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Summary: In a longitudinal study, suppose that the primary endpoint is the time to a specific

event. This response variable, however, may be censored by an independent censoring variable or

by the occurrence of one of several dependent competing events. For each study subject, a set of

baseline covariates is collected. The question is how to construct a reliable prediction rule for the

future subject’s profile of all competing risks of interest at a specific time point for risk-benefit

decision makings. In this paper, we propose a two-stage procedure to make inferences about such

subject-specific profiles. For the first step, we use a parametric model to obtain a univariate risk index

score system. We then estimate consistently the average competing risks for subjects which have the

same parametric index score via a nonparametric function estimation procedure. We illustrate this

new proposal with the data from a randomized clinical trial for evaluating the efficacy of a treatment

for prostate cancer. The primary endpoint for this study was the time to prostate cancer death, but

had two types of dependent competing events, one from cardiovascular death and the other from

death of other causes.
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1. INTRODUCTION

Consider a longitudinal clinical study whose primary endpoint is the time to a specific

clinical event. However, this event time is possibly censored by an independent censoring

variable or by the occurrence of one of several dependent competing events. For example, in

a randomized clinical trial to evaluate the efficacy of estrogen diethylstilbestrol (DES) for

treating stage 3 or 4 prostate cancer, 242 patients were randomly assigned to two high dose

groups (> 1 mg/day) and 241 subjects were assigned to two low dose groups (6 0.2 mg/day)

(Byar and Green, 1980; Cheng et al., 1998). The primary endpoint for the study is the time

to prostate cancer death. At the end of the study, there were 48, 78 and 34 deaths due to

prostate cancer, cardiovascular diseases and other causes in the high dose groups. For the

low dose groups, the corresponding numbers of deaths are 77, 61 and 46, respectively. With

respect to the overall survival, the high dose groups appeared to be superior to the low dose

groups. Furthermore, the treatment with high doses of DES reduced the prostate cancer

death. However, there was a serious concern about its potential fatal cardiovascular-related

toxicity.

To quantify the “pure” treatment effect for prostate cancer in the presence of possibly

dependent competing risks is a rather challenging task, if not impossible (Tsiatis, 1975).

The risk-benefit decision makings on the proper usage of DES should depend on the entire

profile of all competing risks, not solely on the prostate cancer mortality. Moreover, since the

choice of balancing the risk and benefit is rather subject-specific, it is important to know how

to utilize the future patient’s “baseline” characteristics to predict such an individual-level

competing risk profile.

A classical method of handling dependent competing risk problem is to model the so-called

cause-specific hazard function for the primary endpoint via the Cox proportional hazards

model (Cox, 1972). However, it is not clear how to utilize this technique to make survival
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predictions (Kalbfleisch and Prentice, 1980; Pepe and Mori, 1993). A useful alternative to

deal with competing risks is to consider the cumulative incidence functions (Benichou and

Gail, 1990; Gaynor et al., 1993; Gelman et al., 1990; Korn and Dorey, 1992; Goldhirsch et

al., 1994). Recently Cheng et al. (1998) and Fine and Gray (1999) modeled the cumulative

incidence function with the subject’s covariates, for example, via a Cox-type model. Further

novel procedures along this line have been studied, for example, by Fine (2001), Klein and

Andersen (2005), Klein (2006) and Scheike et al. (2008). Another fruitful class of parametric

or semi-parametric methods is to consider latent failure time modeling (Kalbfleisch and

Prentice, 2002; Lawless, 2003; Andersen et al., 2002; Li et al., 2007) to analyze the competing

risk data. The validity of predicting the competing risk profiles based on a parametric or

semi-parametric model is heavily dependent on the adequacy of the fitted model.

In this paper, we are interested in constructing subject-level predictions of all dependent

competing risks of interest at a specific time point, or a set of time points. When, for

each subject, more than one baseline covariate is involved, a purely nonparametric function

estimation procedure for the above event rates may not perform well even with relatively

large samples. Here, we consider the case that there is a primary event of interest and

construct a two-stage procedure. For the first step, we use a parametric or semi-parametric

model to create a univariate risk index score predictive to the event rate of the primary

interest. We then use a nonparametric function estimation method to make joint inferences

about the average competing risks for subjects with the same index score. The new proposal

is illustrated with the data from the above DES study.

