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Summary. Monitoring and comparing trends in cancer rates across geographic regions or over different
time periods have been one main task of the National Cancer Institute’s (NCI) Surveillance, Epidemiology,
and End Results (SEER) Program as it profiles healthcare quality as well as decides healthcare resource
allocations within a spatial-temporal framework. A fundamental difficulty, however, arises when such com-
parisons have to be made for regions or time intervals that overlap, for example, comparing the change in
trends of mortality rates in a local area (e.g., the mortality rate of Breast Cancer in California) with a more
global level (i.e., the national mortality rate of Breast Cancer). In view of sparsity of available methodolo-
gies, this article develops a simple corrected Z-test that accounts for such overlapping. The performance of
the proposed test over the two-sample “pooled” t-test that assumes independence across comparison groups
is assessed via the Pitman asymptotic relative efficiency as well as Monte Carlo simulations and applications
to the SEER cancer data. The proposed test will be important for the SEER ∗STAT software, maintained
by the NCI, for the analysis of the SEER data.

Key words: Age-adjusted cancer rates; Annual percent change (APC); Hypothesis testing; Pitman asymp-
totic relative efficiency (ARE); Surveillance; Trends.

1. Introduction
Cancer continues to be a major epidemic concern in the

Q1

United States, contributing the second most deaths each year
in the United States. For instance, cancer resulted in approxi-
mately 570,280 deaths in year 2005 (American Cancer Society,
2005), whereas the overall cost of cancer, including the costs
of diagnosis, treatment, lost person-hours, and education and
research, tallied as much as $189.8 billion for 2004 (Ghosh
and Tiwari, 2007).

Many public and private agencies dealing with cancer and
related problems depend on the rates of cancer deaths or
new cases as an estimate of cancer burden for planning
and resource allocation. Among these agencies, the Surveil-
lance, Epidemiology, and End Results (SEER) Program of
the National Cancer Institute (NCI) is the most author-
itative and comprehensive source of information on can-
cer incidence and deaths in the United States, which cur-
rently collects and publishes cancer incidence and survival
data from population-based cancer registries covering approx-
imately over a quarter of the entire U.S. population. One
main task of the SEER program is to routinely monitor
and compare trends in cancer mortality and incidence rates
across geographic regions or over different time periods. The
data are analyzed by SEER ∗STAT software, which is main-
tained by the NCI, with the results periodically published
at http://seer.cancer.gov/csr/. Indeed, this surveillance

task has important social and economic ramifications, ranging
from deciding which cancer programs get funded to deciding
how the funds are allocated among various regions. Having
reliable and accurate comparisons of trends of cancer rates is
thus of tremendous importance.

However, a fundamental statistical difficulty arises when
such comparisons, largely for policy making purposes, have to
be made for regions or time intervals that overlap, for exam-
ple, comparing the most recent changes in trends of cancer
rates in a local area (e.g., the mortality rate of breast can-
cer in California) with a more global level (i.e., the national
mortality rate) over two overlapping time periods, because
of availability of the data. For example, as detailed in the
data analysis section, it is of substantial interest to compare
the changes in California cancer mortality rates with the na-
tional cancer mortality rates in the last 15 years. However,
for a 15-year block, the California cancer rates were available
for 1990–2004, whereas the national data were available for
1988–2002.

As the current SEER ∗STAT software utilizes the two-
sample pooled t-test (Kleinbaum, Kupper, and Muller, 1988)
that assumes independence across comparison groups, it is
not appropriate for the aforementioned settings. In this arti-
cle, we develop a simple corrected Z-test that accounts for
the overlap and that will be available for the NCI-SEER
program.

C© 2008, The International Biometric Society 1
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2 Biometrics

The rest of this article is structured as follows. In Section 2,
we introduce the cancer rate regression model that has been
used in the SEER analysis, followed by the classical t-test, em-
ployed by the current SEER ∗STAT software for comparing
the trends between two independent regressions in Section 3.
In Section 4, we propose a corrected Z-test that properly ac-
counts for correlation when the comparison has to be made
across two overlapping regions or time intervals. The perfor-
mance of the proposed test is assessed via applications to
the SEER cancer data, with its validity confirmed by simu-
lations in Section 5. We conclude with a short summary in
Section 6. The technical detail is relegated to the Web Ap-
pendix (http://www.biometrics.tibs.org/).

