphs corresponding to the correlation matrices in Eq (5)

of the main manuscript.

[Figure S1 about here.]

S3.1 Computational speed comparisons

We conducted the following simulations to compare the computational speed of mLDA

with that of the regularized classification methods, such as the regularized optimal affine

discriminant (ROAD) (Fan et al., 2012), the linear programming discriminant (LPD) (Cai

and Liu, 2011) and the covariance-enhanced discriminant analysis (CED) (Xu et al., 2014).

Set K = 2 with equal sizes n1 = n2 = 100 and p =200, 1,000, 10,000 and 50,000. Variables

1–20 were generated from a multivariate normal distribution with the mean structure as

in Table S1. For example, Variables 5–10, 15–20 were MI features, whereas X1–X4 and
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X11–X14 were considered as JI features. These 20 features were divided into four blocks:

X1–X5, X6–X10, X11–X15, X16–X20, with features from different blocks being independent

of each other. Features within the same block were governed by compound symmetry (CS)

covariance structure with the correlation coefficient, ρ = 0.7. The remaining features were

independently and identically distributed from N(0, 1) and were independent of the first 20

variables. Simulations were run on a 64 bit CPU Windows PC with 16GB of memory. The

average computational time over 50 replications for each method under each setting was

reported in Table S2.

[Table S1 about here.]

Table S2 showed that mLDA was much faster compared to the regularization-based clas-

sification methods, especially in the ultrahigh-dimensional settings.

[Table S2 about here.]

S3.2 Tuning parameter selection

Table S3 reported the mean prediction errors from 100 replications under Model I for different

values of thresholding parameters τ and α, while fixing the other tuning parameters. The

results suggested that mLDA was not extremely sensitive to different choices of α and τ in

terms of prediction.

[Table S3 about here.]

S3.3 Performance under heterogeneous covariance structures so that the classes are not

linearly separable

The simulation results for Model III are given in Table S4, which showed that mLDA

performed reasonably well even under heterogeneous covariance structures, as long as the

common covariance assumption was not severely violated.

[Table S4 about here.]
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We also compared the classification performance of mLDA with nonlinear classification

methods, including the mixed discriminant analysis (Hastie and Tibshirani, 1995; Hastie

et al., 1994), the quadratic discriminant analysis (Ripley, 1996), the regularized discriminant

analysis (Hastie et al., 1995), the shrunken-centroids regularized discriminant analysis (Guo

et al., 2005), neural network (Ripley, 1996), kernel support vector machine (Hsu and Lin,

2002), k-nearest neighbors (Torgo, 2010) and naive Bayes (Efron, 2013).

We used the R package mda for the mixed discriminant analysis, function qda in package

MASS for the quadratic discriminant analysis, package klaR for the regularized discriminant

analysis, package rda for the shrunken-centroids regularized discriminant analysis, package

caret for neural network and k-nearest neighbors, package kernlab for kernel support vec-

tor machine and package naivebayes for naivebayes. Most of these packages automatically

selected the tuning parameters. Tuning parameters in klaR and rda were selected using

cross-validations and k = 5 is used in the k-nearest neighbors.

The comparison results were given in Table S5. As many of the competing methods did

not do feature selection, we investigated classification performance only. Table S5 showed

that mLDA outperformed the other nonlinear classification methods in term of classifica-

tion accuracy when the classes were nearly linear separable. As expected, the classification

performance of mLDA deteriorated as the classes became more linearly inseparable.

[Table S5 about here.]

S3.4 Performance with different correlation strengths

Table S6 showed the performance of mLDA with different correlation strengths. The results

suggested that if a JI feature were highly correlated with an MI feature, it was easier to be

detected and hence there would be fewer false negatives.

[Table S6 about here.]
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S3.5 Comparisons with pairwiseLDA when the number of classes K is large

This section compared the proposed mLDA with the pairwiseLDA introduced by Pan et al.