For the case with only one risk category involved, Cai et al. (2010) utilized a similar two

stage procedure for predicting the mean risk of subjects who have the same parametric

risk score. Other novel semi-parametric methods for predicting risk of a single event with a

high dimensional covariate vector have been proposed, for example, by Bair and Tibshirani
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(2004) using the supervised principal component approach. In the present paper, we took an

approach of using a local multinomial likelihood for nonparametric smoothing technique at

the second stage, which is a non-trivial generalization from Cai et al. (2010). We conducted

an extensive numerical study to examine the performance of the new procedure compared

with a one-step semi-parametric method, for example, using the generalized additive models.

The new proposal appears to be superior to its one-step counterparts with respect to the

mean squared error criterion.

2. CONSISTENT ESTIMATION FOR MEAN COMPETING RISKS OF

SUBJECTS WITH THE SAME PARAMETRIC RISK SCORE

Suppose that there are K distinct types of possibly dependent competing events. For a

random subject in the study, let T̃ be the study time period from the study entry to the

first time point at which one out of these K events occurs. Let ε be a random variable whose

possible values are {1, · · · , K}. If ε = k, Type k event is observed at T̃ . Also, let U be the

subject’s “baseline” covariate vector. Furthermore, suppose that we are interested in the K

conditional event rates at a specific time point t0, that is,

πk(U) = pr(T̃ 6 t0, ε = k | U), k = 1, · · · , K. (2.1)

In practice, T̃ is often censored by an independent continuous variable C with an unknown

survival distribution G(·). Assume that C is independent of T̃ and U. Let T = min(T̃ , C) and

∆ = I(T̃ = T ), where I(·) is the indicator function. Also, let {(T̃i, Ci, εi, Ui), i = 1, · · · , n}

be n independent copies of (T̃ , C, ε, U). The problem is how to make inference about (2.1)

based on the incomplete event time observations {(Ti,∆iεi, Ui), i = 1, · · · , n}. Unfortunately,

if the dimension of U is greater than one, any existing nonparametric regression estimator

for (2.1) may not perform well even when the sample size n is large and the event rates are

not extremely low or high. Instead of estimating such fine subject-level event rates (2.1),
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a feasible, practical alternative is to construct a univariate parametric risk index system

based on U and group the study subjects with respect to this scoring system. Then using

a univariate nonparametric function estimation procedure, one may estimate consistently

these K average competing event rates for each stratum whose subjects have the same index

score.

To construct a univariate scoring system, we consider the case that there is a primary

event of interest for the study, say, the event corresponding to ε = 1. Let X, a p× 1 vector,

be a function of U and the first component of X is one. Let Xi be the counterpart of X from

Ui, i = 1, · · · , n. Consider a parametric working model for the primary event rate:

π1(U) = g(β′X), (2.2)

where g is a known strictly increasing, smooth function, for example, the anti-logit function,

and β is a p×1 vector of unknown parameters. Without censoring, one may use the maximum

likelihood estimator or a simple estimating function such as

n−1

n∑
i=1

Xi{I(Ti 6 t0, ε = 1)− g(β′Xi)} (2.3)

to estimate β.

In the presence of independent right censoring, one may modify (2.3) by adjusting censor-

ing. One possible modification is

R(β) = n−1

n∑
i=1

wi

Ĝ(Ti ∧ t0)
Xi{I(Ti 6 t0, ε = 1)− g(β′Xi)}, (2.4),

where wi = I(Ti∧t0 6 Ci) = I(Ti 6 t0)∆i+I(Ti > t0) and Ĝ(·) is the Kaplan-Meier estimator

for G(·). This generalization has been studied, for example, by Zheng et al. (2007) and Uno

et al. (2008) in different settings. Heuristically, for a large sample size n, conditional on T̃

and U, the expected value of wi/Ĝ(Ti∧ t0) is one. This implies that for large n, R(β) ≈ (2.3).