2. Age-Adjusted Cancer Rate Regression Model
and Annual Percent Change

Let nji and dji be the mid-year population at risk and counts
of deaths or incidents for age group j (j = 1, . . . , J) at time
ti, i = 1, . . . , I. The age-adjusted rate, at time ti , is typically
computed as

r̃i =

J∑
j=1

wj

dji

nji
, (1)

where wj > 0, j = 1, . . . , J , are the known standards for

the age group j so that
∑J

j=1 wj = 1. In the SEER program,
there are J = 19 standard age groups consisting of 0–1, 1–
4, 5–9, . . . , 85+, and the specific weights wj are given in Fay
et al. (2006).

To describe the trend in mortality or incidence, we often
use a logarithm transformation of r̃i and fit a linear regression
on the calendar time. However, for rare cancers, r̃i defined in
(1) can be zero, making its logarithm transformation over-
flow in computation. To avoid this situation, we introduce a
correction factor, which amounts to distributing a count of
1 uniformly to all J categories, and hence adding 1/J to dji ,
yielding a zero-corrected rate (Tiwari, Clegg, and Zou, 2006)

ri =

J∑
j=1

wj

dji + 1/J

nji
. (2)

Numerically, the difference between (1) and (2) is negligible;
however, the logarithm of the latter is always defined. A sim-
ple linear regression has been established by a number of au-
thors (Kim et al., 2000; Tiwari et al., 2005; Fay et al., 2006)
to link the logarithm transformation of mortality or incidence
rate ri , say, yi = log(ri ), to the calendar time ti , via

yi = β0 + β1ti + ei, (3)

where the ei are independent and identically distributed
(i.i.d.) normal with mean 0 and variance σ2, which measures
the fluctuation of rates over years.

Model (3) is commonly referred to as the (transformed)
Cancer Rate Regression Model in the SEER analysis (see,
e.g., Kim et al., 2000; Tiwari et al., 2005; Fay et al., 2006),
which can be conveniently fitted for observed data (ti, yi),
i = 1, . . . , I, using the least squares or the maximum likelihood
estimation methodologies. The resulting estimates of β = (β0,
β1) are denoted by β̂ = (β̂0, β̂1).

Regression coefficient β1 in (3) has been of main inter-
est, as it transcribes the trends of mortality or incidence. In-
deed, the annual percent change (APC), defined as APC =
100(eβ1 − 1), has been used by the NCI (see, e.g., Fay et al.,
2006) for describing the trends of cancer incidence and mortal-

ity. Its estimate, ÂPC = 100(eβ̂1 − 1), along with its variance,
obtained via the delta method (Ries et al., 2003; Fay et al.,

2006), V̂ = 104e2β̂1 σ̂2
β̂1

, constitutes the basis of drawing infer-

ence on the trend, for example, constructing confidence inter-
vals or testing hypothesis. Here, σ̂2

β̂1
= σ̂2/

∑I

i=1(ti − t̄ )2 and

the unbiased estimator σ̂2 =
∑I

i=1(yi − ŷi)
2/(I − 2), where

t̄ =
∑I

i=1 ti/I and ŷi is a prediction of yi based on (3), namely,

ŷi = β̂0 + β̂1ti.
For the purpose of healthcare evaluations, it is of substan-

tial interest to compare the APC of one region (e.g., county
or state level) to that of another region, or to a more global
level (e.g., state or national level). One may also be interested
in comparing the APCs over two overlapping intervals. In the
following, we derive the tests for comparing APCs of two over-
lapping regions within two overlapping time intervals, which
includes the aforementioned local-versus-global comparison as
a special case.

3. Test for Equality of APCs for Two
Independent Regressions

To start, we briefly review the test for comparing APCs for
two independent comparison groups, for example, for two
nonoverlapping regions or time intervals. That is, we consider
two independent linear regressions

yki = βk0 + βk1tki + eki, i = 1, . . . , Ik, (4)

for k = 1, 2, flagging groups 1 and 2, respectively.
Let APC1 and APC2 be the corresponding APC values for

these two regressions. Often, we wish to test the null hypoth-
esis H0 : APC 1 = APC 2 versus the alternative hypothesis H1 :
APC1 �= APC2, which is equivalent to testing H′