(2016) when the number of classes K is large. We slightly modified the simulation setting

in Example 5 (Unbalanced Case) in Pan et al. (2016), by adding jointly informative (JI)

features into the true informative feature set S0. Specifically, we considered p =10,000,

(n,K) = (100, 10), (400, 20) and (1600, 40). Similar to Pan et al. (2016), we fixed π1 = 1/5

and πk = 4/{5(K − 1)} for k = 2, . . . , K, where πk was the prior probability of class k. The

means of the informative (MI and JI) features were specified in Table S7.

[Table S7 about here.]

All of the 10,000 features were generated from a multivariate normal distribution for each

class. These 10,000 features were divided into 1,000 independent and equal-sized blocks.

Features within the same block had a compound symmetry covariance matrix with an equal

variance 1 and an equal correlation 0.7. The kth block, where k = 1, . . . , K, contains an MI

feature, X10k, and nine JI features X10(k−1)+1–X10k−1 which were correlated with X10k.

For each (n,K), we independently generated a training dataset for model building and

a testing dataset for evaluation of classification. When K was large, a cross-validation

procedure might yield a validation part with very small-sized classes and cause numerical

instability. To resolve the issue, for the same (n,K) we generated an additional independent

validation dataset for selecting the tuning parameters (Brownlee, 2017) in the procedures

of mLDA and pairwiseLDA (Pan et al., 2016). We also selected tuning parameters for

pairwiseLDA using the extended Bayes information criteria (EBIC) as in Pan et al. (2016). In

this case, the pairwiseLDA was labeled as pairwiseLDA.ebic. The experiment was replicated

100 times. The results were given in Table S8, which reported the numbers of false positives

(FP), false negatives (FN) and classification errors (ER).

[Table S8 about here.]
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Table S8 showed that when the number of classesK was large, our proposed mLDA was still

competitive. In the scenarios we have examined, the number of false negatives did increase

as K increased, but it was smaller than that obtained by the pairwiseLDA methods. This is

because pairwiseLDA employed an independence rule and was not able to select JI features.

Moreover, mLDA gave smaller classification errors than pairwiseLDA.

S3.6 Comparisons with pMOM-logistic

This section compared the performance of the proposed mLDA and the Bayesian method

with a non-local prior (pMOM) introduced by Johnson and Rossell (2012); Johnson (2013)

and Nikooienejad et al. (2016).

The simulation set-up was similar to Model I in the main text, except that we set p =1,000,

K = 2 and n1 = n2 =100. The first 20 features were set to be informative and were

generated from a multivariate normal distribution. These 20 features were divided into four

independent and equal-sized blocks. The five features within each block had a compound

symmetry covariance matrix with an equal variance 1 and an equal correlation 0.7. The

means of the informative features for each class were specified as in Table S1. By design,

X5–X10, X15–X20 were the MI features and X1–X4 and X11–X14 were the JI features. The

remaining 980 non-informative features were independently generated from N(0, 1) and were

independent of the 20 informative features.

We generated a training dataset and a testing dataset independently according to the same

setting described above. We applied mLDA and pMOM with logistic regressions (pMOM-

logistic) (Nikooienejad et al., 2016) on the training set to select variables and establish

classification rules. When implementing pMOM-logistic, we used the R package BVSNLP by

specifying a non-local prior density on the (non-zero) regression coefficient with the scale

parameter τ = 3 and the shape parameter r = 1; see Johnson (2013) and Nikooienejad et al.

(2016). For mLDA, the optimal tuning parameters were selected by 5-fold cross-validation
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on the training set and the classification performance was evaluated on the testing set.

For pMOM-logistic, we fitted the logistic regression on the training set, based on which we

calculated the estimated probability to fall into Class 1 for each sample in the testing set.

We used 0.5 probability as the cut-off when assessing the classification performance. The

experiment was replicated 100 times.

The simulation results were reported in Table S9. In summary, while the mLDA gave

slightly larger false positives, it incurred much fewer false negatives and much smaller

classification errors compared to pMOM-logistic.

[Table S9 about here.]

S3.7 More results for the kidney transplant data analysis

Figure S2 gave the estimated Fisher discriminant statistics, d
(k)
i , for i = 1, 2, . . . , 15 and k ∈

{C, TX, AR, NR}. Note that the binary classification approaches inadvertently produced

ties, which made the final class membership assignment difficult. When a tie did happen,

we had to randomly assign membership among the ties. However, as shown in Figure S2, no

ties occur for mLDA.