Therefore, asymptotically one would expect that a root β̂ to R(β) = 0 is free of the study-

specific censoring distribution G(·). It is important to note that under rather mild conditions,

β̂ converges to a finite value β0 even when the model (2.2) is not correctly specified (Uno et
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al., 2008). This stability property, coupled with the fact that β0 is free of the study-specific

censoring distribution, is essential for developing our inference procedures. Note that if the

model (2.2) is correctly specified, g(β̂′X) would be a consistent estimator for (2.1).

Now, consider a future subject from the same study population, whose U and X are U0

and X0 with potential, but unobservable (T̃ , ε)′ = (T̃ 0, ε0)′. Let β̂′X0 = v, a given constant.

We are interested in estimating the following (K − 1) average event rates at time t0 :

pr(T̃ 0 6 t0, ε
0 = k | β̂′X0 = v), k = 1, · · · , K − 1, (2.5)

where the probability is with respect to the future observation (U0, T̃ 0, ε0) as well as the

observed data {(Ti,∆iεi, Ui), i = 1, · · · , n}, from which β̂ is estimated. Note that the proba-

bilities in (2.5) depend on the sample size n and are convergent to the following conditional

probabilities

ηk(v) = pr(T̃ 0 6 t0, ε
0 = k | β′0X0 = v), k = 1, · · · , K − 1, (2.6)

as n→∞. Also note that (2.6) is the set of the multinomial cell probabilities for future sub-

jects whose limiting risk score is v. For the non-censored case, let us consider a nonparametric

estimation procedure for η(v) = {η1(v), · · · , ηK−1(v)}′ via a localized multinomial likelihood

function. Specifically, let Yik = I(Ti 6 t0, εi = k) for k = 1, . . . , K − 1, and β̂′Xi = V̂i. For

notational ease, write pk = ηk(v), the probability of failing with cause k prior to time t0 given

score v, for k = 1, · · · , K − 1. Then, a kernelized log-likelihood function for η(v), expressed

with the unknown parameter vector p = (p1, · · · , pK−1)′ is

n∑
i=1

Kh(V̂i − v)
K−1∑
k=1

log

{
pYikk (1−

K−1∑
k=1

pk)
1−
∑K−1
k=1 Yik

}
, (2.7)

where pk > 0,
∑K−1

k=1 pk 6 1, Kh(s) = K(s/h)/h for a symmetric standard kernel function

K(·) with a finite support and h is the smooth parameter.

In the presence of censoring, we add a weight function wi/Ĝ(Ti ∧ t0) in front of Kh(·) in
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(2.7). The resulting log-likelihood is

n∑
i=1

wi

Ĝ(Ti ∧ t0)
Kh(V̂i − v)

K−1∑
k=1

log

{
pYikk (1−

K−1∑
k=1

pk)
1−
∑K−1
k=1 Yik

}
. (2.8)

An estimator for η(v) = (η1(v), . . . , ηK−1) can be obtained by maximizing (2.8) with respect

to p’s with the above constraints.

The performance of this nonparametric local estimator may be improved by replacing pk

of each summand in (2.8) by

exp{ak + bk(V̂i − v)}
1 +

∑K−1
i=1 exp{ak + bk(V̂i − v)}

,

where a = (a1, · · · , aK−1)′ and b = (b1, · · · , bK−1)′ are unknown vectors of parameters. Here,

the rational is to use a linear function ak + bk(V − v) to approximate log{ηk(V )/ηK(V )} in

a small neighborhood of v (Fan and Gijbels, 1996). The resulting log-likelihood function is

`(a, b; v) =
n∑
i=1

wiKh(V̂i − v)

Ĝ(Ti ∧ t0)

K−1∑
k=1

(
Yik{ak + bk(V̂i − v)}

− log[1 +
K−1∑
k=1

exp{ak + bk(V̂i − v)}]
)
. (2.9)

Let â and b̂ be the maximizers for `(a, b; v) with respect to a and b. Also, let η̂k(v) be

exp(âk)/[1 +
K−1∑
k=1

exp(âk)], k = 1, · · · , K − 1. (2.10)

3. CONSTRUCTING POINTWISE AND SIMULTANEOUS CONFIDENCE

INTERVALS FOR ηk(·) OVER THE RISK SCORE

We can show that when h = O(n−ν), 1/5 < ν < 1/2, η̂k(v) is consistent estimator for