0 : β11 = β21

versus H ′
1 : β11 �= β21. Under the assumption that error vari-

ances for the two groups are equal, a test for the latter is given
by Kleinbaum et al. (1988):

t =
β̂11 − β̂21√√√√√S2

p

⎡
⎣

{
I1∑
i=1

(t1i − t̄1)
2

}−1

+

{
I2∑
i=1

(t2i − t̄2)
2

}−1
⎤
⎦

∼ t(I1+I2−4), (5)

where

t̄k =

Ik∑
i=1

tki

/
Ik

for k = 1, 2, and S2
p is the “pooled” unbiased estimate of σ2

given by

S2
p =

I1∑
i=1

(y1i − ŷ1i)
2 +

I2∑
i=1

(y2i − ŷ2i)
2

I1 + I2 − 4
,



1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Comparing Trends in Cancer Rates Across Overlapping Regions 3

where ŷki = β̂k0 + β̂k1t1i are the predictions for k = 1, 2.
Test (5) is currently employed by the NCI-SEER ∗STAT soft-
ware (http://seer.cancer.gov/seerstat). We remark that
in these tests an implicit assumption is that the total pop-
ulation in each time period is stable so that the variance of
yki is time independent. This is indeed the case for the SEER
incidence/mortality data. Hence, we will make the same as-
sumption throughout.

4. A Corrected Z-test for Two Dependent Regressions
Much difficulty arises as (5) is no longer valid if the indepen-
dence assumption is violated. Suppose we are interested in
comparing the APCs of two overlapping regions, say, region
1 and region 2, with data collected over two time intervals
[t1, tm ] and [ts+1, ts+I ], which possibly overlap. That is,
t1 ≤ ts+1 < tm ≤ ts+I . We modify (4) to accommodate this
situation:

y1i = β10 + β11ti + e1i, i = 1, . . . ,m, (6)

for region 1, and

y2i = β20 + β21ti + e2i, i = s + 1, . . . , s + I, (7)

for region 2. Let β̂11 and β̂21 be the estimates of the slope
parameters of the regression lines for these two regions, re-
spectively. In particular,

β̂11 =

m∑
i=1

(ti − t̄1)(y1i − ȳ1)

m∑
i=1

(ti − t̄1)
2

, β̂21 =

s+I∑
i=s+1

(ti − t̄2)(y2i − ȳ2)

s+I∑
i=s+1

(ti − t̄2)
2

,

where ȳ1 =
∑m

i=1 y1i/m, t̄1 =
∑m

i=1 ti/m, ȳ2 =
∑s+I

i=s+1 y2i/I,

and t̄2 =
∑s+I

i=s+1 ti/I.
When regions 1 and 2 are overlapping, the two regressions

may not be independent and, hence, (5) will not be valid as
it fails to account for the correlation between β̂11 and β̂21.
Indeed, under the assumption that, errors e1i and e2i are i.i.d.
normal with mean 0 and equal variance σ2 for the two regions,

β̂11 − β̂21 ∼ N
{
β11 − β21, σ

2
(
σ−2

1 + σ−2
2

)
− 2cov(β̂11, β̂21)

}
,

where σ2
1 =

∑m

i=1(ti − t̄1)
2, σ2

2 =
∑s+I

i=s+1(ti − t̄2)
2. It turns out

that the derivation of cov(β̂11, β̂21), when the two time inter-
vals [t1, tm ] and [ts+1, ts+I ] under consideration are overlap-
ping, is nontrivial as it requires a careful consideration of the
overlapping of two regions. The detailed derivation is given in
the Web Appendix, which shows that

cov(β̂11, β̂21)
.
=

σ2σ12

σ2
1σ

2
2

{
n(O)

}2

n1n2
, (8)

where nk =
∑m

i=s+1

∑J

j=1 nkji for k = 1, 2, n(O) =
∑m

i=s+1 ×∑J

j=1 n
(O)
ji . Here, we have used superscript “O” to denote the

intersection of regions 1 and 2, and denoted by nkji and n(O)
ji

the numbers of underlying population at risk for age group
j at time ti in region k (k = 1, 2), and in the overlapping
subregion, respectively.

The cross term in (8)

σ12 =

m∑
i=s+1

(ti − t̄1)(ti − t̄2),

merits attention as it determines the sign of (8) and is com-
pletely decided by how [t1, tm ] overlaps with [ts+1, ts+I ]. For
example, when [t1, tm ] coincides with [ts+1, ts+I ] (i.e., s = 0,
m = I), then t̄1 = t̄2, and hence, σ12 =

∑m

i=1(ti − t̄1)
2 > 0. On

the other hand, when [t1, tm ] only partially overlaps with [ts+1,
ts+I ], σ12 can be negative, causing a negative covariance in
(8). For example, when s is close to m such that ts+1 > t̄1 and
tm < t̄2, then ti − t̄1 > 0 and ti − t̄2 < 0 for any i ∈ [s + 1, m],
leading to σ12 < 0.