[Figure S2 about here.]

The heatmap in Figure S3 illustrated the correlation matrix between the 10 selected genes.

The JI genes CEACAM8, RNASE3, TCN1, BPI and CRISP3 were all highly correlated with

the MI gene TCF12, and the JI gene IGHV3-23 were highly correlated with the MI gene

HLA-G.

[Figure S3 about here.]
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Table S1: Means of the informative features

Features Class 1 Class 2

X1–X4, X11–X14 0 0
X5, X15 0 2.5
X6–X10, X16–X20 1.5 -1.5
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Table S2: Comparison of computation time (in minutes)

(n, p) mLDA ROAD LPD CED

(200, 200) 0.4 1.6 2.5 11.5
(200, 1000) 3.0 19.0 36.5 >300
(200, 10000) 4.5 >300 >300 >300
(200, 50000) 12.0 >300 >300 >300

NOTE: Competing methods include the regularized optimal affine discriminant

(ROAD) (Fan et al., 2012), the linear programming discriminant (LPD) (Cai

and Liu, 2011) and the covariance-enhanced discriminant analysis (CED) (Xu

et al., 2014).
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Table S3: Prediction error for different τ and α values under the CS structure

τ 5 10 15 20 25 30 35 40 45 50

19.6 18.8 12.6 11.7 11.5 12.4 14.0 18.9 21.4 22.3
(4.6) (4.3) (4.7) (4.5) (5.0) (4.9) (5.1) (4.9) (5.0) (5.1)

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

14.3 9.8 9.6 9.6 9.7 9.9 9.9 10.4 14.1
(3.7) (3.2) (3.0) (3.1) (3.3) (3.1) (3.3) (3.5) (3.5)

NOTE: numbers in parentheses are standard deviation.
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Table S4: Comparisons with the other linear classification methods under heterogeneous
“unstructured” covariance matrices

(ρ1, ρ2, ρ3) mLDA MS pairwiseLDA SIR penalizedLDA bmrm MGSDA SIS

(0.9, 0.7, 0.5)

FP 28.3 76.4 47.1 65.9 – 35.2 66.5 5.3
(2.9) (4.1) (4.0) (9.6) (6.3) (11.2) (0.3)

FN 5.6 15.7 13.1 12.4 – 13.3 15.6 21.8
(1.6) (1.6) (1.2) (0.8) (1.8) (3.0) (1.4)

MMS 63.2 9931 – – – 9904 – 9974
(4.7) (325) (369) (426)

ER 12.3 17.9 14.1 54.7 58.9 39.6 14.9 31.6
(3.3) (3.8) (4.2) (15.5) (12.7) (7.9) (7.2) (7.4)

(0.9, 0.5, 0.1)

FP 30.4 73.0 51.2 62.8 – 34.0 69.2 5.8
(2.9) (5.3) (4.4) (8.9) (6.7) (10.9) (0.4)

FN 10.7 14.4 13.6 13.0 – 13.7 14.9 22.5
(1.6) (2.7) (1.3) (1.0) (1.6) (3.2) (2.1)

MMS 8939.4 9916 – – – 9872 – 9438
(276) (290) (341) (397)

ER 13.7 16.2 15.4 48.3 59.6 41.5 13.3 33.1
(4.2) (4.1) (4.4) (13.7) (13.1) (8.2) (6.8) (7.2)

NOTE: • The datasets were simulated using “unstructured” covariance matrices with class specific correlation coefficient specified in the first column.