ηk(v), k = 1, · · · , K − 1 (see web based appendix A). Moreover, the joint distribution of

{(nh)1/2[f{η̂k(v)} − f{ηk(v)}], k = 1, · · · , K − 1} (3.1)

can be approximated by a multivariate normal with mean 0 and covariance matrix Σ(v),

where f(·) : [0, 1] → [−∞,∞] is a given smooth, strictly increasing function. In this paper,

we let f(·) be the logit function.
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To estimate the covariance matrix Σ(v) associated with (3.1), we utilize a perturbation-

resampling procedure which is similar to a wild bootstrapping method (Mammen, 1993) and

has been successfully applied to many interesting inference problems, especially in survival

analysis (Gilbert et al, 2004; Tian et al. 2005). Specifically, let {Bi, i = 1, · · · , n} be a random

sample from the unit exponential. Let a∗ = {a∗1, · · · , a∗K−1}′ be the minimizer of `∗(a, b; v), a

perturbed version of (2.9), where

`∗(a, b; v) =
n∑
i=1

Bi
wiKh(V

∗
i − v)

G∗(Ti ∧ t0)

( K−1∑
k=1

Yik{ak + bk(V
∗
i − v)}

− log[1 +
K−1∑
k=1

exp{ak + bk(V
∗
i − v)}]

)
.

Here, G∗(·) and V ∗i are the perturbed counterparts of Ĝ(·) and V̂i, respectively, i.e.,

G∗(t) = exp

[
−

n∑
i=1

∫ t

0

Bid{I(Ti 6 s,∆i = 0)}∑n
j=1 BjI(Tj > s)

]
,

V ∗i = X ′iβ
∗ and β∗ is the solution to the perturbed estimating equation of (2.4)

n∑
i=1

Biwi
G∗(Ti ∧ t0)

Xi{I(Ti 6 t0, ε = 1)− g(X ′iβ)} = 0.

Furthermore, let the corresponding perturbed η∗k(v) be

exp(a∗k)/{1 +
K−1∑
k=1

exp(a∗k)}, k = 1, · · · , K − 1.

In the web based appendix B, we show that the covariance matrix Σ(v) can be consis-

tently estimated by Σ̂(v), the expectation of (nh)[f{η∗(v)} − f{η̂(v)}][f{η∗(v)} − f{η̂(v)}]′

(conditional on the observed data), where f{η∗(v)} = (f{η∗1(v)}, · · · , f{η∗K−1(v)})′ and

f{η̂(v)} = (f{η̂1(v)}, · · · , f{η̂K−1(v)})′. Noting that {G∗(·), V ∗1 , · · · , V ∗n } can be replaced

by {Ĝ(·), V̂1, · · · , V̂n} in the perturbation without effecting the asymptotical distributions

of (nh)1/2[f{η∗(v)} − f{η̂(v)}], since the differences between G∗(·) and Ĝ(·) as well as

between V ∗i and V̂i are in the order of Op(n
−1/2) which is smaller than f{η∗(v)}−f{η̂(v)} =

Op{(nh)−1/2}. However, our experience suggests that the simultaneous perturbation on Ĝ(·)

and V̂i often can improve the finite-sample performance of the proposed resampling method.

To obtain an approximation to Σ̂(v) for a given data set, we generate a large number,
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M, of independent realizations from {Bi, i = 1, · · · , n}. For each realization, we obtain a

realization of f{η∗(v)}. With M such independent realizations, one may use the standard

sample covariance matrix estimate Σ̃(v) or a robust version thereof to estimate Σ(v). This,

coupled with the normal approximation to the distribution of f{η̂(v)}, provides confidence

intervals for f{ηk(v)}. A two sided (1− α) confidence interval for ηk(v) is

f−1[f{η̂k(v)} ± z(1−α/2)(nh)−1/2σ̃k(v)], (3.2)

where f(·) is the logit function, z(1−α/2) is the (1 − α/2) quantile of the standard normal

distribution and σ̃k(v) is the standard error estimate from the kth diagonal element of Σ̃(v).