Note that when the overlapping region is an empty set,
n(O) = 0, and cov(β̂1, β̂2) = 0. When s + 1 > m (i.e., the
time intervals are nonoverlapping), σ12 = 0 and, hence,
cov(β̂11, β̂21) = 0 as well. On the other hand, if, for example,
region 1 is completely contained in region 2, then n1 = n(O),
and

cov(β̂11, β̂21) =
σ2σ12

σ2
1σ

2
2

n1

n2
.

So, in summary, if the two regions are nonoverlapping (or time
intervals are nonoverlapping),

β̂11 − β̂21 ∼ N
{
β11 − β21, σ

2
(
σ−2

1 + σ−2
2

)}
(9)

and if region 1 is completely contained in region 2,

β̂11 − β̂21 ∼ N
{
β11 − β21, σ

2

(
σ−2

1 + σ−2
2 − 2σ12σ

−2
1 σ−2

2
n1

n2

)}
,

where n1/n2 is typically termed as the overlapping ratio. In
general, for two regions that overlap partially,

β̂11 − β̂21

∼ N

{
β11 − β21, σ

2

(
σ−2

1 + σ−2
2 − 2σ12σ

−2
1 σ−2

2

(
n(O)

)2

n1n2

)}
.

(10)

Equation (10) reveals that its asymptotic efficacy (AE),
defined by its noncentrality, is

(β11 − β21)
2

σ2

{
σ−2

1 + σ−2
2 − 2σ12σ

−2
1 σ−2

2

(
n(O)

)2

n1n2

)} , (11)

compared to the AE of the naive test that ignores overlapping
[cf. (9) or (5)]:

(β11 − β21)
2

σ2
(
σ−2

1 + σ−2
2

) . (12)

Hence, the Pitman asymptotic relative efficiency (ARE),
which is the ratio of (11) and (12), and measures the gain
of efficiency by accounting for overlapping, is

ARE =
σ−2

1 + σ−2
2

σ−2
1 + σ−2

2 − 2σ12σ
−2
1 σ−2

2

(
n(O)

)2

n1n2

.
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4 Biometrics

Several points are worth mentioning. First, when n(O) = 0
(corresponding to disjoint regions) or ts+1 > tm (corresponding
to disjoint time intervals), the Pitman ARE is 1, justifying the
use of the classical test (as used in the current SEER ∗STAT
software). Secondly (and interestingly), depending on the sign
of σ12, that is, the mixing of the time intervals, the ARE can
be greater or less than 1. Specifically, when σ12 > 0, then
ARE > 1, indicating the naive test will be too conservative;
otherwise, ARE < 1, hinting that the naive test will be too
aggressive and will not maintain the nominal type I error,
all of which calls for a new test that accounts for overlap-
ping. Finally, as a simple example, when s = 0, m = I (i.e.,
two time intervals are identical), then σ12 = σ2

1 = σ2
2, and,

hence, ARE = {1 − (n(O))2

n1n2
}−1, indicating that the naive test

will always be too conservative and the efficiency loss will be-
come more severe as the overlapping population n(O) becomes
larger.

In practice, as σ2 is unknown, we have to replace it with a
consistent estimate, leading to the following Z-test:

Z =
β̂11 − β̂21{

σ̂2

(
σ−2

1 + σ−2
2 − 2σ12σ

−2
1 σ−2

2

(
n(O)

)2

n1n2

)}1/2 . (13)

Under the null hypothesis, Z in (13) approximately follows
a normal distribution, where an unbiased estimate for σ2 is
given by

σ̂2 =

m∑
i=1

(y1i − ŷ1i)
2 +

s+I∑
i=s+1

(y2i − ŷ2i)
2

m + I − 4
.