For example, (0.9, 0.7, 0.5) means that the correlation coefficient for the first, second and third class, is 0.9, 0.7 and 0.5 respectively. • FP, average

number of false positives; FN, average number of false negatives; MMS, the minimum number of features needed to include all informative features;

ER, the number of misclassified cases; numbers in parentheses are interquartile ranges for MMS and standard deviations for FP, FN, and ER. MMS is

reported only for methods that output the full ranks of all features. • The competing methods include penalizedLDA (Witten and Tibshirani, 2011),

the regularized risk minimization package (bmrm) (Teo et al., 2010), the multi-group sparse discriminant analysis (MGSDA) (Gaynanova et al., 2016),

pairwiseLDA (Pan et al., 2016), marginal sliced inverse regression (SIR) (Yu et al., 2016), the feature annealed independence rule (MS) (Fan and Fan,

2008), the sure independence screening (SIS) (Fan and Lv, 2008).
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Table S5: Prediction accuracy comparisons with the non-linear classification methods when
classes are not linearly separable

(ρ1, ρ2, ρ3) mLDA mda qda rda sc-rda nn svm knn nb

(0.9, 0.8, 0.7) 2.8 6.3 22.1 15.7 3.4 4.0 7.4 3.1 9.5
(0.9) (1.4) (10.5) (7.6) (2.5) (3.7) (5.8) (4.0) (5.2)

(0.9, 0.7, 0.5) 4.1 0.7 13.2 11.8 2.3 1.9 8.2 1.5 6.6
(1.1) (0.9) (9.9) (7.1) (2.0) (3.6) (6.1) (3.9) (5.4)

(0.9, 0.5, 0.1) 5.7 0.4 11.8 10.2 0.6 3.1 7.9 2.1 7.4
(1.2) (0.7) (10.2) (6.8) (2.2) (3.9) (5.9) (4.1) (5.6)

NOTE: mda = mixed discriminant analysis (Hastie and Tibshirani, 1995; Hastie et al., 1994); qda = quadratic discriminant analysis

(Ripley, 1996); rda = regularized discriminant analysis (Hastie et al., 1995); sc-rda = shrunken-centroids regularized discriminant

analysis (Guo et al., 2005); nn = neural network (Ripley, 1996); svm = support vector machine (Hsu and Lin, 2002); knn = k-nearest

neighbors (Torgo, 2010) and nb = naive Bayes (Efron, 2013). The datasets were simulated using “unstructured” covariance matrices

with class specific correlation coefficient specified in the first column.
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Table S6: Performance of mLDA with different correlation strengths

FP FN MMS ER

ρ = 0.9 7.8 (1.4) 0.5 (0.6) 37 (4.0) 4.9 (2.4)
ρ = 0.5 23.9 (2.5) 5.3 (0.7) 347 (66) 5.3 (2.7)
ρ = 0.3 28.7 (2.8) 11.2 (1.4) 4082 (144) 7.7 (2.6)
ρ = 0.1 37.8 (4.2) 12.3 (1.6) 8926 (263) 14.3 (2.9
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Table S7: Means of the informative features

Features Class 1 Class 2 ... Class K

X1–X9, X11–X19, ..., X10(K−1)+1–X10K−1 0 0 ... 0
X10 5 0 ... 0
X20 0 5 ... 0
...

...
...

. . .
...

X10K 0 0 ... 5
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Table S8: Comparisons with the pairwiseLDA

(n,K) Method FP FN ER

(100, 10)
mLDA 0 (0) 56.7 (22.3) 0.8 (0.7)
pairwiseLDA 0 (0) 90.3 (0.4) 2.4 (1.5)
pairwiseLDA.ebic 0 (0) 90.4 (0.1) 2.6 (1.2)

(400, 20)
mLDA 0 (0) 71.2 (24.6) 3.5 (3.1)
pairwiseLDA 0 (0) 180.5 (0.3) 12.6 (3.4)
pairwiseLDA.ebic 0 (0) 180.2 (0.1) 13.2 (4.2)

(1600, 40)
mLDA 0.2 (0.1) 178.2 (44.2) 5.3 (6.1)
pairwiseLDA 0 (0) 361.0 (1.6) 86.4 (12.6)
pairwiseLDA.ebic 0.2 (0.1) 360.3 (1.1) 91.0 (10.4)

• Numbers in parentheses are standard deviations for FP, FN, and ER.
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Table S9: Comparisons with the pMOM-logistic

FP FN ER

mLDA 1.4 (2.0) 3.6 (2.6) 4.7 (6.6)
pMOM-logistic 0 (0) 17.6 (1.4) 18.4 (4.2)
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