Note that joint confidence regions for {ηk(v), k = 1, · · · , K − 1} can also be obtained by

considering a sup-type statistic: supk=1,··· ,K−1|η̂k(v) − ηk(v)| to choose the cutoff point for

the confidence intervals (3.2).

To construct a (1−α) simultaneous confidence band for ηk(v) over a pre-specified interval

I of v, we cannot use use the conventional method based on a sup-statistic,

supv∈I σ̃
−1
k (v)|(nh)1/2{η̂k(v) − ηk(v)}| due to the fact that as a process in v, the limiting

distribution of (nh)1/2{η̂k(v) − ηk(v)} does not exist. On the other hand, one may utilize

the strong approximation argument given in Bickel and Rosenblatt (1973) to show that the

appropriately scaled sup of a specific transformation of η̂k(v) converges to a proper random

variable in distribution. In practice, a (1−α) simultaneous confidence band for {ηk(v), v ∈ I}

is

f−1[f{η̂k(v)} ± cα(nh)−1/2σ̃k(v)], (3.3)

where cα is obtained via the following equation:

pr(supv∈I σ̃
−1
k (v)|(nh)1/2[f{η∗k(v)} − f{η̂k(v)}]| < cα) = 1− α,

and {η∗k(v), v ∈ I} is obtained by the above perturbation-resampling method with the same

set of {Bi, i = 1, · · · , n}. The justification of adequacy of this approximation is given in web

based appendix B. Note that unlike the pointwise confidence interval estimation for ηk(v),
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it does not seem trivial to generalize the above simultaneous confidence interval estimation

for all k = 1, · · · , K − 1.

Like any typical nonparametric function estimation problem, it is important to know how

to choose the smooth parameter h in practice. Here, we propose a J−fold cross-validation

method to choose an optimal h value. To this end, we first randomly divide the entire data

set D into J mutually exclusive, roughly equally sized subsets, say, D1, · · · , DJ . Let the

set of observations in D, but not in Dj, be denoted by D(−j), j = 1, · · · , J. We construct

the scoring system using β̂(−j) estimated with the observations in D(−j). Next, for a fixed

h value, let the corresponding nonparametric estimator for ηk(v) be η̂(k,−j)(v). With these

subject-specific risk estimates, we compute the log-likelihood function with observations in

Dj:

`j(h) = −
∑
l∈Dj

wl

Ĝ(Tl ∧ t0)

[
K∑
k=1

Ylk log{η̂(k,−j)(V̂(l,−j))}

]
, (3.4)

where η̂(K,−j)(v) = 1 −
∑K−1

k=1 η̂(k,−j)(v) and V̂(l,−j) = β̂′(−j)Xl, l ∈ Dj. Now, let `cv(h) =∑J
j=1 `j(h). We choose the maximizer hop of `cv(h) as an “optimal” choice of the smooth

parameter h.

It follows from the argument in Härdle et al. (1988), we expect that the above hop is in the

order of Op(n
−1/5). To ensure that the validity of the aforementioned large sample properties

for η̂k(v), one may choose a smooth parameter h = hop×n−ξ where 0 < ξ < 3/10. In practice,

we find that the resulting nonparametric estimator performs well with ξ = 0.1.

4. AN ILLUSTRATIVE EXAMPLE

We use the new proposal to study a subset of the data from the DES trial discussed in the

Introduction section. This data set consists of patient-level observations from the high DES

dose groups. There were 242 patients in these groups with a median followup time of 63

months. Here, T̃ is the time from randomization to one of K = 4 competing events, and

ε = 1, for prostate cancer death; = 2, for cardiovascular related death; and = 3, for other
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causes of death; = 4, for surviving beyond t0. At the end of the study, there were 48, 78

and 34 patients died due to prostate cancer, heart diseases and other causes, respectively.

The baseline covariate vector U includes Age (AG), weight index (WT), performance rating

(PF), history of cardiovascular disease (HX), serum hemoglobin (HG), size of primary lesion

(SZ) and Gleason score (SG). Since this data set was analyzed in the past using a discretized

coding system for the covariates due to an easy clinical interpretation (Byar and Green,

1980; Cheng et al., 1998), we followed the same system in our analysis. For convenience to

readers, the coding for covariates is summarized in Table 1.