5. Analysis of SEER Mortality Data
and Simulation Studies

It is of substantial interest to compare the changes in can-
cer mortality rates in California with the national levels, as a
California law (Health and Safety Code, Section 103885) was
passed in late 1980s that mandated the reporting of malig-
nancies diagnosed throughout the state. For this purpose, we
applied the proposed methodology to compare the APC in
the age-adjusted mortality rates for the United States (US)
for the period from 1988 to 2002 to that of California (CA) for
the period from 1990 to 2004. We fitted the simple linear mod-
els (4) to the logarithms of the age-adjusted mortality rates
for both male and female for a number of cancer sites from
the Cancer Facts & Figures (American Cancer Society, 2007).
The mortality data for the United States are compiled by the
National Center for Health Statistics (NCHS) of the Centers
for Disease Control and Prevention (www.cdc.gov/nchs) and
are available from the National Cancer Institute’s SEER Pro-
gram (http://www.seer.cancer.gov). The ratio of the total
population for all age groups combined for CA to that for
the US for the overlapping years (i.e., n1/n2) was around 11%
for females, and 11.5% for males. Because of the space con-
straint, the results are summarized in Tables A.1 and A.2
in the Web Appendix. The tables give the estimates of the
slope parameters for CA and the US and their standard er-
rors, along with the p-values for the comparisons based on

the naive t-tests and the corrected Z-tests. The estimate of
common residual variance σ2 is also provided. We also cal-
culated the residual variances for all the cancer sites for
CA and the US separately (not reported in the tables), and
found that they were close, confirming our common variance
assumption.

The table shows that the corrected Z-test seems to more
aggressively detect the difference between the two APCs than
the t-test, yielding smaller p-values for all the cancer sites. For
example, the corrected Z-test detected a significant difference
in the APC between CA and the US on the site of stomach
in men (meaning CA has a more rapid decrease of stomach
cancer mortality rate compared to the US), whereas the naive
t-test failed to detect such a difference at 5% type I error rate
level.

We also compared APC in the recent 15 years’ age-adjusted
mortality rates for CA (1990–2004) to the national mortality
rates during eighties and early nineties (1980–1994). Indeed,
it was a common practice for policy makers to evaluate the
progress made at a state level by comparing with the histori-
cal national trends (see e.g., http://statecancerprofiles.
cancer.gov/historicaltrend). Statistically, this comparison
is also of interest. In particular, as σ12 < 0 in this case, the
theoretical results in Section 4 hinted that the naive t-test
would be too aggressive, and, hence, might “exaggerate” the
progress made in CA. The ratio of the total population for
all age groups combined for CA to that for the US for the
overlapping years (1990–1994) (i.e., n1/n2) was around 11.1%
for females, and 11.4% for males. The results are summarized
in Tables B.1 and B.2 in the Web Appendix. These tables
show that the naive t-test was a bit more aggressive than the
corrected Z-test, yielding slightly smaller p-values for all the
cancer sites. This confirmed our theoretical results.

To further confirm our analysis results, simulation studies
were performed to compare the characteristics of the naive t-
test, based on (5), with the corrected Z-test (13) that properly
accounts for overlapping. We conducted the following simula-
tions to compare the APCs for two regions. We mimicked the
comparison between, say, the southern region (region 1) con-
sisting of Georgia (GA), South Carolina (SC), and North Car-
olina (NC), and the eastern region (region 2) consisting of NC,
Virginia (VA), and Maryland (MD), with NC being the over-
lapping state. The different time periods, with varying degree
of overlap in the time intervals, are taken to be: (scenario 1)
years [1986, . . . , 2001] for region 1, and years [1989, . . . , 2004]
for region 2, so that there is a considerable overlap of 12 years
between the two intervals and σ12 = 152.75; (scenario 2) years
[1978, . . . , 1993] for region 1, and years [1989, . . . , 2004] for re-
gion 2, so that there is a little overlap of three years between
the two intervals and σ12 = −141.25 < 0. For generating the
counts, dkji , we assume that dkji ∼ind Poisson(nkjiλkji ), where
log(λkji ) = βkj,0 + βk1ti, with ti taking values in the intervals
corresponding to the two regions stated above. Define the age-
adjusted rate at time ti in region k as rki =

∑J

j=1 wjdkji/nkji.
Then the specification for λkji leads to

E(rki) = exp(βk1ti)

J∑
j=1

wj exp(βkj,0)

= exp(βk1ti)Bk,0.
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Comparing Trends in Cancer Rates Across Overlapping Regions 5

Table 1
For time-overlapping scenario 1: Comparison of the corrected Z-test and the naive t-test for two

overlapping regions over roughly the same time interval (region 1: 1986–2001 vs. region 2:
1989–2004), in which case σ12 = 152.75 > 0. APC1 and APC2 are the annual percent changes in

regions 1 and 2, respectively.

Estimated
Naive Corrected residual

Site APC1 APC2 t-test Z-test variance

All malignant cancers −0.5 −0.5 0.030 0.050 5.71E-05
−0.5 −0.3 0.940 0.960 5.68E-05
−0.5 −0.1 0.99 1.00 5.63E-05
−0.3 −0.3 0.032 0.047 5.63E-05
−0.3 −0.1 0.930 0.960 5.59E-05
−0.3 0.1 0.99 1.00 5.56E-05
−0.1 −0.1 0.032 0.048 5.55 E-05
−0.1 0.1 0.94 0.96 5.52E-05
−0.1 0.3 0.99 1.00 5.49E-05

0.1 0.1 0.030 0.050 5.47E-05
0.1 0.3 0.94 0.96 5.44E-05
0.1 0.5 0.99 1.00 5.44E-05
0.3 0.3 0.032 0.050 5.40E-05
0.3 0.5 0.94 0.96 5.36E-05
0.3 0.7 0.99 1.00 5.33E-05
0.5 0.5 0.031 0.050 5.32E-05
0.5 0.7 0.94 0.97 5.26E-05
0.5 1.0 0.99 1.00 5.26E-05

Prostate cancer −0.5 −0.5 0.031 0.050 0.000480
−0.5 −0.3 0.188 0.242 0.000477
−0.5 −0.1 0.655 0.716 0.000475
−0.5 0.1 0.94 0.97 0.000472
−0.3 −0.3 0.031 0.050 0.000474
−0.3 −0.1 0.191 0.245 0.000471
−0.3 0.1 0.660 0.721 0.000468
−0.3 0.3 0.95 0.97 0.000466
−0.1 −0.1 0.031 0.049 0.000467
−0.1 0.1 0.193 0.247 0.000465
−0.1 0.3 0.665 0.724 0.000462
−0.1 0.5 0.95 0.97 0.000459

0.1 0.1 0.031 0.049 0.000461
0.1 0.3 0.196 0.250 0.000458
.1 0.5 0.670 0.727 0.000456
0.1 0.7 0.953 0.970 0.000453
0.3 0.3 0.031 0.049 0.000455
0.3 0.5 0.198 0.250 0.000452
0.3 0.7 0.673 0.733 0.000450
0.3 1.0 0.990 0.994 0.000446
0.5 0.5 0.032 0.050 0.000449
0.5 0.7 0.200 0.253 0.000446
0.5 1.0 0.860 0.894 0.000443

Hence, the delta method would yield that E(yki) ≡ E(log rki)
= log(Bk,0) + βk1ti, where APCk = 100(eβk1 − 1).

Now to specify the regression for λkji , we take βk1 =
log(100−1 APCk + 1), based on the specified values of APCk

ranging from −0.3% to 1.0%, and compute βkj,0 = log(
dkj,0
nkj,0

),

where dkj ,0 and nkj ,0 are, respectively, the observed number of
deaths and the number of at-risk population at the “baseline”
year, the beginning of the time interval considered for Region
k. The age-specific counts for the overlapping state, NC, at the
overlapping time ti are generated from Poisson distributions

with means n(0)
ji (λ1ji + λ2ji )/2, where n(o)

ji denotes the number
of at-risk population in the overlapping region (e.g., NC) in
year ti . In our simulation, the number of at-risk population
and the observed number of deaths were obtained from the
SEER database for all malignant male cancers and prostate
cancer within the time intervals specified in scenarios 1
and 2.

Tables 1 and 2 display the powers of the corrected Z-test
and the naive Kleinbaum’s t-test (5) as a function of various
APCs for the two regions, based on the two time-overlapping



1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

6 Biometrics

Table 2
For time-overlapping scenario 2: Comparison of the corrected Z-test and the naive t-test for two

overlapping regions over partially overlapping intervals (region 1: 1978–1993 vs. region 2:
1989–2004), in which case σ12 = −141.25 < 0. APC1 and APC2 are the annual percent changes in

regions 1 and 2, respectively.