[Table 1 about here.]

First, we consider a case for predicting the subject-level relatively long term competing

risks. To this end, let t0 = 5 (years). Since the primary endpoint of the study is the time to

prostate cancer death, we fitted the data with a working model (2.2) by letting X = (1, U)′

and g be the anti-logit function. The point estimate β̂ for β via (2.4) is given in Table 2

(a). Although only WY, SZ and SG are statistically significant with this working model,

we used the entire covariate vector U to build the risk scoring V = β̂′X. In Figure 1(a), we

present a smoothed density estimate of V̂ , which is a bimodal function. Most study subjects

are clustered around V̂ = −4.5 and −0.9.

[Table 2 about here.]

To estimate ηk(v), k = 1, 2, 3, we let the kernel Kh(·) for η̂k(v) be the standard Epanech-

nikov function. The smoothing parameter h was chosen by minimizing `cv(h) defined in

Section 3 with a 10-fold cross-validation procedure. This results in h = 0.97. Lastly we

let the 2nd and 98th percentiles of the empirical distribution of V̂ be the the bound-

ary points of I. We then constructed pointwise and simultaneous confidence intervals for

{ηk(v), v ∈ I} with M = 1000 realizations of the random sample from the unit exponential

for the perturbation-resampling procedure. In Figure 1(b), for the prostate cancer 5-year
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mortality rate estimation, we present the point estimates {η̂1(v), v ∈ I} with the solid

curve, and the 0.95 pointwise intervals (enclosed by dotted curves) and simultaneous band

(gray shaded zone). For example, the estimated average prostate cancer mortality rate for

patients with an index score of -4.5 was 0.012 with a 95% simultaneous confidence interval

of (0.0006,0.17) and a 95% pointwise confidence interval of (0.002,0.05), while the estimated

average prostate cancer mortality rate for patients with an index score of -0.9 was 0.35 with a

95% simultaneous confidence interval of (0.27,0.41) and a 95% pointwise confidence interval

of (0.30,0.38). In Figure 1(c)(d), we present their counterparts with respect to cardiovascular

disease related death and death from other causes.

[Figure 1 about here.]

Note that the 5-year rate from “other causes” is rather flat over v. On the other hand,

patients with low risk scores (< −2), the prostate cancer death rates are low. However, the

CV mortality rates are high. Therefore, for this group of future patients treated by DES

high doses, one would closely monitor the patients’ CV functions. For patients with high risk

score (> −2), it seems that a high dose DES may not be a good choice for treating prostate

cancer.

Now, suppose that we are also interested in predicting a short term competing risk profile.

To this end, we let t0 = 2 (years). We fitted the data with a parametric working model (2.2).

Here, X = (1, U)′. The estimated regression coefficients are given in Table 2(b). Note that

these estimates appear to be markedly different from those for the case with t0 = 5 (years),

suggesting that the risk score system may depend on the time point of interest. Using the

same setting as that for the above long term competing risk prediction problem, the resulting

smoothing parameter value h is 1.29. The corresponding profiles for the dependent risks are

given in Figure 2. For the present case, the mortality rates for CV death or “other causes”
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death are relatively flat over the entire index score. On the other hand, it appears that the

high dose DES works well for patients whose risk scores are lower than −2.

[Figure 2 about here.]

5. A NUMERICAL STUDY FOR EXAMINING THE PERFORMANCE OF

THE NEW PROCEDURE

We conducted an extensive numerical study to examine the performance of our proposal

under practical settings. Instead of using the proposed two stage procedure, one may adapt

a generalized additive model (GAM) approach for multinomial outcome data (Yee and Wild,

1996; Yee, 2010) to estimate the cell probability πk(U) in the presence of censoring. We

found that our procedure generally performs better than such a semi-parametric method.

For example, in one of simulation settings, we mimicked the prostatic cancer example and

considered the case with K = 4 and a 3 × 1 vector of covariates, U = (U(1), U(2), U(3))
′.