Estimated
Naive Corrected residual

Site APC1 APC2 t-test Z-test variance

All malignant cancers −0.5 −0.5 0.075 0.052 6.81E-05
−0.5 −0.3 0.840 0.830 6.84E-05
−0.5 −0.1 1.00 0.99 6.82E-05
−0.3 −0.3 0.075 0.058 6.77E-05
−0.3 −0.1 0.843 0.831 6.78E-05
−0.3 0.1 1.00 1.00 6.74E-05
−0.1 −0.1 0.074 0.052 6.67E-05
−0.1 0.1 0.851 0.831 6.65E-05
−0.1 0.3 1.00 1.00 6.62E-05

0.1 0.1 0.073 0.054 6.58E-05
0.1 0.3 0.854 0.831 6.54E-05
0.1 0.5 1.00 0.99 6.53E-05
0.3 0.3 0.071 0.054 6.62E-05
0.3 0.5 0.859 0.846 6.51E-05
0.3 0.7 1.00 1.00 6.44E-05
0.5 0.5 0.075 0.054 6.42E-05
0.5 0.7 0.862 0.849 6.40E-05
0.5 1.0 1.00 1.00 6.35E-05

Prostate cancer −0.5 −0.5 0.076 0.052 0.00061
−0.5 −0.3 0.198 0.189 0.00061
−0.5 −0.1 0.540 0.517 0.00061
−0.5 0.1 0.850 0.837 0.00061
−0.3 −0.3 0.075 0.050 0.00060
−0.3 −0.1 0.199 0.183 0.00059
−0.3 0.1 0.544 0.523 0.00058
−0.3 0.3 0.854 0.840 0.00057
−0.1 −0.1 0.075 0.058 0.00057
−0.1 0.1 0.201 0.185 0.00057
−0.1 0.3 0.545 0.526 0.00057
−0.1 0.5 0.95 0.97 0.00057

0.1 0.1 0.074 0.053 0.00057
0.1 0.3 0.203 0.186 0.00057
0.1 0.5 0.550 0.530 0.00057
0.1 0.7 0.859 0.845 0.00057
0.3 0.3 0.075 0.051 0.00057
0.3 0.5 0.205 0.188 0.00057
0.3 0.7 0.555 0.533 0.00057
0.3 1.0 0.941 0.933 0.00057
0.5 0.5 0.075 0.052 0.00056
0.5 0.7 0.205 0.190 0.00056
0.5 1.0 0.736 0.717 0.00056

scenarios listed above. For each parameter configuration, a
total of 10,000 Monte Carlo samples were generated and the
empirical powers were calculated. The results in Tables 1 and
2 clearly showed that corrected test maintained the nominal
type I error under both time-overlapping scenarios and had
good power, which approached 1 quickly as the difference be-
tween the two APCs increased. On the contrary, the naive
test did not maintain the nominal type I error. It was too
conservative in scenario 1 (where σ12 > 0 as in Table 1), with
the type I error being around 0.031 under the null hypothe-

sis, almost half less than the nominal level, and its power was
obviously less than the corrected test, whereas in Scenario 2
(where σ12 < 0 as in Table 2), its type I error rate was around
0.075, almost 50% more than the nominal level. Hence, our
simulation results verified the theoretical results.

6. Discussion
In this article, we have considered an important problem
where comparisons have to be made for regions or time
intervals that overlap. We have shown that the existing
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methodology, which does not properly account for such over-
lapping, will be be inappropriate as it will not maintain the
type I error. We have proposed a simple test that solves this
fundamental difficulty and correctly accounts for overlapping.
Simulations have indicated good performance of the proposed
methodology. We have applied the developed methodology to
the analysis of the major cancer sites from the SEER Program
and have found that the corrected Z-test renders more power
than the naive t-test. Hence, the proposed Z-test will be an
important addition to the SEER ∗STAT software, which only
handled independent comparisons until then.Q2

We have focused on the local linearity for the cancer rates
by considering time periods of short or moderate length. In-
deed, linearity assumption for the cancer rates is a debatable
issue in cancer surveillance, which is likely to be violated over
a longer period (e.g., ≥30 years). A detailed discussion on this
issue has been made in Fay et al. (2006), which proposed a
joinpoint linear regression for long-term cancer rate analysis.
In a similar context, we plan to pursue APC comparisons for
longer periods by considering joinpoint linear regressions, and
will report the results in a subsequent communication.

7. Supplementary Materials
Web Appendix for the derivation of equation (8) and Tables
A.1, A.2, B.1, and B.2 referenced in Section 5 are available
under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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