For each subject, we first generated the correlated “latent” times D1, D2, and D3 to three

distinct deaths (the fourth cell is for survivors beyond t0) via the following log-liner model:

logD1 = α1U(1) + α2U(2) + e1,

logD2 = α1U(2) + α2U(3) + e2,

logD3 = α1U(3) + α2U(1) + e3,

where the random error (e1, e2, e3) follows a trivariate normal distribution with means being

0, variances being 1 and the covariances being ρ = 0.5, and the baseline covariates U(1), U(2)

and U(3) are independent standard normals. Then T̃ is the minimum of D1, D2 and D3 and

the event indicator ε is defined accordingly.

The censoring time C was assumed to be Unif[0, ξ], where ξ was chosen to yield a certain

pre-specified censoring level with the corresponding parameter values α’s in the above model.
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For each simulation setting, 10,000 simulated data sets were generated to examine the

performance of our procedure.

With each simulated data set and a fixed t0, the estimate of πk(Ui) for the ith subject

using our procedure is η̂k(β̂
′Xi), where Xi = (1, Ui)

′, and β̂ and η̂k(·) were obtained via (2.4)

and (2.10), respectively. We calculated 10,000 mean squared errors

1

n

n∑
i=1

K−1∑
k=1

{η̂k(β̂′Xi)− πk(Ui)}2.

and then used the resulting sample mean, the empirical MSE (EMSE) to measure the

performance of our procedure.

For the GAM approach, we used the following conventional working model:

log{πk(U)/π4(U)} = g0k + g1k(U(1)) + g2k(U(2)) + g3k(U(3)), k = 1, 2, 3,

where g0k is a unknown constant, and the functions glk are completely unspecified, but

E{glk(U(l))} = 0, l = 1, 2, 3. To fit the censored data, we adapted the GAM methodology for

multinomial data developed by Yee and Wild (1996). Specifically, we multiplied the weight

matrix in their objective function [denoted by Wi in eq. (6) of Yee and Wild (1996)] by a

factor of wi/Ĝ(Ti ∧ t0) [defined below (2.4)] to adjust for right censoring. Then, we used a

B-spline with 3 degrees of freedom for each function glk(·) via the VGAM algorithm (Yee,

2010). With 10,000 simulated data sets, we calculated the corresponding EMSE with the

GAM procedure.

In Table 3, we report the EMSEs under various sample sizes n, α’s in modeling the latent

times, and ξ for censoring. For all the cases, our procedure has smaller EMSEs than the GAM-

based method. Note that the GAM, though flexible, is only a working model. Therefore, we

do not expect the resulting estimators for the cell probabilities to be consistent.

[Table 3 about here.]
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6. REMARKS

It is important to note that in this paper the index scoring system is constructed based on

the contrast between the primary event rate and the average of all other competing risks at a

specific time point via (2.2). In general, it is difficult, if not impossible, to create a univariate

scoring system for grouping the subjects, which is sensitive to differentiating subject-level

risks of all causes. On the other hand, for some specific situations, one may be able to

construct a “sharper” index score. For example, in the DES study, since we are particularly

concerned about the fatal cardiovascular risks with the high DES dose treatment, for each

subject a modified score may be defined as a contrast of two univariate scores, one is β̂′X

utilized in this article, and the other one is derived by modeling the CV death rate π2(U)

via (2.2).

In this paper, we are interested in estimating the competing risks at a fixed time point

(or a set of time points). We find that in general, for a subject with a covariate vector U ,

its score index for predicting long term risks can be quite different from that for short term

risks. If a single score system is needed without a specific set of time points of interest, one

may fit the data with a Cox-type model for the conditional cumulative incidence function

(Fine and Gray, 1999; Cheng et al., 1998), say, for example, of the time to prostate cancer

death in the DES example. The resulting risk estimates η̂k(v), k = 1, · · · , K − 1, in (2.5) are

functions of time t. It would be interesting to examine the properties of these estimates as

processes of t for a fixed risk index v. Cheng et al. (1998) proposed parametric counterparts

of such estimators, but their estimators are likely biased when the models are not correctly

specified.
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7. Supplementary Materials

Web Appendices A and B, referenced in Section 3 are available under the Paper Information

link at the Biometrics website http: www.tibs.org/biometrics.
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Figure 1. Consistent estimates (solid curve), pointwise 0.95 confidence intervals (enclosed
by dotted curves) and simultaneous intervals (gray area) for various risks ηk(v) at t0 =5
years: (a) The density function for the index score; (b) Inference for η1(v); (c) inference for
η2(v) ; (d) Inference for η3(v).
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Figure 2. Consistent estimates (solid curve), pointwise 0.95 confidence intervals (enclosed
by dotted curves) and simultaneous intervals (gray area) for various risks ηk(v) at t0 =2
years: (a) The density function for the index score; (b) Inference for η1(v); (c) inference for
η2(v) ; (d) Inference for η3(v).
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Table 1
Coding of the covariates for the prostate cancer data

value

Variable 0 1 2

AG < 75 years 75-79 years > 80 years
WT > 100 80-99 < 80
PF Normal Limited
HX No Yes
HG > 12g/100ml 9-11.9 g/100ml <9 g/100ml
SZ < 30 cm2 > 30 cm2

SG > 10 > 10
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Table 2
Regression Coefficient Estimates for Model (2.2) with the data from the high dose groups

(a) Time point t0 = 5 years

Coefficient Estimate Std. Error p-value

Intercept -4.64 0.79 < 0.01
AG -0.07 0.31 0.81
WT 0.66 0.37 0.07
PF 0.56 0.61 0.35
HX -0.56 0.46 0.23
HG 0.46 0.42 0.27
SZ 1.76 0.50 < 0.01
SG 3.37 0.75 < 0.01

(b) Time point t0 = 2 years

Coefficient Estimate Std. Error p-value

Intercept -5.87 1.12 < 0.01
AG -0.18 0.39 0.63
WT 0.74 0.40 0.06
PF -0.15 0.69 0.82
HX 0.29 0.54 0.58
HG 1.19 0.45 < 0.01
SZ 1.12 0.55 0.045
SG 3.25 1.05 < 0.01
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Table 3
Empirical mean squared errors for the new method and a procedure based on generalized additve models with
parameters α’s for estimating {πk(·)} at time point t0 with sample size n and censoring distribution U(0, ξ)

α1 = α2 = 1 (n = 100)
(t0, ξ) (2.7, 15) (5, 15) (1.25, 15) (2.7, 25) (5, 25) (1.25, 25)

Proposed Method 0.125 0.204 0.052 0.128 0.202 0.064
GAM glogit 0.191 0.344 0.089 0.219 0.276 0.106

α1 = α2 = 1 (n = 200)
(t0, ξ) (2.7, 15) (5, 15) (1.25, 15) (2.7, 25) (5, 25) (1.25, 25)

Proposed Method 0.116 0.181 0.050 0.118 0.195 0.055
GAM glogit 0.222 0.267 0.073 0.192 0.277 0.084

α1 = α2 = 1 (n = 400)
(t0, ξ) (2.7, 15) (5, 15) (1.25, 15) (2.7, 25) (5, 25) (1.25, 25)

Proposed Method 0.110 0.161 0.048 0.116 0.179 0.046
GAM glogit 0.185 0.250 0.074 0.164 0.258 0.068

α1 = 0.5 α2 = 2.5 (n = 100)
(t0, ξ) (2.7, 15) (5, 15) (1.25, 15) (2.7, 25) (5, 25) (1.25, 25)

Proposed Method 0.130 0.186 0.059 0.119 0.203 0.055
GAM glogit 0.228 0.342 0.093 0.181 0.303 0.102

α1 = 0.5 α2 = 2.5 (n = 200)
(t0, ξ) (2.7, 15) (5, 15) (1.25, 15) (2.7, 25) (5, 25) (1.25, 25)

Proposed Method 0.119 0.174 0.051 0.112 0.201 0.050
GAM glogit 0.183 0.254 0.076 0.179 0.278 0.088

α1 = 0.5 α2 = 2.5 (n = 400)
(t0, ξ) (2.7, 15) (5, 15) (1.25, 15) (2.7, 25) (5, 25) (1.25, 25)

Proposed Method 0.117 0.166 0.046 0.112 0.180 0.044
GAM glogit 0.173 0.242 0.077 0.176 0.242 0.076


